数,又知奇数均为整数,而整数不一定为奇数,所以M N,故选B.
(2)B={x∈N|1≤log2x<2}={2,3}.因为A∪B=B,所以A⊆B.当A=⌀时,显然a=
0,符合题意.当A≠⌀时,得a≠0,此时A={x|ax-6=0}=
6 a
,由题意可得
6=2或
a
6 =3,解得a=3或a=2,所以实数a的所有值构成的集合为{0,2,3}.故选D.
A.4
B.5
C.6
D.7
解析 ∵A={1,2,3},B={z|z=x-y,x∈A,y∈A},
∴x=1,2,3,y=1,2,3.
当x=1时,x-y=0,-1,-2;
当x=2时,x-y=1,0,-1;
当x=3时,x-y=2,1,0.
即x-y=-2,-1,0,1,2,即B={-2,-1,0,1,2}.共有5个元素.故选B.
A.A∪B
B.A∩B
C.∁U(A∩B)
D.∁U(A∪B)
解析 (1)由log2x<1=log22,解得0<x<2,即A=(0,2),由x2+x-2<0得(x-1)(x+2)<0, 解得-2<x<1,即B=(-2,1),借助数轴,可得A∩B=(0,1),故选B.
(2)解法一:由题意可知∁UA={1,2,6,7,8},∁UB={2,4,5,7,8},∴(∁UA)∩(∁UB) ={2,7,8}.由集合的运算性质可知(∁UA)∩(∁UB)=∁U(A∪B),即∁U(A∪B)= {2,7,8},故选D. 解法二:画出韦恩图(如图所示),由图可知∁U(A∪B)={2,7,8}.故选D.
高考理数
专题一 集合与常用逻辑用语
1.1 集合的概念及运算