高中数学角的概念的推广习题有答案解析
- 格式:docx
- 大小:107.51 KB
- 文档页数:5
No. 2 课 题:4.1 角的概念推广(二) 教学目的:1.巩固角的形成,正角、负角、零角等概念,熟练掌握掌握所有与α角终边相同的角(包括α角)、象限角、区间角、终边在坐标轴上的角的表示方法;2.掌握所有与α角终边相同的角(包括α角)、象限角、终边在坐标轴上的角的表示方法;3.体会运动变化观点,逐渐学会用动态观点分析解决问题;教学重点:象限角、终边在坐标轴上的角的表示方法;教学难点:终边在坐标轴上的角的集合表示;授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:通过复习回顾,使学生进一步理解角的概念,象限角的概念.通过具体的例子,使学生掌握终边在坐标轴上的角和终边不在坐标轴上的角的集合表示以及符号语言的运用.教学过程:一、复习引入:1.角的概念的推广⑴“旋转”形成角ABαO一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点.⑵.“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA 为始边的角α=210°,β=-150°,γ=660°,⑶意义用“旋转”定义角之后,角的范围大大地扩大了3︒ 还有零角 一条射线,没有旋转角的概念推广以后,它包括任意大小的正角、负角和零角.2.“象限角”角的顶点合于坐标原点,角的始边合于x 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)3.终边相同的角结论:所有与α终边相同的角连同α在内可以构成一个集合:{}Z k k S ∈⋅+==,360|οαββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和⑷注意以下四点:(1)Z k ∈(2) α是任意角;(3)0360⋅k 与α之间是“+”号,如0360⋅k -30°,应看成0360⋅k +(-30°);(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.二、讲解新课:例1写出终边在y 轴上的角的集合(用0到360度的角表示).解:∵ 在0°~360°间,终边在y 轴的正半轴上的角为90°,终边在y 轴的负半轴上的角为270°,∴终边在y 正半轴、负半轴上所有角分别是:S1={α|α=k ⋅360︒+90︒,k ∈Z};S2={α|α=k ⋅360︒+270︒,k ∈Z}探究:怎么将二者写成统一表达式?∵S1={α|α=k ⋅360︒+90︒,k ∈Z}={α|α=2k ⋅180︒+90︒,k ∈Z};S2={α|α=k ⋅360︒+270︒,k ∈Z}={α|α=2k ⋅180︒+180︒+90︒,k ∈Z}={α|α=(2k+1)⋅180︒+90︒,k ∈Z};∴终边在y 轴上的角的集合是:S=S1Y S2={α|α=2k ⋅180︒+90︒,k ∈Z}Y {α|α=(2k+1)⋅180︒+90︒,k ∈Z}={α|α=180︒的偶数倍+90︒,k ∈Z}Y {α|α=180︒的奇数倍+90︒,k ∈Z}={α|α=180︒的整数倍+90︒,k ∈Z}={α|α=n ⋅180︒+90︒,n ∈Z}引申:写出所有轴上角的集合{α|α=k ⋅360︒, k ∈Z} {α|α=k ⋅360︒+180︒,k ∈Z} {α|α=k ⋅180︒,k ∈Z}{α|α=k ⋅360︒+90︒,k ∈Z}{α|α=k ⋅360︒+270︒,k ∈Z}{α|α=k ⋅180︒+90︒,k ∈Z}{α|α=k ⋅90︒, k ∈Z} {α|α=k ⋅90︒+45︒, k ∈Z} {α|α=k ⋅45︒, k ∈Z} (最后两个可以根据实际情况处理)例2.用集合的形式表示象限角第一象限的角表示为{α|k ⋅360︒<α<k ⋅360︒+90︒,(k ∈Z )};第二象限的角表示为{α|k ⋅360︒+90︒<α<k ⋅360︒+180︒,(k ∈Z )};第三象限的角表示为{α|k ⋅360︒+180︒<α<k ⋅360︒+270︒,(k ∈Z )};第四象限的角表示为{α|k ⋅360︒+270︒<α<k ⋅360︒+360︒,(k ∈Z )};或{α|k ⋅360︒-90︒<α<k ⋅360︒,(k ∈Z )}例3 写出角的终边在图中阴影区域内的角的集合(不包括边界)解:.(1){α|60°+k ·360°<α<255°+k ·360°,k ∈Z }(2){α|-120°+k ·360°<α<45°+k ·360°,k ∈Z }例4 已知α是第二象限角,问2α是第几象限角?2α是第几象限角?分别加以说明解:∵α在第二象限,∴k ⋅360︒+90︒<α<k ⋅360︒+180︒,k ∈Z于是, k ⋅180︒+45︒<2α<k ⋅180︒+90︒, ∵k ∈Z, ∴k=2n 或k=2n+1 当k=2n 时,n ⋅360︒+45︒<2α<n ⋅360︒+90︒, ∴2α在第一象限; 当k=2n+1时,n ⋅360︒+225︒<2α<n ⋅360︒+270︒, ∴2α在第三象限; ∴当α在第二象限时,∴2α可能在第一象限,也可能在第三象限类似地,2α可能在第三、四象限或y 轴负半轴上三、课堂练习:1.若A={α|α=k·360°,k∈Z};B ={α|α=k·180°,k∈Z};C ={α|α=k·90°,k∈Z},则下列关系中正确的是( )A.A=B=CB.A=BI CC.AY B=CD.ABC2.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角3.若α与β的终边互为反向延长线,则有( )A.α=β+180°B.α=β-180°C.α=-βD.α=β+(2k+1)180°,k∈Z4.终边在第一或第三象限角的集合是 .5.α为第四象限角,则2α在 .6.角α=45°+k·90°的终边在第 象限.参考答案:1.D2.C3.D4.{α|k ·180°<α<90°+k ·180°,k ∈Z }5.第三或第四象限或终边在y 轴的非正半轴上6.一 二 三 四四、小结用集合的形式表示象限角以及轴线角(终边在坐标轴上的角)(1)象限角:第一象限的角表示为{α|k ⋅360︒<α<k ⋅360︒+90︒,(k ∈Z )};第二象限的角表示为{α|k ⋅360︒+90︒<α<k ⋅360︒+180︒,(k ∈Z )};第三象限的角表示为{α|k ⋅360︒+180︒<α<k ⋅360︒+270︒,(k ∈Z )};第四象限的角表示为{α|k ⋅360︒+270︒<α<k ⋅360︒+360︒,(k ∈Z )};或{α|k ⋅360︒-90︒<α<k ⋅360︒,(k ∈Z )}(2)轴线角:终边在x 轴正半轴上的角的集合:{α|α=k ⋅360︒, k ∈Z};终边在x 轴负半轴上的角的集合:{α|α=k ⋅360︒+180︒,k ∈Z};终边在x 轴上的角的集合:{α|α=k ⋅180︒,k ∈Z};终边在y 轴正半轴上的角的集合:{α|α=k ⋅360︒+90︒,k ∈Z};终边在y 轴负半轴上的角的集合:{α|α=k ⋅360︒+270︒,k ∈Z};终边在y 轴上的角的集合:{α|α=k ⋅180︒+90︒,k ∈Z};终边在坐标轴上的角的集合:{α|α=k ⋅90︒,k ∈Z}5.区间角:锐角:(0︒,90︒),钝角:(90︒,180︒),注意区间(α,β)与(k ⋅360︒+α, k ⋅360︒+β)的区别五、课后作业:1.写出与370°23′终边相同角的集合S ,并把S 中在-720°~360°间的角写出来.2.在直角坐标系中作出角Z k 60180∈︒+︒⋅=,k α,Z k 6090∈︒+︒⋅=,k β角的终边.3.写出角的终边在图中阴影区域内的角的集合(不包括边界)参考答案:1.S={α|α=10°23′+k ·360°,k ∈Z }在-720°~360°之间的角分别是10°23′ -349°37′ -709°37′.2.3.(1){α|45°+k·180°<α<90°+k·180°,k∈Z}(2){α|-150°+k·360°<α<150°+k·360°,k∈Z}六、板书设计(略)七、课后记:1.在[360°,1440°]中与-21°16′终边相同的角有( )A.1个B.2个C.3个D.4个2.在[360°,1620°]中与21°16′终边相同的角有( )A.2个B.3个C.4个D.5个3.角α=45°+k·180°,k∈Z的终边落在( )A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限4.第二象限角的集合可表示为.5.角α的终边落在一、三象限角平分线上,则角α的集合是6.角α是第二象限角,则180°+α是第象限角;-α是第象限角;180°-α是第________象限角.参考答案:1.C 2.C 3.A4.{α|90°+k·360°<α<180°+k·360°,k∈Z}5.{α|α=45°+k·180°,k∈Z}6. 四三一。
角的概念的推广·典型例题分析例1在-720°~720°之间,写出与60°的角终边一样的角的集合S.解与60°终边一样的角的集合为{α|α=k·360°+60°,k∈Z}.令-720°<k·360°+60°<720°,得k=-2,-1,0,1相应的α为-660°,-300°,60°,420°,从而S={-660°,-300°,60°,420°}.例2把1230°,-3290°写成k·360°+α(其中0°≤α<360°,k∈Z)的形式.分析用所给角除以360°,将余数作α.解∵1230÷360=3余150,∴1230°=3×360°+150°.∵-3290÷360=-10余310,∴-3290°=-10×360°+310°.注意:负角除以360°,为保证余数为正角,试商时应使得到的负角的绝对值大于负角的绝对值.例3写出终边在y轴上的角的集合.解终边在y轴的正半轴上角的集合为{α|α=k·360°+90°,k∈Z}.终边在y轴的负半轴上角的集合为{α|α=k·360°+270°,k∈Z}.故终边在y轴上角的集合为{α|α=k·360°+90°,k∈Z}∪{α|α=k·360°+270°,k∈Z}.={α|α=2k·180°+90°,k∈Z}∪{α|α=(2k+1)·180°+90°,k∈Z}={α|α=n·180°+90°,n∈Z}.同样方法可写出终边在x轴上角的集合为{x|x=n·180°+90°,k∈Z}。
三角函数一、知识点 (一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
其中顶点,始边,终边称为角的三要素。
角可以是任意大小的。
(1)角按其旋转方向可分为:正角,零角,负角。
①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角; ②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。
(2)在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角。
②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角。
(3)终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为},360|{Z n n S ∈⋅+α=ββ= 。
集合S 的每一个元素都与α的终边相同,当0=k 时,对应元素为α。
2、弧度制和弧度制与角度制的换算(1)角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制。
(2)1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一已知角α的弧度数的绝对值rl =α||,这种以“弧度”作为单位来度量角的制度叫做弧度制。
(3)角度制与弧度制的互化:π=2360,π=180;815730.571801'≈≈π= rad ; rad 01745.01801≈π= 。
3、特殊角的三角函数值0 3045 60 90 120 135 150 1800 6π4π 3π 2π 32π 43π 65ππ sin 0 2122 23 1 232221 0 cos 1 232221 0 21- 22- 23- 1- tan 0 331 3 ⨯3- 1- 33- 0210 225 240 270 300 315 330 36067π 45π 34π 23π 35π 47π 611ππ2sin21- 22- 23- 1- 23- 22- 21- 04、平面直角坐标系中特殊线表示的角的集合:其中:Z n ∈,Z k ∈;x 轴正半轴 360⋅nπk 2 第一象限角平分线36045⋅+nπ+πk 24 x 轴负半轴 360180⋅+n π+πk 2 第二象限角平分线 360135⋅+nπ+πk 243 x 轴 180⋅n πk 第三象限角平分线 360225⋅+nπ+πk 245 y 轴正半轴 36090⋅+n π+πk 22第四象限角平分线 360315⋅+nπ+πk 247 y 轴负半轴 360270⋅+n π+πk 223 第一、三象限角平分线 18045⋅+n π+πk 4y 轴 18090⋅+nπ+πk 2 第二、四象限角平分线 180135⋅+n π+πk 43 坐标轴 90⋅n 2πk 象限角平分线 9045⋅+n 24π+πk 5、弧长及扇形面积公式:弧长公式:r l ⋅α=||扇形弧长,扇形面积公式:lr r S 21||212=⋅α=扇形,α是圆心角且为弧度制,r 是扇形半径。
高中数学高考总复习角的概念的推广及任意角的三角函数习题及详解一、选择题1.(2010·广州检测)若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[答案] C[解析] ∵sin α<0,∴α为第三、四象限角或终边落在y 轴负半轴上, ∵tan α>0,∴α为第一、三象限角, ∴α为第三象限角.2.(2010·安徽省168中学联考)已知集合A ={(x ,y )|y =sin x },集合B ={(x ,y )|y =tan x },则A ∩B =( )A .{(0,0)}B .{(π,0),(0,0)}C .{(x ,y )|x =k π,y =0,k ∈Z }D .∅ [答案] C[解析] 函数y =sin x 与y =tan x 图象的交点坐标为(k π,0),k ∈Z .3.(2010·河北正定中学模拟)已知角α终边上一点P ⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.56π B.116π C.23πD.53π [答案] B[解析] 由条件知,cos α=sin 2π3=sin π3=32, sin α=cos 2π3=-cos π3=-12,∴角α为第四象限角,∴α=2π-π6=11π6,故选B.4.(2010·山东师大附中模拟)cos ⎝⎛⎭⎫-523π=( ) A .-12B .-32C.12D.32[答案] A[解析] cos ⎝⎛⎭⎫-52π3=cos 52π3=cos ⎝⎛⎭⎫17π+π3 =-cos π3=-12.5.(2010·河南新乡市模拟)已知角α终边上一点P (-4a,3a )(a <0),则sin α的值为( ) A.35 B .-35C.45D .-45[答案] B[解析] ∵a <0,∴r =(-4a )2+(3a )2=-5a , ∴sin α=3a r =-35,故选B.6.(2010·广东佛山顺德区质检)函数f (x )=sin x 在区间[a ,b ]上是增函数,且f (a )=-1,f (b )=1,则cos a +b2=( )A .0 B.22C .-1D .1[答案] D[解析] 由条件知,a =-π2+2k π (k ∈Z ),b =π2+2k π,∴cos a +b 2=cos2k π=1.7.(2010·青岛市质检)已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( ) A .-12B .-32C.12D.32[答案] A[解析] 由条件知,π=a 1+a 5+a 9=3a 5,∴a 5=π3,∴cos(a 2+a 8)=cos2a 5=cos 2π3=-cos π3=-12,故选A.8.(2010·衡水市高考模拟)设a =log 12tan70°,b =log 12sin25°,c =log 12cos25°,则它们的大小关系为( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c[答案] A[解析] ∵tan70°>cos25°>sin25°>0,log 12x 为减函数,∴a <c <b .9.(2010·北京西城区抽检)设0<|α|<π4,则下列不等式中一定成立的是( )A .sin2α>sin αB .cos2α<cos αC .tan2α>tan αD .cot2α<cot α[答案] B[解析] 当-π4<α<0时,A 、C 、D 不成立.如α=-π6,则2α=-π3,sin2α=-32,sin α=-12,-32<-12,tan2α=-3,tan α=-33,cot2α=-33,cot α=-3,而-3<-33,此时,cot2α>cot α.10.如图所示的程序框图,运行后输出结果为( )A .1B .2680C .2010D .1340[答案] C[解析] ∵f (n )=2sin ⎝⎛⎭⎫n π3+π2+1=2cos n π3+1.由S =S +f (n )及n =n +1知此程序框图是计算数列a n =2cos n π3+1的前2010项的和.即S =⎝⎛⎭⎫2cos π3+1+⎝⎛⎭⎫2cos 2π3+1+⎝⎛⎭⎫2cos 3π3+1+…+⎝⎛⎭⎫2cos 2010π3+1 =2⎝⎛⎭⎫cos π3+cos 2π3+cos 3π3+…+cos 2010π3+2010=2×335×cos π3+cos 2π3+cos 3π3+cos 4π3+cos 5π3+cos 6π3+2010=2010.二、填空题11.(2010·南京调研)已知角α的终边经过点P (x ,-6),且tan α=-35,则x 的值为________.[答案] 10[解析] 根据题意知tan α=-6x =-35,所以x =10.12.已知△ABC 是锐角三角形,则点P (cos B -sin A ,tan B -cot C ),在第________象限. [答案] 二[解析] ∵△ABC 为锐角三角形,∴0<A <π2,0<B <π2,0<C <π2,且A +B >π2,B +C >π2,∴π2>A >π2-B >0,π2>B >π2-C >0, ∵y =sin x 与y =tan x 在⎝⎛⎭⎫0,π2上都是增函数, ∴sin A >sin ⎝⎛⎭⎫π2-B ,tan B >tan ⎝⎛⎭⎫π2-C , ∴sin A >cos B ,tan B >cot C ,∴P 在第二象限.13.在(0,2π)内使sin x >cos x 成立的x 的取值范围是______. [答案] (π4,5π4)[解析] 由三角函数定义结合三角函数线知,在(0,2π)内,使sin x >cos x 成立的x 的取值范围为(π4,5π4).[点评] 要熟知单位圆中的三角函数线在三角函数值的大小中的应用.14.(文)(2010·上海嘉定区模拟)如图所示,角α的终边与单位圆(圆心在原点,半径为1的圆)交于第二象限的点A ⎝⎛⎭⎫cos α,35,则cos α-sin α=________. [答案] -75[解析] 由条件知,sin α=35,∴cos α=-45,∴cos α-sin α=-75.(理)(2010·北京延庆县模拟)直线y =2x +1和圆x 2+y 2=1交于A ,B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则sin(α+β)=________.[答案] -45[解析] 将y =2x +1代入x 2+y 2=1中得,5x 2+4x =0,∴x =0或-45,∴A (0,1),B ⎝⎛⎫-45,-35,故sin α=1,cos α=0,sin β=-35,cos β=-45, ∴sin(α+β)=sin αcos β+cos αsin β=-45.[点评] 也可以由A (0,1)知α=π2,∴sin(α+β)=sin ⎝⎛⎭⎫π2+β=cos β=-45. 三、解答题15.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值. [解析] ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3.当x =10时,P 点坐标为(10,-2), 由三角函数的定义,有sin α=-66,1tan α=-5, ∴sin α+1tan α=-66-5=-65+66;当x =-10时,同理可求得sin α+1tan α=65-66.16.(文)已知sin θ、cos θ是方程x 2-(3-1)x +m =0的两根. (1)求m 的值; (2)求sin θ1-cot θ+cos θ1-tan θ的值.[解析] (1)由韦达定理可得⎩⎨⎧sin θ+cos θ=3-1 ①sin θ·cos θ=m ② 由①得1+2sin θ·cos θ=4-2 3.将②代入得m =32-3,满足Δ=(3-1)2-4m ≥0,故所求m 的值为32- 3.(2)先化简:sin θ1-cot θ+cos θ1-tan θ=sin θ1-cos θsin θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=cos 2θ-sin 2θcos θ-sin θ=cos θ+sin θ =3-1.(理)已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,且θ∈(0,2π), (1)求sin θ1-cot θ+cos θ1-tan θ的值;(2)求m 的值;(3)求方程的两根及此时θ的值. [解析] (1)由韦达定理可知⎩⎨⎧sin θ+cos θ=3+12①sin θ·cos θ=m 2②而sin θ1-cot θ+cos θ1-tan θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin θ+cos θ=3+12; (2)由①两边平方得1+2sin θcos θ=2+32,将②代入得m =32; (3)当m =32时,原方程变为 2x 2-(1+3)x +32=0,解得x 1=32,x 2=12, ∴⎩⎨⎧sin θ=32cos θ=12或⎩⎨⎧sin θ=12cos θ=32又∵θ∈(0,2π),∴θ=π6或π3.17.周长为20cm 的扇形面积最大时,用该扇形卷成圆锥的侧面,求此圆锥的体积. [解析] 设扇形半径为r ,弧长为l ,则l +2r =20, ∴l =20-2r ,S =12rl =12(20-2r )·r =(10-r )·r , ∴当r =5时,S 取最大值.此时l =10,设卷成圆锥的底半径为R ,则2πR =10, ∴R =5π,∴圆锥的高h =52-⎝⎛⎭⎫5π2=5π2-1π,V =13πR 2h =π3×⎝⎛⎭⎫5π2·5π2-1π=125π2-13π2.。
角的概念的推广与任意角的三角函数基础巩固强化1.(文)(2011·绵阳二诊)已知角A 同时满足sin A >0且tan A <0,则角A 的终边一定落在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] B[解析] 由sin A >0且tan A <0可知,cos A <0,所以角A 的终边一定落在第二象限.选B.(理)(2012·广西田阳高中月考)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三角限角D .第四象限角 [答案] C[解析] 根据各象限内三角函数值的符号进行判断即可. 由sin αtan α<0可知sin α,tan α异号,从而α为第二或第三象限角. 由cos αtan α<0可知cos α,tan α异号,从而α为第三或第四象限角. 综上可知,α为第三象限角.2.(文)(2011·杭州模拟)已知角α终边上一点P ⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.56π B.116π C.23πD.53π[答案] B[解析] 由条件知,cos α=sin 2π3=sin π3=32, sin α=cos 2π3=-cos π3=-12, ∴角α为第四象限角, ∴α=2π-π6=11π6,故选B.(理)已知锐角α终边上一点P 的坐标是(4sin3,-4cos3),则α等于( )A .3B .-3C .3-π2 D.π2-3[答案] C[解析] ∵π2<3<π,∴cos3<0,∴点P 位于第一象限, ∴tan α=-cos3sin3=sin (3-π2)cos (3-π2)=tan ⎝⎛⎭⎪⎫3-π2, ∵3-π2∈⎝ ⎛⎭⎪⎫0,π2,∴α=3-π2. 3.若一个扇形的周长与面积的数值相等,则该扇形所在圆的半径不可能等于( )A .5B .2C .3D .4 [答案] B[解析] 设扇形的半径为R ,圆心角为α,则有2R +Rα=12R 2α,即2+α=12Rα整理得R =2+4α,由于4α≠0,∴R ≠2.4.已知点P (-3,4)在角α的终边上,则sin α+cos α3sin α+2cos α的值为( )A .-16 B.16 C.718 D .-1[答案] B[解析] 由条件知tan α=-43, ∴sin α+cos α3sin α+2cos α=tan α+13tan α+2=16. 5.(文)设0≤θ<2π,如果sin θ>0且cos2θ>0,则θ的取值范围是( )A .0<θ<3π4 B .0<θ<π4或3π4<θ<π C.3π4<θ<π D.3π4<θ<5π4 [答案] B[解析] ∵0≤θ<2π,且sin θ>0,∴0<θ<π. 又由cos2θ>0得,2k π-π2<2θ<2k π+π2, 即k π-π4<θ<k π+π4(k ∈Z ).∵0<θ<π, ∴θ的取值范围是0<θ<π4或3π4<θ<π.(理)(2011·海口模拟)已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内α的取值范围是( )A .(π4,π2)B .(π,5π4)C .(3π4,5π4)D .(π4,π2)∪(π,5π4)[答案] D[解析] ∵P 点在第一象限,∴⎩⎪⎨⎪⎧sin α-cos α>0,tan α>0,如图,使sin α>cos α的角α终边在直线y =x 上方,使tan α>0的角α终边位于第一、三象限,又0≤α≤2π,∴π4<α<π2或π<α<5π4.6.(文)(2011·新课标全国理)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35 D.45[答案] B[解析] 依题意:tan θ=±2,∴cos θ=±15,∴cos2θ=2cos 2θ-1=25-1=-35或cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-41+4=-35,故选B.(理)函数f (x )=sin x 在区间[a ,b ]上是增函数,且f (a )=-1,f (b )=1,则cos a +b2=( )A .0 B.22 C .-1 D .1[答案] D[解析] 由条件知,a =-π2+2k π (k ∈Z ),b =π2+2k π,∴cos a +b 2=cos2k π=1.7.(2011·太原调研)已知角α的顶点在原点,始边与x 轴正半轴重合,点P (-4m,3m )(m >0)是角α终边上一点,则2sin α+cos α=________.[答案] 25[解析] 由条件知x =-4m ,y =3m ,r =x 2+y 2=5|m |=5m ,∴sin α=y r =35,cos α=x r =-45,∴2sin α+cos α=25.8.(2011·江西文)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上的一点,且sin θ=-255,则y =________.[答案] -8[解析] |OP |=42+y 2,根据任意角三角函数的定义得,y42+y2=-255,解得y =±8,又∵sin θ=-255<0及P (4,y )是角θ终边上一点, 可知θ为第四象限角,∴y =-8.9.(文)(2012·南昌调研)已知sin(α+π12)=13,则cos(α+7π12)的值为________.[答案] -13[解析] cos(α+7π12)=cos[(α+π12)+π2]=-sin(α+π12)=-13. (理)如图所示,角α的终边与单位圆(圆心在原点,半径为1的圆)交于第二象限的点A cos α,35,则cos α-sin α=________.[答案] -75[解析] 由条件知,sin α=35, ∴cos α=-45,∴cos α-sin α=-75. 10.(2011·广州模拟)A 、B 是单位圆O 上的动点,且A 、B 分别在第一、二象限.C 是圆O 与x 轴正半轴的交点,△AOB 为正三角形.记∠AOC =α.(1)若A 点的坐标为⎝ ⎛⎭⎪⎫35,45,求sin 2α+sin2αcos 2α+cos2α的值;(2)求|BC |2的取值范围.[解析] (1)∵A 点的坐标为⎝ ⎛⎭⎪⎫35,45,∴tan α=43,∴sin 2α+sin2αcos 2α+cos2α=sin 2α+2sin αcos α2cos 2α-sin 2α=sin 2αcos 2α+2×sin αcos α2-sin 2αcos 2α=tan 2α+2tan α2-tan 2α=169+832-169=20. (2)设A 点的坐标为(cos α,sin α), ∵△AOB 为正三角形,∴B 点的坐标为(cos(α+π3),sin(α+π3)),且C (1,0), ∴|BC |2=[cos(α+π3)-1]2+sin 2(α+π3)=2-2cos(α+π3).而A 、B 分别在第一、二象限, ∴α∈(π6,π2). ∴α+π3∈(π2,5π6), ∴cos(α+π3)∈(-32,0). ∴|BC |2的取值范围是(2,2+3).能力拓展提升11.(文)设α是第二象限角,且|sin α2|=-sin α2,则α2是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[答案] C[解析] ∵α是第二象限角,∴α2是第一、三象限角, 又∵sin α2≤0,∴α2是第三象限角,故选C.(理)若α是第三象限角,则y =|sin α2|sin α2+|cos α2|cos α2的值为( )A .0B .2C .-2D .2或-2 [答案] A[解析] ∵α为第三象限角,∴α2为第二、四象限角 当α2为第二象限角时,y =1-1=0,当α2为第四象限角时,y =-1+1=0.12.(文)若θ∈⎝ ⎛⎭⎪⎫3π4,5π4,则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] B [解析]解法1:如图,由单位圆中三角函数线可知,当θ∈⎝⎛⎭⎪⎫3π4,5π4时,sin θ+cos θ<0,sin θ-cos θ>0.∴复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应点在第二象限.解法2:∵cos θ+sin θ =2sin ⎝ ⎛⎭⎪⎫θ+π4,sin θ-cos θ=2sin ⎝ ⎛⎭⎪⎫θ-π4,又∵θ∈⎝ ⎛⎭⎪⎫3π4,5π4.∴π<θ+π4<3π2,∴sin ⎝ ⎛⎭⎪⎫θ+π4<0. ∵π2<θ-π4<π,∴sin ⎝ ⎛⎭⎪⎫θ-π4>0, ∴当θ∈⎝ ⎛⎭⎪⎫3π4,5π4时,cos θ+sin θ<0,sin θ-cos θ>0.故选B.(理)(2011·绵阳二诊)记a =sin(cos2010°),b =sin(sin2010°),c =cos(sin2010°),d =cos(cos2010°),则a 、b 、c 、d 中最大的是( )A .aB .bC .cD .d [答案] C[解析] 注意到2010°=360°×5+180°+30°,因此sin2010°=-sin30°=-12,cos2010°=-cos30°=-32,-π2<-32<0,-π2<-12<0,0<12<32<π2,cos 12>cos 32>0,a =sin(-32)=-sin 32<0,b =sin(-12)=-sin 12<0,c =cos(-12)=cos 12>0,d =cos(-32)=cos 32>0,∴c >d ,因此选C.[点评] 本题“麻雀虽小,五脏俱全”考查了终边相同的角、诱导公式、正余弦函数的单调性等,应加强这种难度不大,对基础知识要求掌握熟练的小综合训练.13.已知角θ的终边上有一点M (3,m ),且sin θ+cos θ=-15,则m 的值为________.[答案] -4[解析] r =32+m 2=m 2+9, 依题意sin θ=m m 2+9,cos θ=3m 2+9,∴m m 2+9+3m 2+9=-15.即m +3m 2+9=-15,解得m =-4或m =-94,经检验知m =-94不合题意,舍去. 故m =-4.14.(文)已知下列四个命题(1)若点P (a,2a )(a ≠0)为角α终边上一点,则sin α=255; (2)若α>β且α、β都是第一象限角,则tan α>tan β; (3)若θ是第二象限角,则sin θ2cos θ2>0; (4)若sin x +cos x =-75,则tan x <0. 其中正确命题的序号为________. [答案] (3)[解析] (1)取a =1,则r =5,sin α=25=255; 再取a =-1,r =5,sin α=-25=-255,故(1)错误.(2)取α=2π+π6,β=π3,可知tan α=tan π6=33,tan β=3,故tan α>tan β不成立,(2)错误.(3)∵θ是第二象限角,∴sin θ2cos θ2=12sin θ>0,∴(3)正确. (4)由sin x +cos x =-75<-1可知x 为第三象限角,故tan x >0,(4)不正确.(理)直线y =2x +1和圆x 2+y 2=1交于A ,B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则sin(α+β)=________.[答案] -45[解析] 将y =2x +1代入x 2+y 2=1中得,5x 2+4x =0,∴x =0或-45,∴A (0,1),B ⎝ ⎛⎭⎪⎫-45,-35,故sin α=1,cos α=0,sin β=-35,cos β=-45,∴sin(α+β)=sin αcos β+cos αsin β=-45. [点评] 也可以由A (0,1)知α=π2,∴sin(α+β)=sin ⎝ ⎛⎭⎪⎫π2+β=cos β=-45. 15.在平面直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫12,cos 2θ在角α的终边上,点Q (sin 2θ,-1)在角β的终边上,且OP →·OQ →=-12.(1)求cos2θ的值; (2)求sin(α+β)的值.[解析] (1)因为OP →·OQ →=-12, 所以12sin 2θ-cos 2θ=-12,即12(1-cos 2θ)-cos 2θ=-12,所以cos 2θ=23, 所以cos2θ=2cos 2θ-1=13.(2)因为cos 2θ=23,所以sin 2θ=13,所以点P ⎝ ⎛⎭⎪⎫12,23,点Q ⎝ ⎛⎭⎪⎫13,-1,又点P ⎝⎛⎭⎪⎫12,23在角α的终边上,所以sin α=45,cos α=35.同理sin β=-31010,cos β=1010, 所以sin(α+β)=sin αcos β+cos αsin β =45×1010+35×⎝ ⎛⎭⎪⎫-31010=-1010. 16.周长为20cm 的扇形面积最大时,用该扇形卷成圆锥的侧面,求此圆锥的体积.[解析] 设扇形半径为r ,弧长为l ,则l +2r =20, ∴l =20-2r ,S =12rl =12(20-2r )·r =(10-r )·r , ∴当r =5时,S 取最大值.此时l =10,设卷成圆锥的底半径为R ,则2πR =10, ∴R =5π, ∴圆锥的高h =52-⎝ ⎛⎭⎪⎫5π2=5π2-1π, V =13πR 2h =π3×⎝ ⎛⎭⎪⎫5π2·5π2-1π=125π2-12.1.(2011·深圳一调、山东济宁一模)已知点P (sin 3π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π4[答案] D[解析] 由sin 3π4>0,cos 3π4<0知角θ是第四象限的角,∵tan θ=cos 3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4. 2.一段圆弧的长度等于其圆内接正三角形的边长,则其所对圆心角的弧度数为( )A.π3B.2π3C. 3D. 2 [答案] C[解析] 设圆的半径为R ,由题意可知:圆内接正三角形的边长为3R ,∴圆弧长为3R .∴该圆弧所对圆心角的弧度数为3RR = 3.3.设a =log 12tan70°,b =log 12sin25°,c =log 12cos25°,则它们的大小关系为( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c[答案] A[解析] ∵tan70°>tan45°=1>cos25°=sin65°>sin25°>0,y =log 12x 为减函数,∴a <c <b .4.如图所示的程序框图,运行后输出结果为( )A .1B .2680C .2010D .1340 [答案] C[解析] ∵f (n )=2sin ⎝ ⎛⎭⎪⎫n π3+π2+1=2cos n π3+1.由S =S +f (n )及n =n +1知此程序框图是计算数列a n =2cos n π3+1的前2010项的和.即S =⎝ ⎛⎭⎪⎫2cos π3+1+⎝ ⎛⎭⎪⎫2cos 2π3+1+⎝ ⎛⎭⎪⎫2cos 3π3+1+…+⎝ ⎛⎭⎪⎫2cos 2010π3+1 =2⎝ ⎛⎭⎪⎫cos π3+cos 2π3+cos 3π3+…+cos 2010π3+2010=2×335×cos π3+cos 2π3+cos 3π3+cos 4π3+cos 5π3+cos 6π3+2010=2010.5.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值.[解析] ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x .∵x ≠0,∴x =±10,∴r =2 3. 当x =10时,P 点坐标为(10,-2),由三角函数的定义,有sin α=-66,1tan α=-5, ∴sin α+1tan α=-66-5=-65+66; 当x =-10时,同理可求得sin α+1tan α=65-66.。
(完整word版)高中数学三角函数基础知识点及答案(2),推举文档高中数学三角函数基础知识点及答案1、角的概念的推广:平面内一条射线绕着端点从一具位置旋转到另一具位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一具零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就讲那个角是第几象限的角。
假如角的终边在坐标轴上,就以为那个角别属于任何象限。
3. 终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k kαθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角别一定相等.如与角ο1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。
弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,所以,1弧度约为57.3°,即57°17'44.806'',1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度,直角为π/2弧度。
(答:25-o;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k kαθπ=+∈Z . (3)α终边与θ终边对于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边对于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边对于原点对称?2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈.如α的终边与6π的终边对于直线x y =对称,则α=____________。
1.2角的概念推广基础练习题一、单选题1.1000︒是以下哪个象限的角( ) A .第一象限B .第二象限C .第三象限D .第四象限2.下列各角中,与27︒角终边相同的是( ) A .63︒B .153︒C .207︒D .387︒3.若角α为第二象限角,则角2α为( )象限角A .第一B .第一或第二C .第二D .第一或第三 4.下列说法正确的是( ) A .第一象限角一定小于90︒ B .终边在x 轴正半轴的角是零角C .若360k αβ+=⋅︒(k Z ∈),则α与β终边相同D .钝角一定是第二象限角5.若角α与角β的终边关于y 轴对称,则必有( ) A .90αβ︒+=B .36090()k k Z αβ︒︒+=⋅+∈C .360()k k Z αβ︒+=⋅∈D .(21)180()k k Z αβ︒+=+⋅∈6.下列各角中,与角330°的终边相同的是( ) A .150°B .-390°C .510°D .-150°7.已知集合A ={α|α小于90°},B ={α|α为第一象限角},则A ∩B =( ) A .{α|α为锐角} B .{α|α小于90°} C .{α|α为第一象限角}D .以上都不对8.与角2021︒终边相同的角是( ) A .221°B .2021-︒C .221-︒D .139︒9.若α是第四象限角,则180°+α一定是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角二、填空题 10.若角2θ的终边与4π的终边重合,且3θ∈[0,2)π,则4θ=_______________.11.2020是第______象限角.12.已知角α的终边在图中阴影所表示的范围内(不包括边界),那么α∈________.13.终边在x 轴上的角α的集合是______.14.已知:①1240︒,②300-︒,③420︒,④1420-︒,其中是第一象限角的为_________(填序号).15.在0°到360°范围内与角380°终边相同的角α为________.三、解答题16.若角α是第二象限角,试确定2,2αα的终边所在位置.17.写出与α=-1910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.18.如图,分别写出适合下列条件的角的集合.(1)终边落在射线OB 上; (2)终边落在直线OA 上;(3)终边落在阴影区域内(含边界).参考答案1.D 【分析】首先写出终边相同的角的集合,再判断 【详解】10002360280=⨯+,280角的终边在第四象限,所以1000角的终边也是第四象限.故选:D 2.D 【分析】写出与27︒终边相同角的集合,取k 值得答案. 【详解】与27︒角终边相同的角的集合为{}27360,k k Z αα=︒+⋅︒∈, 取1k =,可得387α=︒. ∴与27︒角终边相同的是387︒. 故选:D 【点睛】本小题主要考查终边相同的角,属于基础题. 3.D 【分析】根据α的范围,求出2α的范围即可. 【详解】因为角α为第二象限角, 所以()22,2k x k k Z ππππ+<<+∈, 所以(),422x k k k Z ππππ+<<+∈,当2k n =()n Z ∈时,()22,422x n n n Z ππππ+<<+∈,此时2α是第一象限角;当21k n =+()n Z ∈时,()5322,422x n n n Z ππππ+<<+∈,此时2α是第三象限角; 所以2α是第一或第三象限角,【点睛】本题主要考查了象限角的范围,属于基础题. 4.D 【分析】分别由钝角、终边相同的角及象限角的概念逐一判断四个命题得答案. 【详解】A.第一象限角范围是2k πx 2k π,2k z π<<+,所以不一定小于90°.所以A 错误.B. 终边在x 轴正半轴的角α2k π,k z =.不一定是零角 . .所以B 错误C.若360,k αβ+=⋅︒则360,?k k z αβ=⋅︒-. 则α应与β-终边相同. .所以C 错误D.因为钝角的取值范围为,2ππ⎛⎫⎪⎝⎭,所以钝角一定是第二象限角. .所以D 正确. 故答案为D. 【点睛】本题考查了任意角的概念,象限角,是基础的概念题. 5.D 【分析】根据角α与角β的终边关于y 轴对称,有12129036090360,,k k k k Z αβ,即可得解.【详解】角α与角β的终边关于y 轴对称, 所以12129036090360,,k k k k Z αβ,21129036090360360180k k k k αβ,12,k k Z ∈即360180(21)180,kkkZ αβ,故选:D 【点睛】此题考查根据两个角的终边的对称关系求解角的关系,关键在于准确将对称关系转化成代数6.B 【解析】分析:由终边相同的角的公式,表示出与角330的终边相同的角,再进行验证即可. 详解:与角330的终边相同的角为()360330k k Z α=⋅+∈, 令2k =-,可得390α=-,故选B.点睛:本题主要考查终边相同的角,考查了终边相同的角的表示方法,意在考查对基础知识掌握的熟练程度,属于简单题. 7.D 【分析】先根据题意得出A ∩B ,再比较A ∩B 与小于90°的角、锐角和第一象限角的关系,这种问题可以通过列举出特殊角来得到结论. 【详解】解:∵A ={α|α小于90°},B ={α|α为第一象限角}, ∴A ∩B ={小于90°且在第一象限的角},对于A :小于90°的角不一定是第一象限的,不正确,比如﹣30°;对于B :小于90°的角且在第一象限的角不一定是0°~90°的角,不正确,例如﹣300°; 对于C :第一象限的角不一定是小于90°的角且在第一象限的角,不正确,例如380°, 故选D . 【点睛】此题考查了象限角、任意角的概念,交集及其运算,熟练掌握基本概念是解本题的关键. 8.A 【分析】根据终边相同的角相差360的整数倍,逐个判断即可. 【详解】2021360=5︒÷余221,故A 正确,B 、 C 、 D 中的角均不与角2021︒终边相同.故选:A . 【点睛】本题考查了终边相同角的概念,考查了简单的计算,属于概念题,本题属于基础题. 9.B 【分析】通过α是第四象限角,写出其对应角的集合,然后求出180°+α对应角的集合即可得到答案. 【详解】∵α是第四象限角,∴k ·360°-90°<α<k ·360°.∴k ·360°+90°<180°+α<k ·360°+180°. ∴180°+α在第二象限, 故选B. 【点睛】本题考查了象限角和轴线角,基本知识的考查,深刻理解基本概念是解题的关键. 10.24π或38π 【分析】由终边相同角的关系得出4,363k k Z θππ=+∈,再由3θ的范围确定θ,进而得出4θ.【详解】 由题意可知,2,24k k Z θππ=+∈,则4,363k k Z θππ=+∈ 3θ∈[0,2)π,6πθ=或32πθ=则348θπ=或424θπ= 故答案为:24π或38π【点睛】本题主要考查了终边相同的角性质的应用,属于基础题. 11.三 【分析】把2020︒写成360k α+︒,)0,360,k Z α⎡∈∈⎣,然后判断α所在的象限,则答案可求. 【详解】20205360220︒=⨯︒+︒,2020∴︒与220︒角的终边相同,为第三象限角.故答案为三. 【点睛】本题考查了象限角,考查了终边相同的角,是基础题. 12.{}|180********,n n n αα⋅︒+︒<<⋅︒+︒∈Z . 【分析】 首先确定0360范围内角α的范围,根据终边相同角的定义可求得满足题意的角α的范围. 【详解】 在0360范围内,终边落在阴影内的角α满足:30150α<<或210330α<<∴满足题意的角α为:{}{}30360150360210360330360k k k k αααα+⋅<<+⋅⋃+⋅<<+⋅{}{}302180150218021021803302180k k k k αααα=+⋅<<+⋅⋃+⋅<<+⋅ {}()(){}3021801502180302118015021180k k k k αααα=+⋅<<+⋅⋃++⋅<<++⋅{}30180150180n n αα=+⋅<<+⋅,k Z ∈,n Z ∈本题正确结果:{}30180150180,n n n Z αα+⋅<<+⋅∈ 【点睛】本题考查根据终边位置确定角所处的范围,重点考查了终边相同的角的定义,属于基础题. 13.{}|,k k Z ααπ=∈ 【分析】直接利用终边相同角的概念得到答案. 【详解】解:终边在x 轴上的角α的集合是{}|,k k Z ααπ=∈,故答案为:{}|,k k Z ααπ=∈ 【点睛】本题考查了角的终边,属于简单题. 14.②③④ 【分析】利用终边相同的角转化到0360︒︒判断.【详解】因为12401080160︒=︒+︒,30036060-︒=-︒+︒,42036060︒=︒+︒,1420436020-=-⨯+︒︒︒.所以②300-︒,③420︒,④1420-︒是第一象限角, 故答案为:②③④ 【点睛】本题主要考查象限角以及终边相同的角的应用,属于基础题 15.20° 【详解】与角380°终边相同的角α为380360,()k k Z α=+⋅∈, 又α在0°到360°,所以1,20.k α=-= 【点睛】1.若要确定一个绝对值较大的角所在的象限,一般是先将角化为)22()(0k k Z πααπ+≤<∈的形式,然后再根据α所在的象限予以判断.2.利用终边相同的角的集合可以求适合某些条件的角,方法是先写出这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角. 16.角2α的终边在第三象限或第四象限或y 轴的负半轴上,2α的终边在第一象限或第三象限. 【分析】写出第二象限角的集合,然后利用不等式的基本性质得到2α,2α.【详解】 ∵角是第二象限角,∴ 22,2k k k Z ππαππ+<<+∈,(1)4242,k k k Z ππαππ+<<+∈,∴ 角2α的终边在第三象限或第四象限或y 轴的负半轴上. (2),422k k k Z παπππ+<<+∈,当2,k n n Z =∈时, ∴ 22,422n n n Z παπππ+<<+∈,∴2α的终边在第一象限. 当21,k n n Z =+∈时, ∴5322,422n n n Z παπππ+<<+∈, ∴2α的终边在第三象限. 综上所述,2α的终边在第一象限或第三象限.【点睛】本题考查了象限角和轴线角,关键是写出第二象限角的集合,是基础题 17.{β|β=k ·360°-1 910°,k ∈Z };元素β见解析 【分析】把α=-1 910°加上360k ⋅︒可得与α=-1 910°终边相同的角的集合,分别取k =4,5,6,求得适合不等式-720°≤β<360°的元素β. 【详解】与α=-1 910°终边相同的角的集合为{β|β=k ·360°-1910°,k ∈Z }. ∵-720°≤β<360°,即-720°≤k ·360°-1 910°<360°(k ∈Z ),∴1111363636k ≤< (k ∈Z ),故取k =4,5,6.k =4时,β=4×360°-1910°=-470°; k =5时,β=5×360°-1910°=-110°; k =6时,β=6×360°-1910°=250°. 【点睛】该题考查的是有关角的概念的问题,涉及到的知识点有终边相同的角的集合,终边确定,落在某个范围内的角的大小的确定,属于简单题目.18.(1){}160360,S k k Z αα==+⋅∈;(2){}230180,S k k Z αα==+⋅∈;(3){}33018060180,S k k k Z αα=+⋅≤≤+⋅∈【分析】(1)可得出终边落在射线OB 上的一个角为60,利用终边相同的角的集合可得出终边落在射线OB 上的角的集合;(2)可得出终边落在射线OB 上的一个角为30,利用终边相同的角的集合可得出终边落在射线OB 上的角的集合;(3)分别写出第一象限和第三象限中阴影部分区域所表示的角的集合,然后将两个集合取并集可得出结果. 【详解】(1)终边落在射线OB 上的角的集合为{}160360,S k k Z αα==+⋅∈; (2)终边落在直线OA 上的角的集合为{}230180,S k k Z αα==+⋅∈; (3)终边落在第一象限中的阴影部分区域的角的集合为{}3036060360,k k k Z αα+⋅≤≤+⋅∈,终边落在第三象限中的阴影部分区域的角的集合为{}210360240360,k k k Z αα+⋅≤≤+⋅∈{}3018036060180360,k k k Z αα=++⋅≤≤++⋅∈()(){}30211806021180,k k k Z αα=++⋅≤≤++⋅∈,因此,终边落在阴影区域内的角的集合为{}33036060360,S k k k Z αα=+⋅≤≤+⋅∈⋃()(){}30211806021180,k k k Z αα++⋅≤≤++⋅∈ {}3018060180,k k k Z αα=+⋅≤≤+⋅∈.【点睛】本题考查角的集合的表示,解题的关键就是要找出阴影部分区域边界线对应的角的集合,考查分析问题和解决问题的能力,属于基础题.答案第9页,总9页。
角的概念1.角是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形.按逆时针方向旋转形成的角叫正角.按顺时针方向旋转形成的角叫负角.如果一条射线没作任何旋转,我们称它形成了一个零角.其中正角、负角、零角统称为任意角.2.在直角坐标系中研究角时,如果角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,那么角的终边落在第几象限,我们就说这个角是第几象限角.若角的终边落在坐标轴上,就认为这个角不属于任何一个象限.3.所有与角α终边相同的角,连同角α在内,可构成一个集合,{β|β=α+k·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.4.终边落在x 轴非负半轴的角的集合为:{α|α=k·360°,k ∈Z };终边落在y 轴非负半轴的角的集合为:{α|α=90°+k·360°,k ∈Z };终边落在x 轴负半轴的角的集合为:{α|α=180°+k·360°,k ∈Z };终边落在y 轴负半轴的角的集合为:{α|α=270°+k·360°,k ∈Z };5.第一象限角的集合为:{α|k·360°<α<k·360°+90°,k ∈Z };第二象限角的集合为:{α|k·360°+90°<α<k·360°+180°,k ∈Z };第三象限角的集合为:{α|k·360°+180°<α<k·360°+270°,k ∈Z };第四象限角的集合为:{α|k·360°+270°<α<k·360°+360°,k ∈Z }.一、角的概念的推广1.角:角可以看成是一条射线绕着端点从一个位置旋转到另一个位置所成的图形,旋转开始时的射线叫做角α的始边,旋转终止时的射线叫做角α的终边,射线的端点叫做角α的顶点.2.角的分类:正角、零角、负角.3.象限角:如果把角放在直角坐标系内来讨论,使角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,那么角的终边落在第几象限,就说这个角是第几象限角.α是第一象限角可表示为{α|2kπ<α<2kπ+2π,k ∈Z }; α是第二象限角可表示为{α|2kπ+2π<α<2kπ+π,k ∈Z }; α是第三象限角可表示为{α|2kπ+π<α<2kπ+23π,k ∈Z }; α是第四象限角可表示为{α|2kπ+23π<α<2kπ+2π,k ∈Z }.4.轴线角:当角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,如果角的终边落在坐标轴上,就称该角为轴线角.终边落在x 轴非负半轴上的角的集合可记作:α|α=2kπ,k ∈Z ;终边落在x 轴非正半轴上的角的集合可记作:α|α=2kπ+π,k ∈Z ;终边落在y 轴非负半轴上的角的集合可记作: {α|α=2kπ+2π,k ∈Z }; 终边落在y 轴非正半轴上的角的集合可记作:{α|α=2kπ+23π,k ∈Z }; 终边落在坐标轴上的角可表示为:{α|α=2πk ,k ∈Z }. 5.终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合{β|β=α+2kπ,k ∈Z }.二、弧度制1.角度制:规定周角的1360为1度的角,这种计量角的度量方法称为角度制.2.弧度的定义:规定圆弧上弧长等于半径的弧所对的圆心角为1弧度的角,即1360周角=1°,12π周角=1 rad.3.弧度与角度的换算:360°=2π rad;180°=π rad;1°=180πrad≈0.017 45 rad ; 1 rad=(180π)°≈57.30°=57°18′.4.弧长公式: l=|α|·r (其中r 为扇形的半径,α为扇形圆心角的弧度数).5.扇形的面积公式:S 扇形=21l·r=21|α|r 2(其中r 为扇形的半径,α为扇形圆心角的弧度数).知识导学要理解任意角概念,可通过创设情境:“转体720°,逆(顺)时针旋转”,从而知晓角有大于360°角、零角和旋转方向不同所形成的角等;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;再通过创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.1.角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1-1-1.图1-1-12.角的概念的推广按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.如果一条射线没有作任何旋转,我们称它形成一个零角.如图1-1-2中的角是一个正角,等于750°,图1-1-3中,正角α=210°,负角β=-150°,γ=-660°.图1-1-2 图1-1-33.在直角坐标系内讨论角象限角:当角的顶点与坐标原点重合,角的始边与x轴正半轴重合,如果角的终边在第几象限,就把这个角叫做第几象限角.4.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示为角α与整数个周角的和.5.几个重要的角的集合(1)象限角的集合第一象限角的集合为{α|k·360°<α<90°+k·360°,k∈Z}={α|α=β+k·360°,0°<β<90°,k∈Z}.第二象限角的集合为{α|k·360°+90°<α<180°+k·360°,k∈Z}={α|α=β+k·360°,90°<β<180°,k∈Z}.第三象限角的集合为{α|180°+k·360°<α<270°+k·360°,k∈Z}={α|α=β+k·360°,180°<β<270°,k∈Z}.第四象限角的集合为{α|270°+k·360°<α<360°+k·360°,k∈Z}={α|α=β+k·360°,270°<β<360°,k∈Z}.(2)几种特殊角的集合终边落在x轴正半轴上的角的集合为{α|α=k·360°,k∈Z}.终边落在x轴负半轴上的角的集合为{α|α=k·360°+180°,k∈Z}.终边落在x轴上的角的集合为{α|α=k·180°,k∈Z}.终边落在y轴正半轴上的角的集合为{α|α=k·360°+90°,k∈Z}.终边落在y轴负半轴上的角的集合为{α|α=k·360°+270°,k∈Z}.终边落在y轴上的角的集合为{α|α=k·180°+90°,k∈Z}.终边落在坐标轴上的角的集合为{α|α=k·90°,k∈Z}.终边落在y=x上的角的集合为{α|α=k·180°+45°,k∈Z}.终边落在y=-x上的角的集合为{α|α=k·180°+135°,k∈Z}.终边落在y=±x上的角的集合为{α|α=k·90°+45°,k∈Z}.题组一:基础概念.【题目】.在直角坐标系中,作出下列各角:(1)360°(2)-270°(3)390°(4)-540°【解】.【题目】.设集合M={θ|θ为小于90°的角},N={θ|θ为第一象限的角},则M∩N 等于( )A.{θ|θ为锐角} B.{θ|θ为小于90°的角}C.{θ|θ为第一象限角} D.以上均不对解:小于90°的角由锐角、零角、负角组成.而第一象限角包括锐角及终边在第一象限的角.M∩N由锐角及其终边在第一象限的负角组成.故选D.提示(1)上述几个概念用起来容易混淆,要加以辨别,搞清它们之间的关系. (2)角的集合还常与集合的交、并、补运算联合起来命题,是知识点的交汇,欲引起注意..【题目】.下列各命题正确的是( )A.终边相同的角一定相等B.第一象限角都是锐角C.锐角都是第一象限角D.小于90°的角都是锐角解析:可根据各种角的定义,利用排除法予以解答.对于A,-60°和300°是终边相同的角,它们并不相等,应排除A.对于B,390°是第一象限角,可它不是锐角,应排除B.对于D,-60°是小于90°的角,但它不是锐角,∴应排除D.综上,应选C.答案:C.【题目】.下列命题中,正确的是()A.终边相同的角一定相等B.锐角都是第一象限角C.第一象限的角都是锐角D.小于90°的角都是锐角解析:终边相同的两个角彼此相差360°的整数倍,它们可能相等也可能不等,所以排除A;第一象限的角是指{α|k·360°<α<k·360°+90°,k∈Z},所以锐角组成的集合是第一象限的角所成集合的子集,故C错;小于90°的角也可以是负角,因此D错;因此正确的答案为B.答案:B.【题目】.给出下列四个命题:(1)小于90°的角是锐角;(2)钝角是第二象限角;(3)第一象限角一定是负角;(4)第二象限角必大于第一象限角。
角概念的推广与弧度制【知识导图】知识讲解知识点1 角的有关概念1、从运动的角度看,角可分为正角、负角和零角.2、从终边位置来看,可分为象限角与轴线角.3、若β与α是终边相同的角,则β用α表示为()2k k Z βπα=+∈.知识点2 角度与弧度1、弧度的角长度等于半径长的弧所对的圆心角叫做1弧度的角. 2、角α的弧度数如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是l rα=. 3.角度与弧度的换算①1180rad π︒=;②1801rad π⎛⎫=︒ ⎪⎝⎭. 4.弧长、扇形面积的公式设扇形的弧长为l ,圆心角大小为()rad α,半径为r ,则l r α=,扇形的面积为21122S lr r α==. [易错提醒]角度制与弧度制不可混用角度制与弧度制可利用180rad π︒=进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.知识点3 任意角的三角函数1.定义:设α是一个任意角,它的终边与单位圆交于点(),P x y ,那么sin y α=,cos x α=,y tan xα=角的概念与弧度制任意角角的概念的推广角的分类终边相同的角弧度制定义弧度制与扇形任意角的三角函数三角函数的定义三角函数的符号三角函数线2.几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是()1,0. [方法技巧]三角函数值符号记忆口诀记忆技巧:一全正、二正弦、三正切、四余弦(为正).即第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.知识点4 三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为()cos sin αα,,即()P cos sin αα,,其中cos OM α=,sin MP α=,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan AT α=.我们把有向线段OM 、MP 、AT 叫做α的余例题讲解【例题1】与263-︒角终边相同的角的集合是( )A . {α|α=k ⋅360°+250°,k ∈Z }B . {α|α=k ⋅360°+197°,k ∈Z }C . {α|α=k ⋅360°+63°,k ∈Z }D . {α|α=k ⋅360°−263°,k ∈Z } 【答案】D当α终边相同的角与α相差360°的整数倍,所以,与−263°角终边相同的角的集合是{α|α=k ⋅360°−263°,k ∈Z },故选D . 【例题2】9°=( )A . π36 B . π20 C . π10 D . π9 【答案】B由角度制与弧度制的转化公式可知:9∘=9180π=π20.本题选择B 选项.【例题3】已知0240的圆心角所对的弧长为8m π,则这个扇形的面积为_______2m . 【答案】24π04240π3=弧度.设扇形所在圆的半径为r ,由题意得483r ππ=⋅,解得6r =. 所以扇形的面积为186242S ππ=⨯⨯=.【例题4】如图所示的圆中,已知圆心角∠AOB =2π3,半径OC 与弦AB 垂直,垂足为点D .若CD 的长为a ,则ACB 与弦AB 所围成的弓形ACB 的面积为______________.【答案】(4π3−√3)a 2设扇形的半径为r ,则在△OAD 中,OA =r,OD =r −a,∠OAD =π6, ∴OD =OA ∙sin π6,即r −a =r2, 解得r =2a .∴扇形面积为S 扇形OAB =13×π×(2a)2=4π3a 2,又S △OAB =12∙AB ∙OD =12×2√3a ×a =√3a 2, ∴S 弓形ACB =S 扇形OAB −S △OAB =(4π3−√3)a 2【例题5】不等式sin x ≥____________________. 【答案】2|22, 33x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【解析】233sinsin ππ== ∴结合正弦函数的图象及正弦函数的性质可得不等式2sinx ≥的解集为2{|22}33x k x k k Z ππππ+≤≤+∈,课堂练习【基础】1. 下列各个说法正确的是( )A .终边相同的角都相等B .钝角是第二象限的角C .第一象限的角是锐角D .第四象限的角是负角 【答案】B对于选项A ,与角α终边相同的角的集合为{β|β=α+2kπ,k ∈Z},故终边相同的角相差2π的整数倍数,所以终边相同的角都相等不对,故选项A 不对;对于选项B ,第二象限角的集合为{α|π2+2kπ<α<π+2kπ,k ∈Z} ,当k =1时,集合为{α|π2<α<π} ,即为钝角的范围.所以选项B 正确.对于选项C ,π4+2π是第一象限角,但其不是锐角,故选项C 错误; 对于选项D ,7π4是第四象限角,但不是负角,故选项D 错误. 故选B .2.256π-是( ) A . 第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角【答案】D 由题意得25466πππ-=--, ∴256π-的终边和角6π-的终边相同, ∴256π-是第四象限角. 故选D .3. 设集合180452|k M x x k Z ⎧⎫==⨯︒+︒∈⎨⎬⎩⎭,,180454|k N x x k Z ⎧⎫==⨯︒+︒∈⎨⎬⎩⎭,,那么( ) A . M N = B . N M ⊆ C . M N ⊆ D . M N ⋂=∅ 【答案】C由题意可得,(){}18045||2145,2k M x x k Z x x k k Z ⎧⎫==⨯︒+︒∈==+⋅︒∈⎨⎬⎩⎭, 即M 为45°的奇数倍构成的集合,又(){}18045|145,4|k N x x k Z x x k k Z ⎧⎫==⨯︒+︒∈==+⋅︒∈⎨⎬⎩⎭, ,即N 为45°的整数倍构成的集合,M N ⊆,故选:C .【巩固】4.已知扇形的周长为4,当扇形的面积最大时,扇形的圆心角α等于_________ 【答案】2设扇形的半径为r ,则周长为24r r α+=, ∴面积为()22221142211122S r r r r r r α⎛⎫==-=-=--+≤ ⎪⎝⎭扇形, 当且仅当1r =时取等号,此时2α=. 故答案为:2.5.已知点P(4m,−3m)(m <0)在角α的终边上,则2sinα+cosα=__________. 【答案】25.∵m <0,∴r =√(4m)2+(−3m)2=−5m , ∴sinα=y r =−3m −5m=35,cosα=4m −5m=−45,∴2sinα+cosα=2×35−45=25.6.利用三角函数线,sinx ≤12的解集为___________. 【答案】()5132266|x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭如图,作出满足12sinx =的角的正弦线11M P 和22M P ,226M OP π∠=,1156M OP π∠=.当角的终边位于图中阴影部分时,正弦线的大小不超过12,因此,满足12sinx ≤的解集为()5132266|x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭,故答案为:()5132266|x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭.【拔高】7. 设α为第四象限角,其终边上的一个点是(,P x ,且cos 4x α=,求sin α和tan α.【答案】sin α-=tan α-=利用余弦函数的定义求得x ,再利用正弦函数的定义即可求得sin α的值与tan α的值.∵α为第四象限角,∴0x >,∴r =,∴cos 4x x r α===,∴x =r sin y r α===,tan y x α===. 8. 扇形MON 的周长为16cm .(1)若这个扇形的面积为12cm 2,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长MN . 【答案】(1)23或6;(2)答案见解析.设扇形MON 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得{2r +l =1612lr =12 解得{r =6l =4 或{r =2l =12∵α=l r ∴α=23或6. (2)∵2r +l =16∴S 扇=12l ·r =12(16−2r)r =12(16−2r)r =−r 2+8r,r ∈(0,8), ∴当r =4时,l =8,α=lr =2时,弦长MN =4sin 1×2=8sin 1.小结1.角的度量由原来的角度制改换为弧度制,要养成用弧度表示角的习惯.象限角的判断,终边相同的角的表示,弧度、弧长公式和扇形面积公式的运用是学习三角函数的基础.2.三角函数都是以角为自变量(用弧度表示),以比值为函数值的函数,是从实数集到实数集的映射,注意两种定义法,即坐标法和单位圆法.课后练习【基础】1. 将67o 30′化为弧度为____________. 【答案】3π8 ∵67o 30′=67.5o , ∴67o 30′=67.5×π180=3π8.2. 已知扇形的半径为4cm ,圆心角为π4,则扇形面积为_________cm 2. 【答案】2π∵扇形的半径为4cm ,圆心角为π4, ∴弧长l =4×π4=π,∴这条弧所在的扇形面积为S =12×π×4=2πm 2,故答案为2π. 3. 已知角θ的终边上一点()()3,40a P a a ≠,则sin θ=________. 【答案】45sin θ=±. 3x a =,4y a =,5r a ∴==.此处在求解时,常犯5r a =的错误,出错的原因在于去绝对值时,没有对a 进行讨论. (1)当0a >时,5r a =,455y sin θ∴==. (2)当0a <时,5r a =-,455y sin θ∴==- ∴45sin θ=±. 【巩固】4.下列判断正确的是__________.(填序号) ①sin3080>0;②cos(−3100)<0;③cos(−43π6)>0;④sin212<0.【答案】④由题意结合诱导公式可得:sin308∘=sin (360∘−52∘)=−sin52∘<0,①错误; cos (−310∘)=cos (50∘−360∘)=cos50∘>0,②错误; cos (−436π)=cos (56π−8π)=cos 56π<0,③错误;212∈(3π,72π),则sin 212<0,④正确;综上可得判断正确的序号为④.5.已知角α的终边经过P (1,2),则tanα⋅cosα等于__________ 【答案】2√55角α的顶点在原点,始边与x 轴的正半轴重合,若角α终边经过点P (1,2),则x =1,y =2,r =|OP |=√5,∴sinα=y r=√5=x r=√5则tan α⋅cos α=sinαcosα⋅cos α=√5=2√55.即答案为2√55. 6.若α=π3,R =2 cm ,求扇形的弧所在的弓形的面积【答案】⎝⎛⎭⎫2π3-3 设弓形面积为S 弓.由题知l =2π3cm , S 弓=S 扇-S △=12×2π3×2-12×22×sin π3=⎝⎛⎭⎫2π3-3(cm 2). 【拔高】7.已知α是第三象限角,求2α所在的象限 【答案】当α是第三象限角时,2α是第二或第四象限角322()2k k k Z ππαππ+<<+∈,32()24k k k Z παπππ∴+<<+∈.当()2k n n Z =∈时,322224n n παπππ+<<+,2α是第二象限角, 当21()k n n Z =+∈时,3722224n n παπππ+<<+,2α是第四象限角, 综上知,当α是第三象限角时,2α是第二或第四象限角. 8.如图,在圆心角为直角的扇形OAB 中,分别以OA,OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是__________.【答案】12−1π如图,设两个半圆的交点为C ,且以AO 为直径的半圆以D 为圆心,连结OC 、CD ,设OA =OB =2,则弓形OMC 的面积为S 弓形OMC =S 扇形OCD −S Rt∆DCO =14⋅π⋅12−12×1×1=π4−12,可得空白部分面积为S 空白=2S 半圆AO −2S 弓形OMC =2×12⋅π⋅12−(π2−1)=π2+1, 因此,两块阴影部分面积之和S 阴影=S 扇形OAB −S 空白=14π⋅22−(π2+1)=π2−1可得在扇形OAB 内随机取一点,此点取自阴影部分的概率为P =S 阴影S 扇形AOB=π2−1π=12−1π,故答案为:12−1π. 9.xtan x 有意义?【答案】()2,22,2122k k k k ππππππ⎡⎫⎛⎤+⋃++⎪ ⎢⎥⎣⎭⎝⎦sin 0x ≥所以x 在y 轴上半轴,又因为tan x 有意义2x k ππ≠+所以易求得x 的范围()2,22,2122k k k k ππππππ⎡⎫⎛⎤+⋃++⎪ ⎢⎥⎣⎭⎝⎦。
第一章三角函数 1-2 周期现象与周期函数、角的概念的推广[A 基础达标]1.下列说法正确的是( )A.终边相同的角都相等B.钝角比第三象限角小C.第一象限角都是锐角D.锐角都是第一象限角解析:选D.终边相同的角相差360°的整数倍,并不一定相等,故A错误;钝角并不一定比第三象限角小,如-135°是第三象限角,显然-135°比钝角小,故B错;锐角一定是第一象限角,但第一象限角未必都是锐角,故D正确,C错误.2.某市绿化委员会为了庆祝国庆节,要在道路的两侧摆放花卉,其中一侧需摆放红、黄、紫、白四种颜色的花,并且按红、黄、紫、白、红、黄、紫、白……的顺序摆放,那么第2 016盆花的颜色为( )A.红B.黄C.紫D.白解析:选D.因为按红、黄、紫、白、红、黄、紫、白…的顺序摆放,所以以4为一个周期,则2 016÷4=504,所以第2 016盆花为白色.3.若角α满足α=45°+k·180°,k∈Z,则角α的终边落在( )A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限解析:选A.当k为奇数时,角α与225°角终边相同,在第三象限;当k为偶数时,角α与45°角终边相同,在第一象限.4.终边与坐标轴重合的角α的集合是( )A.{α|α=k·360°,k∈Z}B.{α|α=k·180°+90°,k∈Z}C.{α|α=k·180°,k∈Z}D.{α|α=k·90°,k∈Z}解析:选D.终边落在x轴上的角α的集合为S1={α|α=k·180°,k∈Z},终边落在y轴上的角α的集合为S2={α|α=90°+k·180°,k∈Z},因此,终边落在坐标轴上的角α的集合为S=S1∪S2={α|α=k·90°,k∈Z}.5.在直角坐标系中,若角的顶点与坐标原点重合,始边与x轴的非负半轴重合,α和β的终边关于y轴对称,则α与β关系为( )A.α+β=360°B.α+β=(2k-1)·180°(k∈Z)C.α+β=k·180°(k∈Z)D.α+β=k·360°(k∈Z)解析:选B.如图所示,因为α与β的终边关于y轴对称,所以α角的终边逆时针旋转(180°-2α)就与β角终边重合.所以β=k·360°+(180°-2α)+α,所以α+β=k·360°+180°=(2k+1)·180°(k∈Z).因为当k为整数时,2k-1与2k+1都表示奇数,所以α+β=(2k-1)·180°(k∈Z).6.今天是星期二,从今天算起,27天后的那一天是星期,第50天是星期.解析:每周有7天,27=3×7+6,故27天后的那一天是星期一;50=7×7+1,故第50天是星期二.答案:一二7.若角α与角β终边相同,则α-β=.解析:根据终边相同的角的定义,可知α-β=k·360°(k∈Z).答案:k·360°(k∈Z)8.有一个小于360°的正角,这个角的6倍的终边与x轴的非负半轴重合,则这个角为.解析:由题意知,6α=k·360°,k∈Z,所以α=k·60°,k∈Z.又因为α是小于360°的正角,所以满足条件的角α的值为60°,120°,180°,240°,300°.答案:60°,120°,180°,240°,300°9.如图,写出阴影部分(包括边界)的角的集合,并指出-950°12′是否是该集合中的角.解:阴影部分(包括边界)的角的范围是k·360°≤α≤k·360°+125°,k∈Z,所求集合为{α|k·360°≤α≤k·360°+125°,k∈Z},因为-950°12′=-3×360°+129°48′,所以-950°12′不是该集合中的角.10.已知角β的终边在直线3x-y=0上,写出角β的集合S.解:如图,直线3x-y=0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA上的角为60°,终边落在射线OB上的角是240°,所以以射线OA,OB为终边的角的集合分别为:S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z}.所以β角的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+ (2k+1)·180°,k∈Z}={β|β=60°+n·180°,n∈Z}.[B 能力提升]1.若集合M={x|x=45°+k·90°,k∈Z},N={x|x=90°+k·45°,k∈Z},则( ) A.M=N B.N⊊MC.M⊊N D.M∩N=∅解析:选C.M ={x |x =45°+k ·90°,k ∈Z}={x |x =(2k +1)·45°,k ∈Z},N ={x |x =90°+k ·45°,k ∈Z}={x |x =(k +2)·45°,k ∈Z}.因为k ∈Z,所以k +2∈Z,且2k +1为奇数,所以M ⊊N ,故选C.2.有白、黑两种颜色的圆片按以下规律排列:则第100个圆片的颜色是 .解析:由图可知,第5个,第10个,第15个,……第5n 个均为黑色圆片.100=5×20,因此第100个圆片为黑色.答案:黑色3.若角θ的终边与168°角的终边相同,求0°~360°内与角θ3的终边相同的角. 解:因为θ=k ·360°+168°,k ∈Z,所以θ3=k ·120°+56°,k ∈Z.令0°≤k ·120°+56°<360°,得k =0,1,2,故0°~360°内与角θ3终边相同的角是56°,176°,296°. 4.(选做题)如图,点A 在半径为1且以原点为圆心的圆上,∠AOx =45°.点P 从点A 出发,按逆时针方向匀速地沿单位圆周旋转.已知点P 在1 s 内转过的角度为θ(0°<θ<180°),经过2 s 到达第三象限,经过14 s 后又回到出发点A ,求角θ并判定其终边所在的象限.解:由题意,得14θ+45°=45°+k ·360°,k ∈Z,则θ=k ·180°7,k ∈Z.又180°<2θ+45°<270°,即67.5°<θ<112.5°,则67.5°<k ·180°7<112.5°,k ∈Z,所以k =3或k =4.故θ=540°7或θ=720°7.易知0°<540°7<90°,90°<720°7<180°, 故角θ的终边在第一或第二象限.。
高一数学角的概念的推广试题1.如将分针拨慢10分钟,则分针转过的弧度数是()。
A.B.-C.D.-【答案】A【解析】∵分针转一周为60分钟,转过的角度为2π将分针拨慢是逆时针旋转∴分针拨慢10分钟,则分针所转过的弧度数为×2π=【考点】本题主要考查弧度制,集合的关系。
点评:分针转过的角是负角,但这里是将分针拨慢。
2.用弧度制表示,终边落在坐标轴上的角的集合为。
【答案】【解析】终边落在X轴上的角集为{α|α=k•180°,K∈Z};终边落在Y轴上的角集为{α|α=k•180°+90°,K∈Z};即{α|α=2k•90°,K∈Z},{α|α=(2k+1)·90°,K∈Z},所以可化简为{α|α=n•90°,n∈Z},即。
【考点】本题主要考查弧度制,轴线(象限界)角的概念及表示。
点评:注意讨论终边在坐标轴上的各种情况,并注意化简。
3.若,则是第象限角。
【答案】一、三.【解析】因为,所以k=2n时,,是第一象限角;当k=2n+1时,,是第三象限角,故答案为是第一、三象限角。
【考点】本题主要考查弧度制,象限角的概念及表示。
点评:注意讨论k的取值。
4.若,则的范围是。
【答案】【解析】因为,所以,,故。
【考点】本题主要考查弧度制,不等式的性质。
点评:易错题,注意本题限定了。
5.一个半径为R的扇形,若它的周长等于它所在圆的周长的一半,则扇形圆心角的度数为。
【答案】【解析】利用弧长等于圆半径长的弧所对的圆心角为1弧度角。
计算弧长与半径之比得。
【考点】本题主要考查弧度制。
点评:扇形中弧长、半径、弦长等关系相互表示,联系密切,应熟练掌握。
弧长等于圆半径长的弧所对的圆心角为1弧度角。
6.把化成的形式是()A.B.C.D.【答案】D;【解析】除以360,商为负整数且比被除数是正角是绝对值大1,商为k,余数为,故选D。
【考点】本题主要考查终边相同角的概念及表示。
第5章 第一节 课时1 角的概念的推广一、单选题1.如图,圆O 的圆周上一点P 以A 为起点按逆时针方向旋转,10min 转一圈,24min 之后OP 从起始位置OA 转过的角是( )A .864-B .432C .504D .864【答案】D【分析】求出点P 逆时针方向旋转一分钟转的度数再乘以24即可求解. 【详解】因为点P 以A 为起点按逆时针方向旋转,10min 转一圈, 所以点P 逆时针方向旋转一分钟转的度数为3603610=, 设24min 之后OP 从起始位置OA 转过的角为3624864⨯=, 故选:D .2.下列各角中与60终边相同的角是( )A .300-B .240-C .120D .390【答案】A【解析】根据终边相同的角的概念可得出合适的选项.【详解】30060360-=-,24060300-=-,0106602=+,39060330=+, 因此,只有A 选项中的角与60终边相同. 故选:A.3.下列角的终边与37角的终边在同一直线上的是A .37-B .143C .379D .143-【答案】D【分析】根据与37角的终边在同一直线上的角可表示为()37180k k Z +⋅∈,然后对k 赋值可得出正确选项.【详解】与37角的终边在同一直线上的角可表示为37180k +⋅,k Z ∈,当1k =-时,37180143-=-,所以,143-角的终边与37角的终边在同一直线上. 故选D .【点睛】本题考查终边在同一直线上的两角之间的关系,熟悉结论:与角α的终边在同一直线上的角为()180k k Z α+⋅∈,属于基础题. 4.若角2α与240角的终边相同,则α= A .120360,k k Z +⋅∈ B .120180,k k Z +⋅∈ C .240360,k k Z +⋅∈ D .240180,k k Z +⋅∈【答案】B【分析】由题意得出()2240360k k Z α=+⋅∈,由此可计算出角α的表达式. 【详解】因为角2α与240角的终边相同,所以()2240360k k Z α=+⋅∈, 则120180k α=+⋅,k Z ∈. 故选B.【点睛】本题考查终边相同的角之间的关系,考查计算能力,属于基础题. 5.若角αβ、的终边相同,则αβ-的终边在. A .x 轴的非负半轴上 B .x 轴的非正半轴上 C .y 轴的非负半轴上 D .y 轴的非正半轴上 【答案】A【分析】可用终边相同的公式表示,αβ,再作差根据范围判断即可【详解】设122,2,αa k πβa k πk Z =+=+∈,则()122,k k k Z -=-∈αβπ,终边在x 轴的非负半轴上 故选A【点睛】本题考查任意角的概念,终边相同的角的表示方法,属于基础题 6.如果角α的终边上有一点()0,3P -,那么α A .是第三象限角 B .是第四象限角 C .是第三或第四象限角 D .不是象限角 【答案】D【分析】根据点P 的位置,可判断出角α终边的位置.【详解】因为点P 在y 轴的负半轴上,即角α的终边落在y 轴的非正半轴上,所以α不是象限角. 故选D.【点睛】本题考查根据角的终边上的点判断出角的终边的位置,考查对任意角概念的理解,属于基础题.7.若α是第一象限角,则下列各角中属于第四象限角的是A .90α︒-B .90α︒+C .360α︒-D .180α︒+【答案】C【详解】分析:由题意逐一考查所给选项即可求得最终结果. 详解:若α是第一象限角,则:90α︒-位于第一象限, 90α︒+位于第二象限, 360α︒-位于第四象限, 180α︒+位于第三象限,本题选择C 选项.点睛:本题主要考查象限角的概念,意在考查学生的转化能力和概念熟练程度. 8.已知角2α是第一象限角,则α的终边位于( ) A .第一象限 B .第二象限C .第一或第二象限D .第一或第二象限或y 轴的非负半轴上【答案】D【分析】由象限角可得到角2α的范围,进而可求得α的范围,即可得出α的终边所在位置. 【详解】∵由角2α是第一象限角,∴可得π2π2π,22k k k α<<+∈Z ,∴4π4ππ,k k k α<<+∈Z .即α的终边位于第一或第二象限或y 轴的非负半轴上. 故选:D.【点睛】本题考查了象限角,熟练利用角的范围是解题的关键,属于基础题.9.集合(){}180190,nA x x n n Z ==⋅+-⋅∈与{}36090,B x x m m Z ==⋅+∈之间的关系是 A .ABB .B AC .A B =D .A B =∅【答案】C【分析】对集合A 中的整数n 分偶数和奇数两种情况讨论,并将集合A 中的等式化简,由此可判断出集合A 与集合B 之间的关系.【详解】对于集合A ,当n 为偶数时,设()2n k k Z =∈,()180********nx n k =⋅+-⋅=⋅+;当n 为奇数时,设()21n k k Z =+∈,()180********nx n k =⋅+-⋅=⋅+.所以,集合{}36090,A x x k k Z ==⋅+∈,因此,A B =. 故选C.【点睛】本题考查角的两个集合之间包含关系的判断,解题的关键就是对整数n 进行分类讨论,并将集合A 中的等式化简,考查分类讨论思想的应用,属于中等题. 10.若角α的顶点与原点重合,始边与x 轴的非负半轴重合,则集合{|}42k k k Z ππαπαπ+≤≤+∈,中的角α的终边在单位圆中的位置(阴影部分)是( ).A .B .C .D .【答案】C【分析】分k 为偶数和奇数讨论,即可容易判断选择. 【详解】当k 取偶数时,2,k n n Z =∈,2π2π,n Z 42n n ππα+≤≤+∈,故角的终边在第一象限. 当k 取奇数时,21,k n n Z =+∈,532π2π,n Z 42n n ππα+≤≤+∈, 故角的终边在第三象限. 故选:C.【点睛】本题考查图形中阴影部分对应角度的集合,属简单题.二、多选题11.(多选)下列四个选项中正确的是( ) A .-75°角是第三象限角 B .225°角是第二象限角 C .475°角是第二象限角 D .-315°是第一象限角【答案】CD【分析】根据象限角的定义结合图像逐一判断即可得出答案.【详解】解:对于A ,如图1所示,-75°角是第四象限角,故A 错误;对于B ,如图2所示,225°角是第三象限角,故B 错误;对于C ,如图3所示,475°角是第二象限角,故C 正确;对于D ,如图4所示,-315°角是第一象限角,故D 正确.12.下列命题中,假命题的是( ) A .终边在x 轴的非正半轴上的角是零角 B .第二象限角一定是钝角 C .第四象限角一定是负角D .若()360k k βα=+⋅︒∈Ζ,则α与β终边相同 【答案】ABC【解析】角的概念和辨析,按照概率逐一进行判断即可.【详解】终边在x 轴负半轴上的角是2,k k αππ=+∈Z ,零角是没有旋转的角,所以A 为假命题;第二象限角应表示为2,2,2k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ,是由无数多个区间的并集构成,所以B为假命题;第四象限角表示为32,22,2k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ,当0k ≥时,就是正角,所以C 为假命题;若()360k k βα=+⋅︒∈Z ,则α与β终边相同,所以D 为真命题. 故选:ABC.13.(多选)已知角2α的终边在x 轴的上方,那么角α可能是 A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】AC【分析】由角2α的终边的位置,可得角2α的范围:3602360180k k α⋅<<⋅+,k Z ∈,即得角α的范围:18018090k k α⋅<<⋅+,k Z ∈,再对k 分奇数和偶数讨论可得解. 【详解】因为角2α的终边在x 轴的上方,所以3602360180k k α⋅<<⋅+,k Z ∈,则有18018090k k α⋅<<⋅+,k Z ∈.故当2k n =,n Z ∈时,36036090n n α⋅<<⋅+,n Z ∈,α为第一象限角; 当21k n =+,n Z ∈时,360180360270n n α⋅+⋅<<⋅+,n Z ∈,α为第三象限角.【点睛】本题考查角2α和角α的终边的位置关系,关键在于由角的终边的位置得角的范围,再分k 为奇数和偶数讨论,属于基础题.14.下列条件中,能使α和β的终边关于y 轴对称的是( ). A .540αβ+=︒ B .360αβ+=︒ C .180αβ+=︒ D .90αβ+=︒【答案】AC【解析】假设α,β为0180内的角,可得180αβ+=,再由终边相同角的表示即可求解.【详解】假设α,β为0180内的角,如图所示:由α和β的终边关于y 轴对称,所以180αβ+= 根据终边相同角的概念,可得()36018021180,k k k Z αβ+=+=+∈, 所以满足条件的为A 、C 故选:AC三、填空题15.将90︒角的终边按顺时针方向旋转30︒所得的角等于________. 【答案】60︒【分析】顺时针旋转所得角为负角,即903060︒︒︒-=.【详解】因为按顺时针方向旋转所得的角为负角,所以所求的角为90(30)60︒︒︒+-=. 【点睛】此题考查角定义逆时针旋转为正,顺时针旋转为负,属于简单题目. 16.已知角α为钝角,角4α与角α有相同的始边与终边,则角α=______.【答案】120【分析】由题意得出()4360k k Z αα=⋅+∈,可得出120k α=⋅,再由90120180k <⋅<求出整数k 的值,即可得出角α的值.【详解】若角4α与角α有相同的始边与终边,则()4360k k Z αα=⋅+∈,即()120k k Z α=⋅∈.又角α为钝角,则90120180k <⋅<,所以1k =,所以120α=. 故答案为120.【点睛】本题考查利用终边相同求角的值,解题的关键就是利用两角终边相同这一条件得出角的表达式,根据题中条件列不等式求解,考查计算能力,属于中等题.四、双空题17.如图,花样滑冰是冰上运动项目之一.运动员通过冰刀在冰面上划出图形,并表演跳跃、旋转等高难度动作.运动员在原地转身的动作中,仅仅几秒内就能旋转十几圈,甚至二十几圈,因此,花样滑冰美丽而危险.运动员顺时针旋转两圈半所得角的度数是______,逆时针旋转两圈半所得角的度数是______.【答案】 900-︒ 900°【分析】根据正角和负角及任意角的定义即可得出答案.【详解】解:顺时针旋转两圈半所得角的度数是236018()0900-⨯︒+︒=-︒,则逆时针旋转两圈半所得角的度数为900°. 故答案为:900-︒;900°五、解答题18.在与530°角终边相同的角中,找出满足下列条件的角β. (1)最大的负角; (2)最小的正角; (3)720360β-︒≤<-︒. 【答案】(1)190β=-︒ (2)170β=︒(3)550β=-︒【分析】(1)写出与530°角终边相同的角为360530k ⋅︒+︒,k ∈Z ,再根据3603605300k -︒<⋅︒+︒<︒,即可的解;(2)根据0360530360k ︒<⋅︒+︒<︒,即可的解; (3)根据720360530360k -︒≤⋅︒+︒<-︒,即可的解.【详解】(1)解:与530°角终边相同的角为360530k ⋅︒+︒,k ∈Z ,由3603605300k -︒<⋅︒+︒<︒且k ∈Z ,可得2k =-,故所求的最大负角190β=-︒; (2)解:由0360530360k ︒<⋅︒+︒<︒且k ∈Z ,可得1k =-,故所求的最小正角170β=︒; (3)解:由720360530360k -︒≤⋅︒+︒<-︒且k ∈Z ,可得3k =-,故所求的角550β=-︒. 19.如图,分别写出适合下列条件的角的集合.(1)终边落在射线OB 上; (2)终边落在直线OA 上;(3)终边落在阴影区域内(含边界).【答案】(1){}160360,S k k Z αα==+⋅∈;(2){}230180,S k k Z αα==+⋅∈;(3){}33018060180,S k k k Z αα=+⋅≤≤+⋅∈【分析】(1)可得出终边落在射线OB 上的一个角为60,利用终边相同的角的集合可得出终边落在射线OB 上的角的集合;(2)可得出终边落在射线OB 上的一个角为30,利用终边相同的角的集合可得出终边落在射线OB 上的角的集合;(3)分别写出第一象限和第三象限中阴影部分区域所表示的角的集合,然后将两个集合取并集可得出结果.【详解】(1)终边落在射线OB 上的角的集合为{}160360,S k k Z αα==+⋅∈; (2)终边落在直线OA 上的角的集合为{}230180,S k k Z αα==+⋅∈; (3)终边落在第一象限中的阴影部分区域的角的集合为{}3036060360,k k k Z αα+⋅≤≤+⋅∈,终边落在第三象限中的阴影部分区域的角的集合为{}210360240360,k k k Zαα+⋅≤≤+⋅∈{}3018036060180360,k k k Zαα=++⋅≤≤++⋅∈()(){}30211806021180,k k k Z αα=++⋅≤≤++⋅∈,因此,终边落在阴影区域内的角的集合为{}33036060360,S k k k Z αα=+⋅≤≤+⋅∈⋃()(){}30211806021180,k k k Z αα++⋅≤≤++⋅∈{}3018060180,k k k Z αα=+⋅≤≤+⋅∈.【点睛】本题考查角的集合的表示,解题的关键就是要找出阴影部分区域边界线对应的角的集合,考查分析问题和解决问题的能力,属于基础题.20.如图,半径为1的圆的圆周上一点A 从点()1,0出发,按逆时针方向做匀速圆周运动.已知点A 在1min 内转过的角度为1(080)θθ︒<<︒,2min 到达第三象限,15min 回到起始位置,求θ.【答案】96θ=︒或120°.【分析】由题意列出关于θ的关系式,直接求解即可【详解】由题意,得()0180180227015360k k θθθ⎧︒<<︒⎪︒<<︒⎨⎪=⋅︒∈⎩Z ,即()9013524k k θθ︒<<︒⎧⎨=⋅︒∈⎩Z ,解得96θ=︒或120°.。
1。
1。
1 角的概念的推广学习目标核心素养1.了解角的概念的推广,能正确区分正角、负角和零角.(一般) 2.理解象限角的概念.(重点)3.掌握终边相同的角的表示方法,并能判断角所在的位置.(难点)1.通过角的概念的学习,体现了数学抽象核心素养.2.借助终边相同角的求解、象限角的判断等,培养学生的直观想象核心素养。
1.角的概念(1)角的形成:角可以看成是一条射线绕着它的端点从一个位置旋转到另一个位置所成的图形.(2)角的分类:按旋转方向可将角分为如下三类:①正角:按照逆时针方向旋转而成的角;②负角:按照顺时针方向旋转而成的角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角.2.角的加减法运算(1)射线OA绕端点O旋转到OB位置所成的角,记作∠AOB,其中OA叫做∠AOB的始边,OB叫做∠AOB的终边.(2)引入正角、负角的概念以后,角的减法运算可以转化为角的加法运算,即α-β可以化为α+(-β).这就是说,各角和的旋转量等于各角旋转量的和.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S =错误!,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.4.象限角角的顶点与坐标原点重合,角的始边与x轴的正半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.思考:终边和始边重合的角一定是零角吗?[提示] 不一定.零角是终边和始边重合的角,但终边和始边重合的角不一定是零角,如-360°,360°,720°等角的终边和始边也重合.1.钟表的分针在一个半小时内转了( )A.180°B.-180°C.540° D.-540°D[钟表的分针是顺时针转动,每转一周,转过-360°,当分针转过一个半小时时,它转了-540°.]2.下列各角中,与330°角的终边相同的角是( )A.510° B.150°C.-150°D.-390°D[与330°终边相同的角的集合为S={β|β=330°+k·360°,k∈Z},当k=-2时,β=330°-720°=-390°,故选D。
§2任意角2.1角的概念推广2.2象限角及其表示课后篇巩固提升基础达标练1.(多选)下列说法不正确的是()A.终边在x轴非负半轴上的角是零角B.钝角一定大于第一象限的角C.第二象限的角不一定大于第一象限的角错,终边在x轴非负半轴上的角为k·360°,k∈Z,显然不只是零角;B错,390°是第一象限的角,大于任一钝角;C对,第二象限角中的-210°小于第一象限角中的30°;D错,285°为第四象限角,但不是负角.可以是()2.(多选)已知角α是第四象限角,则角-α2A.第一象限角B.第二象限角D.第四象限角α是第四象限角,所以k×360°-90°<α<k×360°(k∈Z),<k×180°(k∈Z),所以k×180°-45°<α2所以-k×180°<-α<-k×180°+45°(k∈Z),2是第一或第三象限角.所以角-α23.已知角α,β的终边相同,则角(α-β)的终边在()A.x轴的非负半轴上B.y轴的非负半轴上C.x轴的非正半轴上α,β的终边相同,得α=k·360°+β,k∈Z.α-β=k·360°,k∈Z,得α-β的终边在x轴的非负半轴上,故选A.4.终边在第二象限的角的集合可以表示为()A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}{α|90°+k·360°<α<180°+k·360°,k∈Z},而选项,故选项D正确.5.下列角的终边与37°角的终边在同一直线上的是()° B.143° C.379° D.-143°37°角的终边在同一直线上的角可表示为37°+k·180°,k∈Z,当k=-1时,37°-180°=-143°,故选D.6.已知集合A={x|x=k×180°+(-1)k×90°,k∈Z},B={x|x=k×360°+90°,k∈Z},则A,B的关系为()A.B⫋AB.A⫋BD.A⊆BA中,当k为奇数时,x=k×180°-90°,终边落在y轴的非负半轴上;当k为偶数时,x=k×180°+90°,终边落在y轴的非负半轴上.集合B表示的角的终边落在y轴的非负半轴上.故A=B.°角的终边相同的最小正角是,绝对值最小的角是.2016°终边相同的角为2016°+k·360°(k∈Z).当k=-5时,216°为最小正角;当k=-6时,-144°为绝对值最小的角.°-144°α,β的终边关于直线x+y=0对称,且α=-60°,则β=.-90°到0°的范围内,-60°角的终边关于直线y=-x对称的射线的对应角为15°=-30°,所以β=-30°+k·360°,k∈Z.30°+k·360°,k∈Z9.在一昼夜中,钟表的时针和分针有几次重合?几次形成直角?时针、分针和秒针何时重合?请写出理由.0.5°,分针每分钟走6°,秒针每分钟走360°,本题为追及问题.(1)一昼夜有24×60=1440(分钟),时针和分针每重合一次间隔的时间为3606-0.5分钟,所以一昼夜时针和分针重合14403606-0.5=22(次).(2)假设时针不动,分针转一圈与时针两次形成直角,但一昼夜时针转了两圈,则少了4次垂直,于是一共有24×2-4=44(次)时针与分针垂直.(3)秒针与分针每重合一次间隔时间为360360-6分,而由于360360-6与3606-0.5的最小公倍数为720分钟,即12个小时,所以一昼夜只有0:00与12:00这两个时刻三针重合.能力提升练1.已知A={第一象限角},B={锐角},C={小于90°的角},则A,B,C关系正确的是()A.B=A∩CB.B∪C=CD.A=B=CB⊂A∩C,故A错误;B⊂C,所以B∪C=C,故B正确;A与C互不包含,故C错误;由以上分析可知D错误.2.(多选)在-180°~360°范围内,与2 000°角终边相同的角为()A.-160°B.200°° D.160°°=200°+5×360°,2000°=-160°+6×360°,所以在-180°~360°范围内与2000°角终边相同的角有-160°,200°两个.°化为α+k·360°(0°≤α<360°,k∈Z)的形式是.-885°÷360°=-3……195°,且0°≤α<360°,所以k=-3,α=195°,故=195°+(-3)·360°.°+(-3)·360°β的终边关于y轴对称,若α=30°,则β=.°与150°的终边关于y轴对称,故β的终边与150°角的终边相同.故°+k·360°,k∈Z.°+k·360°,k∈Z2α的终边在x轴的上方,那么α是第象限角.k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k∈Z),按照k的奇偶性进行讨论.当k=2n(n∈Z)时,n·360°<α<90°+n·360°(n∈Z),α在第一象限;当k=2n+1(n ∈Z)时,180°+n·360°<α<270°+n·360°(n∈Z),α在第三象限.故α在第一或第三象限.6.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.,α+β=-280°+k·360°,k∈Z.因为α,β都是锐角,所以0°<α+β<180°.取k=1,得α+β=80°.①因为α-β=670°+k·360°,k∈Z,α,β都是锐角,所以-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.素养培优练如图,点A在半径为1且圆心在原点的圆上,且∠AOx=45°,点P从点A处出发,以逆时针方向沿圆周匀速旋转.已知点P在1秒内转过的角度为θ(0°<θ<180°),经过2秒钟到达第三象限,经过14秒钟又回到出发点A,求θ,并判断θ所在的象限.,14秒钟后,点P在角14θ+45°的终边上,所以45°+k·360°=14θ+45°,k∈Z.又180°<2θ+45°<270°,即67.5°<θ<112.5°,所以67.5°<k·180°7<112.5°.又k∈Z,所以k=3或4,所以所求的θ的值为540°7或720°7.因为0°<540°7<90°,90°<720°7<180°,所以θ在第一象限或第二象限.。
【第一节 任意角、弧度制及任意角的三角函数】之小船创作1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着它的端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:3.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记作sin αx叫做α的余弦,记作cosαyx叫做α的正切,记作tan α一+++各象限符号二+--三--+四-+-三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线1.(2019·海门一中月考)若角α满足α=45°+k·180°,k∈Z,则角α的终边落在第________象限.答案:一、三2.(2018·南京调研)已知角α的终边过点P(-5,12),则cos α=________.答案:-5 133.已知半径为120 mm的圆上,有一条弧的长是144 mm,则该弧所对的圆心角的弧度数为________.答案:1.21.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.4.三角函数的定义中,当P(x,y)是单位圆上的点时有sin α=y,cos α=x,tan α=yx,但若不是单位圆时,如圆的半径为r,则sin α=yr,cos α=xr,tan α=yx.[小题纠偏]1.(2019·如皋模拟)-10π3为第________象限角.答案:二2.若角α终边上有一点P(x,5),且cos α=x13(x≠0),则sin α=________.答案:5 13考点一角的集合表示及象限角的判定基础送分型考点——自主练透[题组练透]1.(2019·海安模拟)若α是第二象限角,则α2是第______象限角.解析:∵α是第二象限角,∴π2+2kπ<α<π+2kπ,k∈Z,∴π4+kπ<α2<π2+kπ,k∈Z.当k为偶数时,α2是第一象限角;当k为奇数时,α2是第三象限角.故α2是第一或三象限角.答案:一或三2.在-720°~0°范围内所有与45°终边相同的角为________.解析:所有与45°有相同终边的角可表示为:β=45°+k×360°(k∈Z),则令-720°≤45°+k×360°<0°,得-765°≤k×360°<-45°,解得-765360≤k<-45360, 从而k =-2或k =-1,代入得β=-675°或β=-315°.答案:-675°或-315°3.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________________.解析:如图,在平面直角坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3;在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-5π3,-2π3,π3,4π3. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-5π3,-2π3,π3,4π3 4.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.解析:由角α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z),则k π+π2<α2<k π+3π4(k ∈Z),故α2是第二或第四象限角.由⎪⎪⎪⎪⎪⎪⎪⎪sin α2=-sin α2,知sinα2<0,所以α2只能是第四象限角.答案:四[谨记通法]1.终边在某直线上角的求法4步骤(1)数形结合,在平面直角坐标系中画出该直线; (2)按逆时针方向写出[0,2π)内的角;(3)再由终边相同角的表示方法写出满足条件角的集合;(4)求并集化简集合.2.确定kα,αk(k ∈N *)的终边位置3步骤(1)用终边相同角的形式表示出角α的范围;(2)再写出kα或αk的范围;(3)然后根据k 的可能取值讨论确定kα或αk的终边所在位置.考点二 扇形的弧长及面积基础送分型考点——自主练透[题组练透]1.(2019·盐城模拟)在半径为1的圆中,3弧度的圆心角所对的弧长为________.解析:在半径为1的圆中,3弧度的圆心角所对的弧长l =|α|r =3×1=3.答案:32.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是________.解析:设此扇形的半径为r ,弧长为l , 则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.答案:1或43.如果一个扇形的半径变为原来的一半,而弧长变为原来的32倍,则该弧所对的圆心角是原来的________倍.解析:设圆的半径为r ,弧长为l ,则其弧度数为lr.将半径变为原来的一半,弧长变为原来的32倍,则弧度数变为32l12r=3·lr,即弧度数变为原来的3倍.答案:3[谨记通法]弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l=|α|r,扇形的面积公式是S=12lr=12|α|r2(其中l是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.考点三三角函数的定义题点多变型考点——多角探明[锁定考向]任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.常见的命题角度有:(1)三角函数定义的应用;(2)三角函数值的符号判定; (3)三角函数线的应用.[题点全练]角度一:三角函数定义的应用1.(2019·淮安调研)已知角α的终边经过点(4,a ),若sin α=35,则实数a 的值为________.解析:∵角α的终边经过点(4,a ),∴sin α=35=a16+a2,解得a =3. 答案:32.已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.解析:因为角α的终边经过点P (-x ,-6),且cos α=-513,所以cos α=-x x 2+36=-513,解得x =52或x =-52(舍去),所以P ⎝⎛⎭⎪⎪⎫-52,-6, 所以sin α=-1213,所以tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.答案:-23角度二:三角函数值的符号判定3.若sin αtan α<0,且cos αtan α<0,则点(cos α,-sin α)在第________象限.解析:由sin αtan α<0可知sin α,tan α异号, 则α为第二或第三象限角.由cos αtan α<0可知cos α,tan α异号,则α为第三或第四象限角. 故α为第三象限角,所以cos α<0,-sin α>0.故点(cos α,-sin α)在第二象限. 答案:二角度三:三角函数线的应用4.(2018·汇龙中学测试)设MP和OM分别是角17π18的正弦线和余弦线,给出以下不等式:①MP<OM<0;②OM<0<MP;③OM<MP<0;④MP<0<OM.其中正确的是________(填序号).解析:因为sin 17π18=MP>0,cos17π18=OM<0,所以OM<0<MP.答案:②[通法在握]定义法求三角函数的3种情况(1)已知角α终边上一点P的坐标,可求角α的三角函数值.先求P到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.[演练冲关]1.(2019·无锡调研)如图,已知点A 为单位圆上一点,∠xOA =π4,将点A 沿逆时针方向旋转角α到点B ⎝ ⎛⎭⎪⎪⎫35,45,则sin 2α=________.解析:由题意可得,cos ⎝ ⎛⎭⎪⎪⎫π4+α=35,α∈⎝⎛⎭⎪⎪⎫0,π4, ∴cos ⎝ ⎛⎭⎪⎪⎫π2+2α=2cos 2⎝ ⎛⎭⎪⎪⎫π4+α-1 =2×925-1=-725,即-sin 2α=-725,∴sin 2α=725. 答案:7252.(2018·扬州调研)在平面直角坐标系xOy 中,O 是坐标原点,点A 的坐标为(3,-1),将OA 绕O 逆时针旋转450°到点B ,则点B 的坐标为________.解析:设B (x ,y ),由题意知OA =OB =2,∠BOx =60°,且点B 在第一象限,所以x =2cos 60°=1,y =2sin 60°=3,所以点B 的坐标为(1,3).答案:(1,3)一抓基础,多练小题做到眼疾手快1.(2019·如东模拟)与-600°终边相同的最小正角的弧度数是________.解析:-600°=-720°+120°,与-600°终边相同的最小正角是120°,120°=2π3.答案:2π32.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为________.解析:设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =αr ,所以α= 3.答案:33.(2019·苏州期中)已知扇形的圆心角为θ,其弧长是其半径的2倍,则sin θ|sin θ|+|cos θ|cos θ+|tan θ|tan θ=________.解析:圆心角θ=l r =2,∵π2<2<π,∴sin θ>0,cos θ<0,tan θ<0,∴sin θ|sin θ|+|cos θ|cos θ+|tan θ|tan θ=1-1-1=-1.答案:-14.已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.解析:因为sin θ=y42+y2=-255,所以y<0,且y2=64,所以y=-8.答案:-85.已知角α的终边上一点P(-3,m)(m≠0),且sinα=2m4,则m=________.解析:由题设知点P的横坐标x=-3,纵坐标y=m,所以r2=|OP|2=(-3)2+m2(O为原点),即r=3+m2.所以sin α=mr=2m4=m22,所以r=3+m2=22,即3+m2=8,解得m=± 5.答案:±56.已知集合M =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x =k ·π2,k ∈Z ,N =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x =k π±π2,k ∈Z ,则M ,N 之间的关系为 ________.解析:k π±π2=(2k ±1)·π2是π2的奇数倍,所以N ⊆M .答案:N ⊆M二保高考,全练题型做到高考达标1.(2019·常州调研)若扇形OAB 的面积是1 cm 2,它的周长是4 cm ,则该扇形圆心角的弧度数为________.解析:设该扇形圆心角的弧度数是α,半径为r , 根据题意,有⎩⎪⎨⎪⎧2r +αr =4,12α·r 2=1,解得α=2,r =1.故该扇形圆心角的弧度数为2. 答案:22.(2018·黄桥中学检测)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan 2α=________.解析:由三角函数的定义可得cos α=x x 2+42.因为cosα=15x ,所以x x 2+42=15x ,又α是第二象限角,所以x <0,解得x =-3,所以cos α=-35,sin α=1-cos 2α=45,所以 tan α=sin αcos α=-43,所以tan 2α=2tan α1-tan 2α=247.答案:2473.已知角α终边上一点P 的坐标是(2sin 2,-2cos 2),则sin α=________.解析:因为r =2sin 22+-2cos 22=2,由任意三角函数的定义,得sin α=yr=-cos 2.答案:-cos 24.已知角2α的终边落在x 轴上方,那么α是第________象限角.解析:由题知2k π<2α<π+2k π,k ∈Z ,所以k π<α<π2+k π,k ∈Z.当k 为偶数时,α是第一象限角;当k 为奇数时,α为第三象限角,所以α为第一或第三象限角.答案:一或三5.与2 017°的终边相同,且在0°~360°内的角是________.解析:因为2 017°=217°+5×360°,所以在0°~360°内终边与2 017°的终边相同的角是217°.答案:217°6.(2019·淮安调研)已知α为第一象限角,sin α=35,则cos α=________.解析:∵α为第一象限角,sin α=35,∴cos α=1-sin2α=1-925=4 5.答案:4 57.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为________.解析:设圆的半径为r,则扇形的半径为2r3,记扇形的圆心角为α,则12α⎝ ⎛⎭⎪⎪⎫2r 32πr 2=527,所以α=5π6. 所以扇形的弧长与圆周长之比为l c =5π6·23r 2πr =518.答案:5188.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为_____________.解析:如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin5π4=cos 5π4=-22.根据三角函数线的变化规律标出满足题中条件的角x ∈⎝ ⎛⎭⎪⎪⎫π4,5π4. 答案:⎝ ⎛⎭⎪⎪⎫π4,5π4 9.(2019·镇江中学高三学情调研)点P 从(1,0)出发,沿单位圆x 2+y 2=1按顺时针方向运动π3弧长到达点Q ,则点Q 的坐标为________.解析:由题意可得点Q 的横坐标为cos ⎝ ⎛⎭⎪⎪⎫-π3=12,Q 的纵坐标为sin ⎝⎛⎭⎪⎪⎫-π3=-sin π3 =-32,故点Q 的坐标为⎝⎛⎭⎪⎪⎫12,-32. 答案:⎝ ⎛⎭⎪⎪⎫12,-32 10.已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.解:设α终边上任一点为P (k ,-3k ), 则r =k 2+-32=10|k |.当k >0时,r =10k ,所以sin α=-3k 10k =-310,1cos α=10 kk =10,所以10sin α+3cos α=-310+310=0;当k <0时,r =-10k ,所以sin α=-3k -10k =310,1cos α=-10kk =-10,所以10sin α+3cos α=310-310=0.综上,10sin α+3cos α=0.11.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,所以α=l r =23或α=lr=6.(2)法一:因为2r +l =8,所以S 扇=12lr =14l ·2r ≤14⎝ ⎛⎭⎪⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎪⎫822=4, 当且仅当2r =l ,即α=lr=2时,扇形面积取得最大值4.所以圆心角α=2,弦长AB =2sin 1×2=4sin 1. 法二:因为2r +l =8,所以S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=l r=2时,扇形面积取得最大值4.所以弦长AB =2sin 1×2=4sin 1.三上台阶,自主选做志在冲刺名校1.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,OP―→的坐标为________.解析:如图,作C Q ∥x 轴,P Q ⊥C Q ,Q 为垂足.根据题意得劣弧D P =2,故∠DCP =2弧度,则在△PC Q 中,∠PC Q =⎝ ⎛⎭⎪⎪⎫2-π2弧度,C Q =cos ⎝ ⎛⎭⎪⎪⎫2-π2=sin 2,P Q =sin ⎝ ⎛⎭⎪⎪⎫2-π2=-cos 2,所以P 点的横坐标为2-C Q =2-sin 2,P 点的纵坐标为1+P Q =1-cos2,所以P 点的坐标为(2-sin 2,1-cos 2),此即为向量OP―→的坐标.答案:(2-sin 2,1-cos 2)2.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限; (3)试判断 tan α2sin α2cos α2的符号. 解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上;由tan α>0, 知α在第一、三象限,故α角在第三象限,其集合为⎩⎪⎨⎪⎧ α⎪⎪⎪⎪⎭⎪⎬⎪⎫2k π+π<α<2k π+3π2,k ∈Z .(2)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z , 故α2终边在第二、四象限.(3)当α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2 sin α2 cos α2取正号;当α2在第四象限时, tan α2<0,sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.。
角的概念的推广
一、选择题
1.下列命题中正确的是( )
A.第一象限的角必是锐角
B.终边相同的角必相等
C.相等角的始边相同时,终边位置必相同
D.不相等的角终边位置必不相同
2.-1 122°角的终边所在的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.下列各组角中,终边相同的角是( )
A.390°与690°
B.-330°与750°
C.480°与-420°
D.300°与-840°
4.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下列关系中正确的是( )
A.A=B=C
B.A⫋C
C.A∩C=B
D.B∪C=C
5.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B=()
A.{-36°,54°}
B.{-126°,144°}
C.{-126°,-36°,54°,144°}
D.{-126°,54°}
6.已知α为第三象限角,则α
所在的象限是( )
2
A.第一或第二象限
B.第二或第三象限
C.第一或第三象限
D.第二或第四象限
二、填空题
7.若将时钟拨慢5分钟,则分针转了度;时针转了度.
8.设集合M={α|α=k·90°,k∈Z}∪{α|α=k·180°+45°,k∈Z},N={β|β=k·45°,k∈Z},则集合M 与集合N的关系是.
三、解答题
9.求终边在直线y=-x上的角的集合S.
10.已知α=-1 910°.
(1)将α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出α所在象限;
(2)求θ,使θ与α终边相同,且-720°≤θ<0°.
11.已知角α的终边在如图所示的阴影部分所表示的范围内,求α.
一、选择题
1.200°是( )
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角
2.若α是第四象限角,则180°-α是( )
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角
二、解答题
3.已知集合A={α|30°+k·180°≤α≤90°+k·180°,k∈Z},集合
B={β|-45°+k·360°≤β≤45°+k·360°,k∈Z},求A∩B.
4.如图所示.
(1)分别写出终边落在OA,OB位置上的角的集合;
(2)写出终边落在阴影部分(包括边界)的角的集合.
一、选择题
1.C 可用排除法,如390°角在第一象限,不是锐角,故排除A;终边相同的角相差360°的整数倍,如390°角与30°角终边相同,但两角不相等,故排除B;390°角与30°角不相等但终边相同,故排除D.故选C.
2.D 因为-1 122°=-4×360°+318°,所以-1 122°角的终边所在的象限是第四象限.
3.B 若α与β终边相同,则α-β=k·360°,k∈Z,750°=-330°+3×360°.
4.D 由题意得
A={α|k·360°<α<k·360°+90°,k∈Z},B={α|0°<α<90°},C={α|α<90°},∴B∪C=C.
5.C 由-180°<k·90°-36°<180°(k∈Z)得
-144°<k·90°<216°(k∈Z),∴-14490<k<21690(k∈Z),∴k=-1,0,1,2,
∴A∩B={-126°,-36°,54°,144°},故选C.
6.D 由k·360°+180°<α<k·360°+270°,k∈Z,得k 2·360°+90°<α2<k 2·360°+135°,k∈Z. 当k 为偶数时,α2为第二象限角;
当k 为奇数时,α2为第四象限角.
二、填空题
7.答案 30;2.5
解析 将时钟拨慢5分钟,分针、时针都是按逆时针方向转动,转过的角度都是正角.
这时,分针转过的角度是
360°12=30°, 时针转过的角度是
30°12=2.5°.
8.答案 M ⫋N
解析 集合M 中的各类角的终边用直线(包括坐标轴所在的直线)表示如图①.集合N 中的各类角的终边用直线(包括坐标轴所在的直线)表示如图②.比较图①和图②,不难得出M ⫋N.
三、解答题
9.解析 因为直线y=-x 是第二、四象限的角平分线,在0°~360°之间所对应的两个角分别是135°和315°,所以
S={α|α=k·360°+135°,k∈Z}∪{α|α=k·360°+315°,k∈Z}={α|α=2k·180°+135°,k∈Z}∪{α|α=(2k+1)·180°+135°,k∈Z}={α|α=n·180°+135°,n∈Z}.
10.解析(1)-1 910°=-6×360°+250°,
因为250°角为第三象限角,
所以-1 910°角为第三象限角.
(2)θ为-110°或-470°.
11.解析在0°~360°范围内,终边落在阴影部分的角为30°<α<150°或210°<α<330°,所以满足题意的角
α={α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}= {α|2k·180°+30°<α<2k·180°+150°,k∈Z}∪{α|(2k+1)·180°+30°<α<(2k+1)·180°+150°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.
一、选择题
1.C 200°是第三象限角.
2.C 若α是第四象限角,则-α是第一象限角,将-α的终边逆时针转180°到第三象限,故180°-α是第三象限角.
二、解答题
3.
解析如图,集合A中的角的终边在阴影(Ⅰ)内,集合B中的角的终边在阴影(Ⅱ)内,因此集合
A∩B={α|30°+k·360°≤α≤45°+k·360°,k∈Z}.
4.解析(1)终边落在OA位置上的角的集合为
{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z},终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z}.
(2)由题图可知,在-180°~180°范围内,终边落在阴影部分的角β满足-30°≤β≤135°,因此所求角的集合是所有与之终边相同的角组成的集合,故该集合可表示为
{γ|-30°+k·360°≤γ≤135°+k·360°,k∈Z}.。