热力学系统的制冷系数
- 格式:docx
- 大小:37.21 KB
- 文档页数:3
热学公式1.3.1物态方程:(1.1)1.3.2体积膨胀系数、压缩系数、压强系数:(1.3)(1.4)(1.5)1.3.3理想气体(压强趋于零的极限状态下的气体/能严格满足理想气体物态方程的气体)物态方程:pV=vRT (1.7)1.3.4混合理想去气体物态方程:(1.9)1.4.3温标:T(p)=(其中不变) (1.10)(1.11)=(体积不变) (1.12)(体积不变) (1.13)1.5.1物质由大数分子组成:(1.14)法拉第常量F=分子热运动:(1.15)1.6.1理想气体微观模型:洛喜密脱常量(1.16)1.6.2单位时间内在单位面积器壁上平均分子数(1.18) (1.19)1.6.3理想气体压强公式:(1.20)(1.21)P=P=(1.23)K=(1.24)1.6.4温度的微观意义:(1.25)气体分子的平均根速度:=(1.26) 1.7.1分子间互作用势能曲线:d(1.29)或F=(1.30)令r时=0 则(1.31) 1.7.2分子碰撞有效直径、固体分子热震动、固体热膨胀:d=分子碰撞有效直径(1.31)1.7.3范德瓦尔斯方程:p=(1.33) (1.34)方程为:(1.43)2.2.2等概率性与概率的基本性质:(2.1)2.2.3平均值及其运算法则:(2.2)n(2.3)2.3.2麦克斯韦速率分布:f(v)dv=4(2.13)三种速率:(1)平均速率:==(2.14)(2)平均根速度:(2.15)(3)最概然速率(2.16)三种速率的比:(2.17) 2.4.1速度空间:f((2.20)2.4.2麦克斯韦速度分布:(2.26) 2.6.1等温大气压强公式:p(z)=p(0)) (2.61)2.7.1理想气体热容:C=(2.75)2.7.3能量均分定理:(2.81)3.1.1牛顿粘性定律:f=3.2.1菲克定律(3.10)3.3.1傅力叶定律:(3.14)热流密度:(3.15)3.8.1气体黏性系数导出:=(3.62)3.8.2气体的导热系数:K=(3.67)气体的扩散系数:D=(3.69)4.2.2体积膨胀功:W=(对外界系统所做的总功)(4.3)理想气体在几种可逆过程中功的计算:(1)等温过程:W=(2)等压过程:W=(3)等体过程:W=04.3.2内能定理:(4.12)热力学第一定律一般表达式:无限小过程第一定律表达式:dU=dQ+dW准静态过程第一定律表达式:dU=dQ4.4.1定体热熔:(4,19) (4.20)4.4.2定压热熔与焓:H=U+pV (4.22)4.5.1理想气体内能:(4.33) 4.5.2理想气体的等体、等压、等温过程:(1)等体过程:(4.39)(2)等压过程:Q(4.40)(3)等温过程:(4.42)4.5.3一般绝热过程准静态绝热过程:理想气体绝热过程中功及温度变化:4.5.6多方过程方程:(4.68)多方过程热熔:4.6.1热机效率的定义:=(4.81)(4.82) (4.83) 4.6.2卡诺热机的效率:(4.90)4.7.1制冷系数:(4.99)卡诺制冷剂效率:(4.100)5.3.1克劳休斯等式:=05.3.2熵和熵的计算:TdS=(5.23)熵的微分表达式以熵来表示热熔(5.25)(5.26)理想气体的熵:(5.29)5.3.7热力学第二定律表达式:热力学基本方程:热学习题课(2007.4.18) Ⅰ教学基本要求气体动理论及热力学1.了解气体分子热运动的图象。
《热工基础及应用》第3版知识点第一章 热能转换的基本概念本章要求:1.掌握研究热能转换所涉及的基本概念和术语;2.掌握状态参数及可逆过程的体积变化功和热量的计算;3.掌握循环的分类与不同循环的热力学指标。
知识点:1.热力系统:根据研究问题的需要和某种研究目的,人为划定的一定范围内的研究对象称为热力系统,简称热力系或系统。
热力系可以按热力系与外界的物质和能量交换情况进行分类。
2.工质:用来实现能量相互转换的媒介物质称为工质。
3.热力状态:热力系在某瞬时所呈现的宏观物理状态称为热力状态。
对于热力学而言,有意义的是平衡状态。
其实现条件是:0,0,0p T μ∆=∆=∆=。
4. 状态参数和基本状态参数:描述系统状态的宏观物理量称为热力状态参数,简称状态参数。
状态参数可按与系统所含工质多少有关与否分为广延量(尺度量)参数和强度量状态参数;按是否可直接测量可分为基本和非基本状态参数。
5. 准平衡(准静态)过程和可逆过程:准平衡过程是基于对热力过程的描述而提出的。
实现准平衡过程的条件是推动过程进行的不平衡势差要无限小,即0p ∆→,0T ∆→(0μ∆→)。
6、热力循环:为了实现连续的能量转换,就必须实施热力循环,即封闭的热力过程。
热力循环按照不同的方法可以分为:可逆循环和不可逆循环;动力循环(正循环)和制冷(热)循环(逆循环)等。
动力循环的能量利用率的热力指标是热效率:0=t H W Q η;制冷循环能量利用率的热力学指标是制冷系数:L 0=Q W ε。
第二章 热力学第一定律本章要求:1. 深入理解热力学第一定律的实质;2. 熟练掌握热力学第一定律的闭口系统和稳定流动系统的能量方程。
知识点:1. 热力学第一定律:是能量转换与守恒定律在涉及热现象的能量转换过程中的应用。
热力学第一定律揭示了能量在传递和转换过程中数量守恒这一实质。
2. 闭口系统的热力学第一定律表达式,即热力学第一定律基本表达式:Q U W =∆+。
第五章 习题解答5-1 ⑴ 12,187331364.14%873t c T T T η--===⑵ 0,10.641410064.14 kW t c W Q η==⨯= ⑶ ()()2,1110.641410035.86 kW t c Q Q η=-=-⨯= 5-2 12,1100040060%1000t c T T T η--=== 0,10.61000600 kJ < 700 kJ t c W Q η==⨯= 该循环发动机不能实现5-3 ()()121 1.011000300707 kJ/kg p q c T T =-=⨯-=133323331221.41.41lnln ln 300 0.287300ln 362.8 kJ/kg1000p pT q RT RT RT p p T κκ--⎛⎫=== ⎪⎝⎭⎛⎫=⨯⨯=- ⎪⎝⎭12707362.8344.2 kJ/kg w q q =+=-=1344.248.68%707w q η=== 5-4 12,1100030070%1000t c T T T η--=== ,10.7707495 kJ/kg t c w q η==⨯= 5-5 ⑴221126310000089765 kJ/h 293T Q Q T ==⨯= ⑵12,122939.77293263c T T T ε===-- 12,1000002.84 kW 9.773600cQ P ε===⨯⑶100000100000 kJ/h 27.78 kW 3600P ===5-6 ⑴12,1229314.65293273c T T T ε===-- 12,2010000.455 kW 9.773600cQ P ε⨯===⨯由()1221212003600T T T PT T -⨯=-220t =℃ 得1313 K 40T ==℃5-7 2,10.351000015000 kJ/h t c Q Q ηε==⨯⨯= 5-8 ()()2111000010.37000 kJ/h t Q Q η=-=⨯-=215000700022000 kJ/h Q Q Q =+=+=总 5-9 可逆绝热压缩终态温度2T1 1.411.422110.3300410.60.1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭K可逆过程0Q U W =∆+=,不可逆过程0Q U W ''=∆+= 且 1.1W W '=,则 1.1U U '∆=∆()()21211.1v v mc T T mc T T '-=-()()21211.1300 1.1410.6300421.7T T T T '=+-=+⨯-=K 2211421.70.3ln ln 0.1 1.01ln 0.287ln 3000.1p T p S m c R T p '⎛⎫⎛⎫∆=-=⨯- ⎪ ⎪⎝⎭⎝⎭=0.00286 kJ/kg.K5-10 理论制冷系数:21,122587.37293258c T T T ε===-- 制冷机理论功率:21,1257004.74 kW 7.373600cQ P ε===⨯散热量:12125700 4.743600142756 kJ/h Q Q P =+=+⨯=冷却水量:21H O 1427564867.2 kg/h 4.197Q mc t ===∆⨯5-11 ⑴ 1111003070 kJ W Q U =-∆=-=热源在完成不可逆循环后熵增0.026kJ/kg.K 则第二个过程热源吸热:120.0261006000.026115.6 kJ Q Q T T ⎛⎫=+=+⨯= ⎪⎝⎭工质向热源放热:()22115.63085.6 kJ W Q U =-∆=---=- 5-12 可逆定温压缩过程熵变:211ln0.287ln 0.66 kJ/kg K 0.1p s R p ∆=-=-⨯=-⋅ 可逆过程耗功:1120.1ln0.287400ln 264 kJ/kg 1p w RT p ==⨯⨯=- 实际耗功:()1.25 1.25264330 kJ/kg w w '==⨯-=- 因不可逆性引起的耗散损失:()33026466 kJ/kg q w w ''=-=---=- 总熵变:0660.660.44 kJ/kg K 300q s s T ''∆=∆+=-+=-⋅ 5-13 ()121v q c T T =-,()231p q c T T =-()()31313121121212111111111p v c T T T T v v q wq q c T T T T p p ηκκ---==-=-=-=---- 5-14 1112lnp q RT p =,()421223ln v pq c T T RT p =-+ ()412412223321111122lnln 1111lnlnv p T T pc T T RT T p p q p p q RT T p p κη--++-=-=-=-5-15 ⑴11940 K T '=,2660 K T '=216601166%1940T T η'=-=-=' ⑵01100066%660 kJ W Q η==⨯=20,max11600110001700 kJ 2000T W Q T ⎛⎫⎛⎫=-=⨯-= ⎪ ⎪⎝⎭⎝⎭0,max 0700660 kJ 40 kJ W W W δ=-=-=5-16 11114000.10.445 kg 0.287313p V m RT ⨯===⨯ 22222000.10.238 kg 0.287293p V m RT ⨯===⨯ ()()11220v v U m c T T m c T T ∆=-+-=1122120.4453130.238293306 K 0.4450.238m T m T T m m +⨯+⨯===++()()12120.4450.2380.2873060.3 MPa 0.10.1m m RT p V V ++⨯⨯===++ 1122121122 ln ln ln ln 3060.3 0.4451.01ln 0.287ln 3130.43060.3 0.2381.01ln 0.287ln 0.0093 kJ/K2930.2p p S m s m s T p T p m c R m c R T p T p ∆=∆+∆⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=⋅-⋅ ⎪⎝⎭⎛⎫+-⋅= ⎪⎝⎭5-17 ⑴2211400 2.51000 K pT T p ==⨯=()()1210.7231000400433.8 kJ/kg v q c T T =-=⨯-=12331ln 0.287400ln 264.3 kJ/kg 10v q RT v ==⨯=-⑵12433.8264.3169.5 kJ/kg w q q =-=-=21264.31139.0%433.8q q η=-=-=5-18 ⑴()12201s R T T W m w m κκκ'-===- ()()21201201.41298258.2 K 0.5 1.40.287T T m R κκ'--=-=-=⨯⨯⑵1 1.412 1.42112980.4229.4 K p T T p κκ--⎛⎫==⨯= ⎪⎝⎭()()120.287298229.40.5 1.41 1.4134.5 kWs R T T W m w m κκκ-⨯-===⨯⨯--= 5-19 1 1.311.322111303515.5 K 0.1n np T T p --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()21 1.3 1.40.287515.53031 1.31 1.4150.8 kJ/kgv n q c T T n κ--=-=⨯⨯----=- 环境熵变:1050.80.175 kJ/kg K 290q s T ∆===⋅空气熵变:22211ln ln p T ps c R T p ∆=-515.511.005ln 0.287ln 0.127 kJ/kg K 3030.1=⨯-=-⋅孤立系统熵变:120.1750.1270.048 kJ/kg K iso s s s ∆=∆+∆=-=⋅ 5-20 1 1.411.422110.2800505.1 K 1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()120.2968800505.1218.8 kJ/kg 1 1.41R T T w κ-⨯-===--()()()12120210212112021 505.1800 218.81000.2968167.6 kJ/kg2001000u u v ex ex u u p v v T s s RT RT c T T p p p -=---+-⎛⎫=--- ⎪⎝⎭⎛⎫=-⨯⨯-= ⎪⎝⎭排开环境所作的功为作功能力损失(51.2kJ/kg )5-21 1 1.211.222110.2800611.8 K 1n np T T p --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭()()120.2968800611.8279.3 kJ/kg 1 1.21R T T w n -⨯-===--31110.29688000.237 m /kg 1000RT v p ⨯=== 32220.2968611.80.908 m /kg 200RT v p ⨯=== 22221111ln ln ln ln 11.40.2968611.80.2ln 0.2968ln 0.20 kJ/kg K1.418000.1p T p T p R s c R R T p T p κκ∆=-=--⨯=-=⋅-()()()()()()1212021021120210 10.2968 800611.81000.9080.2373000.21.41 132.5 kJ/kg u u ex ex u u p v v T s s RT T p v v T s κ-=---+-=---+∆-=⨯--⨯-+⨯-= 5-22 1112001013.94 kg 0.287500pV m RT ⨯===⨯ ()()2113.94 1.0056005001400.7 kJ p Q mc T T =-=⨯⨯-=21600ln1.005ln 0.1832 kJ/kg K 500p T s c T ∆==⨯=⋅ 01400.730013.940.1832634.6 kJ q Ex Q T m s =-⋅∆=-⨯⨯= 030013.940.1832766.1 kJ q An T m s =⋅∆=⨯⨯=5-23 ()()12 1.40.287500320180.74 kJ/kg 1 1.41s R T T w κκ-⨯⨯-===--22113200.1lnln 1.005ln 0.287ln 5000.5 0.0134 kJ/kg Kp T p s c R T p ∆=-=⨯-⨯=⋅()()()1212021120 1.0055003203000.0134184.92 kJ/kgh h p ex ex h h T s s c T T T s -=-+-=-+∆=⨯-+⨯=12180.7497.7%184.92s ex h h w ex ex η===-5-24 ⑴21300201167.3%100020T T η'+=-=-='- ⑵013001170%1000t T T η=-=-= ()()110000.70.67327 kJ t L Q ηη=-=⨯-= ⑶()()211100010.673327 kJ Q Q η=-=⨯-=12110211111111 10003270.09 kJ/K9801000300320S Q Q T T T T ⎛⎫⎛⎫∆=-+- ⎪⎪''⎝⎭⎝⎭⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭0iso 3000.0927 kJ L T S =∆=⨯= 符合!。
《热工基础及应用》第3版知识点第一章 热能转换的基本概念本章要求:1.掌握研究热能转换所涉及的基本概念和术语;2.掌握状态参数及可逆过程的体积变化功和热量的计算;3.掌握循环的分类与不同循环的热力学指标。
知识点:1.热力系统:根据研究问题的需要和某种研究目的,人为划定的一定范围内的研究对象称为热力系统,简称热力系或系统。
热力系可以按热力系与外界的物质和能量交换情况进行分类。
2.工质:用来实现能量相互转换的媒介物质称为工质。
3.热力状态:热力系在某瞬时所呈现的宏观物理状态称为热力状态。
对于热力学而言,有意义的是平衡状态。
其实现条件是:0,0,0p T μ∆=∆=∆=。
4. 状态参数和基本状态参数:描述系统状态的宏观物理量称为热力状态参数,简称状态参数。
状态参数可按与系统所含工质多少有关与否分为广延量(尺度量)参数和强度量状态参数;按是否可直接测量可分为基本和非基本状态参数。
5. 准平衡(准静态)过程和可逆过程:准平衡过程是基于对热力过程的描述而提出的。
实现准平衡过程的条件是推动过程进行的不平衡势差要无限小,即0p ∆→,0T ∆→(0μ∆→)。
6、热力循环:为了实现连续的能量转换,就必须实施热力循环,即封闭的热力过程。
热力循环按照不同的方法可以分为:可逆循环和不可逆循环;动力循环(正循环)和制冷(热)循环(逆循环)等。
动力循环的能量利用率的热力指标是热效率:0=t H W Q η;制冷循环能量利用率的热力学指标是制冷系数:L 0=Q W ε。
第二章 热力学第一定律本章要求:1. 深入理解热力学第一定律的实质;2. 熟练掌握热力学第一定律的闭口系统和稳定流动系统的能量方程。
知识点:1. 热力学第一定律:是能量转换与守恒定律在涉及热现象的能量转换过程中的应用。
热力学第一定律揭示了能量在传递和转换过程中数量守恒这一实质。
2. 闭口系统的热力学第一定律表达式,即热力学第一定律基本表达式:Q U W =∆+。
热力学系统的制冷系数
热力学是一门研究能量转换和能量传递规律的科学。
在研究能量传
递中,制冷是一个重要的应用领域。
制冷是利用能量转换的原理,将
热量从低温区域转移到高温区域,从而使低温区域的温度降低,达到
降温的目的。
在热力学中,有一项指标被称为“制冷系数”,它是评价
制冷系统性能的重要参数。
1. 制冷系统简介
制冷系统是由制冷剂、压缩机、蒸发器、冷凝器和节流阀等组成的
一个闭合循环。
其中,蒸发器和冷凝器是热交换器,承担着热量的吸
收和释放任务。
压缩机则通过对制冷剂的压缩工作,将低温制冷剂转
化为高温高压的气体。
节流阀则起到控制制冷剂流量和压力的作用。
2. 制冷系数的定义
在制冷系统中,制冷系数(COP)是衡量系统制冷能力的重要参数。
它定义为制冷效果与能量消耗的比值,通常用功率(W)或制冷效果(Qc)除以能量消耗(W)。
制冷系数可以用于比较不同制冷系统的
性能,越高的制冷系数意味着越有效的制冷能力。
3. COP的计算
COP的计算公式为:
COP = Qc / W
其中,Qc表示制冷效果,W表示能量消耗。
制冷效果可以以制冷
量或制冷功率来表示,而能量消耗可以是电力或其他形式的能量输入。
4. COP的影响因素
制冷系数的大小受多种因素的影响。
其中,压缩机的效率是一个重
要因素。
压缩机的效率越高,同样的能量输入下,制冷量就越大,制
冷系数也就越高。
另外,蒸发器和冷凝器的热交换效果和制冷剂的选
择也会影响制冷系数的大小。
5. 提高COP的方法
为了提高制冷系统的制冷系数,可以采取以下几种方法:
(1)优化制冷系统的设计和构成,提高热交换效率。
(2)选择高效的压缩机,并进行压缩机的优化控制。
(3)选择合适的制冷剂,以获得更好的制冷效果。
(4)改进制冷系统的运行参数,提高能源利用率。
6. COP的应用
制冷系数的大小在实际应用中起着重要的作用,尤其是在商业和工
业领域。
比如,对于冷藏冷冻设备和空调系统,制冷系数的高低直接
关系到其制冷效果和能源消耗情况。
通过增加制冷系统的COP,可以
实现更高效的制冷和节能运行。
总结:
热力学系统的制冷系数是衡量制冷系统性能的重要指标,可以通过制冷效果与能量消耗的比值来计算。
通过优化制冷系统的设计、选择高效的压缩机和制冷剂,并改进系统运行参数,可以提高制冷系数。
在实际应用中,制冷系数的大小直接关系到制冷效果和能源消耗,通过提高COP可以实现更高效的制冷和节能运行。