高 2020 级高三下期第二次学月考试理数试题
- 格式:pdf
- 大小:367.02 KB
- 文档页数:5
2020年深圳市高三年级第二次调研考试数学(理科)2020.6一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题 目要求的。
1.设21(1)iz i +=-则|z|=( )A .12B C .1D2.已知集合{}{}023,22<+-===x x x B y y A x ,则( ) A .A∩B=AB .A ∪B=RC .A ⊆BD .B ⊆A3.设α为平面,m ,n 为两条直线,若m ⊥α,则“m ⊥n ”是”n ⊂α”的 A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.已知双曲线2222:10,0)(y x C a b a b-=>>的两条渐近线互相垂直,则C 的离心率为( )A B .2 C D .35.已知定义在R 上的函数f(x)满足()()2,f x f x +=当01x ≤≤时,13()f x x =,则178f ⎛⎫⎪⎝⎭= A .12 B .2 C.18D .8 6.若x 1,x 2,…,x n 的平均数为a ,方差为b ,则1223,23,23n x x x +++L 的平均数和方差分别为 A .2a ,2bB .2a ,4bC .2a+3,2bD .2a+3,4b7.记等差数列{a n }的前n 项和为S n ,若244,2,S S ==则6S = A .-6B .-4C .-2D .08.函数()()14sin 2xxx f x -=的部分图象大致为9已知椭圆C :22213x y a +=的右焦点为F ,O 为坐标原点,C 上有且只有一个点P 满足|OF|=|FP|,则C 的方程为A .221123x y += B.22183x y += C .22163x y += D.22143x y += 10.下面左图是某晶体的阴阳离子单层排列的平面示意图其阴离子排列如下面右图所示,右图中圆的半径均为1,且相邻的圆都相切,A ,B ,C ,D 是其中四个圆的圆心,则AB CD ⋅=u u u r u u u rA .24B .26C .28D .3211.意大利数学家斐波那契(1175年—1250年)以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,…,该数列从第三项起,每一项都等于前两项之和,即()21,n n n a a a n +++=+∈N 故此数列称为斐波那契数列,又称“兔子数列”,其通项公式为.n n n a ⎡⎤=-⎥⎦(设n是不等式(1211x x x ->+的正整数解,则n 的最小值为A .10B .9C .8D .712.已知直线y ω=与函数()()()sin 01x f x ϕωω=+<<的图象相交,将其中三个相邻交点从左到右依次记为A ,B ,C ,且满足()*.N AC nBC n =∈u u u r u u u r 有下列结论:①n 的值可能为2②当n=3,且|φ|<π时,f(x)的图象可能关于直线x=-φ对称③当φ=6π时,有且仅有一个实数ω,使得(),11f x ππωω⎡⎤-⎢⎥++⎣⎦在上单调递增; ④不等式n ω>1恒成立 其中所有正确结论的编号为 A .③B .①②C .②④D .③④二、填空题:本大题共4小题,每小题5分,共20分. 13.曲线y=xlnx 在点(1,0)处的切线方程为 ▲14.若x ,y 满足约束条件20,0,30,y x y x y -≤⎧⎪-≤⎨⎪+-≥⎩则y z x =的最大值为 ▲15.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足和医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援若将4名医生志愿者分配到两家医院(每人去一家医院,每家医院至少去1人),则共有 ▲ 种分配方案16.已知正方形ABCD 边长为3,点E ,F 分别在边AB ,AD 上运动(E 不与A ,B 重合,F 不与A ,D 重合),将△AEF 以EF 为折痕折起,当A ,E ,F 位置变化时,所得五棱锥A-EBCDF 体积的最大值为 ▲ 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答。
2020届陕西省西安市高三下学期第二次质量检测数学(理)试题一、单选题1.已知R 是实数集,集合{}|2A x Z x =∈<,{}|210B x x =-≥,则()R A C B =( ) A .1,12⎡⎤⎢⎥⎣⎦B .{}1C .{}1,0-D .1,2⎛⎫-∞ ⎪⎝⎭【答案】C【解析】先求得的集合{}1,0,1A =-,1|2B x x ⎧⎫=≥⎨⎬⎩⎭,进而得到R C B ,再根据集合的交集的运算,即可求解. 【详解】由题意,集合{}{}|21,0,1A x Z x =∈<=-,{}1|210|2B x x x x ⎧⎫=-≥=≥⎨⎬⎩⎭, 所以1|2R C B x x ⎧⎫=<⎨⎬⎩⎭,所以(){}1,0R A C B =-.故选:C . 【点睛】本题主要考查了集合的表示方法,以及集合的混合运算,其中解答中熟记集合运算的概念,准确运算是解答的关键,着重考查了推理与运算能力. 2.已知i 是虚数单位,复数31iz i+=+,则复数z 的共扼复数为( ) A .12i + B .12i -C .2i +D .2i -【答案】C【解析】由复数的除法运算求出z 后,根据共轭复数概念得结论. 【详解】 ∵()()()()3134221112i i i iz i i i i +-+-====-++-,∴z 的共轭复数为2z i =+. 故选:C . 【点睛】本题考查复数的除法运算和共轭复数的概念,属于基础题.3.已知向量()5,a m =,()2,2b =-,若()a b b -⊥,则实数m = ( ) A .-1 B .1C .2D .-2【答案】B【解析】根据向量坐标的线性运算得到a b -,再根据向量垂直的坐标表示,得到关于m 的方程,解出m 的值,得到答案. 【详解】因为向量()5,a m =,()2,2b =- 所以()3,2a b m +=+,因为()a b b -⊥, 所以()0a b b -⋅=所以()6220m -+= 解得1m =. 故选:B. 【点睛】本题考查向量线性运算的坐标表示,根据向量垂直关系求参数的值,属于简单题.4.62x ⎫⎪⎭的展开式中常数项为( ) A .60 B .60-C .192-D .192【答案】A【解析】利用二项式定理的通项公式,通过赋值法则问题得解. 【详解】二项式62x ⎫⎪⎭的展开式的通项公式为()33162r rr x r T C x -+=⋅-⋅,令3302r -=,求得2r .可得展开式中常数项为()226260C -=.故选:A . 【点睛】本题考查利用二项式定理求制定项,属基础题.5.某公司生产A ,B ,C 三种不同型号的轿车,产量之比依次为2:3:4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n 的样本,若样本中A 种型号的轿车比B 种型号的轿车少8辆,则n =( ) A .96 B .72C .48D .36【答案】B【解析】根据分层比例列式求解. 【详解】 由题意得23872.99n n n -=-∴=选B. 【点睛】本题考查分层抽样,考查基本分析求解能力,属基础题.6.已知a ,b 为非零实数,且0a b <<,则下列命题成立的是( ) A .22a b < B .2211ab a b < C .22a b ab < D .b a a b<【答案】B【解析】举出反例,利用特殊值依次排除选项A 、D,由不等式的性质可排除C 【详解】对于选项A,令1a =-,1b =时,221a b ==,故A 不正确; 对于选项C,220a b ab >>,故C 不正确;对于选项D,令1a =-,1b =时,1b aa b =-=,故D 不正确; 对于选项B,220a b ab >>,则22110ab a b<<故选:B 【点睛】本题考查不等式的性质的应用,考查特殊值法处理选择题7.如图所示,是某几何体的正视图(主视图),侧视图(左视图)和俯视图,其中俯视图为等腰直角三角形,则该几何体体积为( )A .620π+B .916π+C .918π+D .2063π+【答案】C【解析】根据三视图可得该组合体下半部为一半球体,上半部为一三棱锥,根据三视图中的数据,利用椎体和球体的体积公式计算可得答案. 【详解】由三视图可知:该组合体下半部为一半球体,上半部为一三棱锥, 该三棱锥中一条侧棱与底面垂直,底面三角形为等腰直角三角形, 其中腰长为323,而球体的半径为3, 所以该组合体的体积为:3 14113332329182332V V V ππ=+=⨯⨯+⨯⨯⨯=+半球体三棱锥.故选:C 【点睛】本题考查了由三视图还原直观图,考查了椎体和球体的体积公式,属于基础题. 8.点P 是抛物线24y x =上一动点,则点P 到点()0,1A -的距离与点P 到直线2x =-的距离和的最小值是 A .5B 2 C 21 D 21【答案】D【解析】根据抛物线定义,将问题转化为求PA PF +的最小值加1,数形结合,则问题得解. 【详解】由24y x =得焦点为()1,0F ,准线1x =-.过P 作PN 垂直直线1x =-于N ,根据抛物线的定义,抛物线上一点到准线的距离等于到焦点的距离.所以有PN PF =,连接F 、A ,有FA PA PF ≤+, 所以P 为AF 与抛物线的交点时,点P 到点()0,1A -的距离与点P 到直线1x =-的距离之和的最小值为2FA = 所以点P 到点()0,1A -的距离与P 到直线2x =-21. 故选:D . 【点睛】本题考查抛物线上一点到定直线以及定点之间的距离之和的最小值,属基础题. 9.将函数()sin 23πf x x ⎛⎫=-⎪⎝⎭的图象向左平移()0a a >个单位得到函数()cos2g x x =的图象,则a 的最小值为( )A .3π B .512π C .23π D .12π【答案】B【解析】先写出平移的函数表达式,利用诱导公式得出a 所有取值,最小值即可确定. 【详解】由题意知,()sin 23πf x x ⎛⎫=-⎪⎝⎭的图象向左平移()0a a >个单位得到函数()()sin 2sin 2233h x x a x a ππ⎡⎤⎛⎫=+-=+- ⎪⎢⎥⎣⎦⎝⎭的图象,所以()22Z 32a k k πππ-=+∈,当0k =时,a 取最小值512π. 故选:B .本题考查三角函数的图象平移变换,考查诱导公式,解题关键是确定由sin()x ϕ+变成cos x 时ϕ的值.10.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( ) A .,1a e b ==- B .,1a e b == C .1,1a e b -== D .1,1a e b -==-【答案】D【解析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b . 【详解】详解:ln 1,xy ae x '=++1|12x k y ae ='==+=,1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D . 【点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系. 11.已知()f x 是定义在R 上的偶函数,()1f x -是定义在R 上的奇函数,则()()20182020f f +的值为( )A .1-B .1C .0D .无法计算【答案】C【解析】先由f (x )是定义在R 上的偶函数得f (﹣x )=f (x ),然后利用()1f x -与f (x )的关系,以及()1f x -的奇偶性,得f (x +1)+f (x ﹣1)=0,从而得到要求的数值. 【详解】因为()1f x -是定义在R 上的奇函数,()()11f x f x --=--.因为()f x 是定义在R 上的偶函数,所以()()f x f x -=,可得()()()111f x f x f x +=-+=--⎡⎤⎣⎦,所以()()110f x f x ++-=,因此()()()()2018202020191+2019+1=0f f f f +=-.故选:C .本题考查了函数奇偶性的性质,以及整体代换思想,是个基础题.12.设2F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,O 为坐标原点,过2F 的直线交双曲线的右支于点P ,N ,直线PO 交双曲线C 于另一点M ,若223MF PF =,且260MF N ∠=︒,则双曲线C 的渐近线的斜率为( ) A .27±B .233±C .72±D .3±【答案】D【解析】设双曲线的左焦点为1F ,由双曲线的对称性可知四边形21MF PF 为平行四边形,所以12||||MF PF =,1//MF PN ,由双曲线的定义知,21||||2MF MF a -=,于是2||3MF a =,1||MF a =,在△12MF F 中,由余弦定理可得2247c a =,然后利用22222b c a a a -=,求出b a的值即可得解. 【详解】解:设双曲线的左焦点为1F ,由双曲线的对称性可知四边形21MF PF 为平行四边形.∴12MF PF =,1//MF PN . 设2PF n =,则22MF m =,即1MF a =,23MF a =. ∵2122a MF MF m =-=,即1MF a =,23MF a =. ∵260MF N ∠=︒,∴1260F MF ∠=︒. 又122F F c =,在12MF F △中,由余弦定理可得:2224923cos60c a a a a =+-⋅⋅⋅︒,即2247c a =,∴2274c a =,2222314b c a a =-=.∴双曲线C 的渐近线的斜率为. 故选:D . 【点睛】本题考查双曲线的定义与性质,考查学生的数形结合思想和运算能力,属于中档题.二、填空题13.在区间[]1,5内任取一个实数,则此数大于2的概率为______. 【答案】34【解析】区间[]1,5的长度为4,此区间内大于2的数所在区间长度为3,由几何概型概率公式可得概率. 【详解】根据几何概型可知,所求概率为:523514p -==-. 故答案为:34. 【点睛】本题考查求几何概型,属于基础题.14.函数()25log 23y x x =+-的单调增区间是______. 【答案】()1,+∞【解析】求得函数()25log 23y x x =+-的定义域为-∞-+∞(,3)(1,),令()223g x x x =+-,利用二次函数的性质,求得函数的单调区间,结合据复合函数的单调性的判定方法,即可求解. 【详解】由题意,函数()25log 23y x x =+-满足2230x x +->,解得3x <-或1x >, 即函数()25log 23y x x =+-的定义域为-∞-+∞(,3)(1,),令()223g x x x =+-,则函数()g x 在(,3)-∞-单调递减,在区间(1,)+∞单调递增, 再根据复合函数的单调性,可得函数()25log 23y x x =+-的单调递增区间为(1,)+∞.故答案为:(1,)+∞. 【点睛】本题主要考查了复合函数的单调区间的求解,其中解答中熟记对数函数的图象与性质,以及复合函数的单调性的判定方法,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.15.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c .ABC ∆的面积()2214S a c =+,若2sin sin B A C =,则角B 的值为______.【答案】512π【解析】根据面积公式得到和余弦定理得到22sin 2cos ac B b ac B =+,结合2sin B A =sin C 得到1sin 42B π⎛⎫-= ⎪⎝⎭,化简得到答案.【详解】 因为1sin 2S ac B =,又()2214S a c =+,所以()2211sin 42a c ac B += 所以222sin a c ac B +=,由余弦定理得2222cos a cb ac B +=+ 所以22sin 2cos ac B b ac B =+由2sin sin B A C =结合正弦定理,得2b =所以2sin 2cos ac B ac B =+,)sin cos 1B B -=,所以1sin 42B π⎛⎫-= ⎪⎝⎭, 因为()0,B π∈,所以得46B ππ-=,或546B ππ-=(舍去),所以512B π∠=. 故答案为:512π【点睛】本题考查了面积公式,正弦定理,余弦定理,意在考查学生对于三角公式的综合应用能力.16.在三棱锥D ABC -中,已知AD ⊥平面ABC ,且ABC 为正三角形,AD AB ==点O 为三棱锥D ABC -的外接球的球心,则点O 到棱DB 的距离为______.【答案】12【解析】设'O 为ABC 的中心,M 为AD 中点,连结OM ,'OO ,AO ,求得72OA =,设平面ODA 截得外接球是O ,D ,A ,F 是O 表面上的点,结合圆的性质和球的性质,即可求解. 【详解】由题意,设'O 为ABC 的中心,M 为AD 中点, 连结OM ,'OO ,AO ,则'1AO =,3AM =,可得7OA =,即球的半径为7,作平面ODA 交BC 于E ,交BC 于F , 设平面ODA 截得外接球的截面是O ,D ,A ,F 是O 表面上的点,又∵DA ⊥平面ABC ,所以90DAF ∠=︒,所以DF 是O 的直径,也是球O 的直径,7DF =,所以DB BF ⊥.因为DA AB ⊥,3DA =,3AB =,所以6BD =,所以1BF =,做OH DB ⊥,所以//OH BF ,又由DO OF =,所以OH 是DBF 的中位线,所以12OH BF =,故12OH =. 故答案为:12【点睛】本题主要考查了组合体的结构特征,以及球的性质的应用,其中解答中熟练应用空间几何体的几何结构特征和球的性质是解答的关键,着重考查了数形结合思想,以及推理与运算能力.三、解答题17.在正四棱柱1111ABCD A B C D -中,E ,F 分别是AB ,1BB 的中点.(1)求证://EF 平面11A DC ;(2)若123AA =2AB =,求二面角11E A D C --的正弦值. 【答案】(1)证明见解析;(2)32114. 【解析】(1)证明四边形11ADC B 为平行四边形,可得11//AB DC ,进而得到1//EF DC ,由此得证;(2)建立空间直角坐标系,求出平面11A DC 及平面1EA D 的法向量,利用向量的夹角公式即可得解. 【详解】(1)证明:连接1AB ,∵E ,F 分别为AB ,1BB 的中点. ∴1//EF AB .∵正四棱柱柱1111ABCD A B C D -中,11AD B C =,11//AD B C . ∴四边形11ADC B 是平行四边形, ∴11//AB DC ,∴1//EF DC .∵EF ⊄平面11A DC ,1DC ⊂平面11A DC , ∴//EF 平面11A DC .(2)在正四棱柱中,分别以DA ,DC ,1DD 为x ,y ,z 轴建立如图所示空间直角坐标系,则()0,0,0D ,()2,0,0A ,()2,2,0B ,()2,1,0E ,(12,0,23A ,(10,2,23C .∴()112,2,0AC =-,(13DA =,(10,1,23EA =-, 设平面11A DC 的法向量(),,m x y z =,则22230x y x z -+=+=. 取3x =,则(3,3,3m =-. 同样可求出平面1A DE 的一个法向量()3,23,1n =--.∴237cos 142116m n m n m n⋅<⋅>===-⋅.设二面角11E A D C --为θ,则7cos θ=, 由22cos sin 1,0π,θθθ+=≤≤,解得321sin 14θ=∴二面角11E A D C --的正弦值为32114. 【点睛】本题考查线面平行的判定以及利用空间向量求解二面角的问题,考查逻辑推理能力及运算求解能力,属于中档题.18.某高校自主招生考试中,所有去面试的考生全部参加了“语言表达能力”和“竞争与团队意识”两个科目的测试,成绩分别为A 、B 、C 、D 、E 五个等级,某考场考生的两科测试成绩数据统计如图,其中“语言表达能力”成绩等级为B 的考生有10人.(1)求该考场考生中“竞争与团队意识”科目成绩等级为A 的人数;(2)已知等级A 、B 、C 、D 、E 分别对应5分,4分,3分,2分,1分.求该考场学生“语言表达能力”科目的平均分. 【答案】(1)3;(2)2.9.【解析】(1)由“语言表达能力”科目中成绩为B 的考生有10人,能求出该考场有40人,由此能求出该考场中“竞争与团队意识”科目成绩等级为A 的人数.(2)求出“语言表达能力”科目中成绩等级为D 的频率为0.100,由此能求出该考查考生“语言表达能力”科目的平均分. 【详解】(1)因为“语言表达能力”科目中成绩为B 的考生有10人,所以该考场有100.25040÷=(人).所以该考场中“竞争与团队意识”科目成绩等级为A 的人数为()4010.3750.3750.1500.025400.0753⨯----=⨯=.(2)由题意可得:“语言表达能力”科目中成绩等级为D 的频率为10.3750.2500.2000.0750.100----=.该考查考生“语言表达能力”科目的平均分为()()()()11400.2002400.1003400.3754400.25040⎡⨯⨯⨯+⨯⨯+⨯⨯+⨯⎣()5400.075 2.9⎤+⨯⨯=⎦.【点睛】本题考查频数、平均数的求法,考查条形统计图等基础知识,考查运算求解能力,属于基础题.19.设n S 是数列{}n a 的前n 项和,()*22N n n S a n =-∈.(1)求数列{}n a 的通项公式; (2)记n nnb a =,数列{}n b 的前n 项和为n T ,求n T 的取值范围.【答案】(1)2nn a =;(2)122n T ≤<. 【解析】(1)本小题运用借S n 求a n 直接求解即可;(2)本小题运用错位相减法求出 T n ,再根据T n 的增减性求解即可. 【详解】(1)当1n =时,1122S a =-,得12a =; 当2n ≥时,22n n S a =-①,1122n n S a --=-②,①-②得,12nn a a -=; 所以数列{}n a 是以12a =为首项,以2为公比的等比数列,即2nn a =;(2)由题,得122nn n n b n ⎛⎫==⋅ ⎪⎝⎭,因为12321n n n n T b b b b b b --=+++⋅⋅⋅+++, 所以()()23211111112321222222n n nn T n n n --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯+⋅⋅⋅+-+-+ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭①,()()23111111111123212222222n nn n T n n n -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯+⋅⋅⋅+-+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭②,①-②,得231111111112222222n nn n T n -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++- ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以,()1222n n T n ⎛⎫=-+⨯ ⎪⎝⎭,显然,2n T <,因为1110n n n n T T a +++-=>, 所以数列{}n T 是递增数列,且131222T =-=, 因此122n T ≤< 【点睛】本题考查借S n 求a n ,错位相减法,是中档题. 20.已知函数()()22ln R f x x a x ax a =--∈.(1)若()0f x ≥恒成立,求a 的取值范围;(2)记()()g x f x ax =+,若()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,求a 的取值范围.【答案】(1)122,1e ⎡⎤-⎢⎥⎣⎦;(2),e e ⎡⎤-⋃⎣⎦.【解析】(1)对参数a 进行分类讨论,在不同情况下求得()f x 的最小值,根据()0min f x ≥,即可求得参数的取值范围;(2)分离参数,将问题转化为对函数()2ln h x x x=单调性和值域的研究,则问题得解.【详解】(1)()()()222x a x a a f x x a x x-+'=--=, 令()0f x '=,解得1x a =,22ax =-; 当0a =时,显然成立;当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增. 则()()2min ln 0f x f a a a ==-≥,解得01a <≤;当0a <时,()f x 在0,2a ⎛⎫-⎪⎝⎭上单调递减,在,2a ⎛⎫-+∞ ⎪⎝⎭上单调递增, 则()222minln 02422a a a a f x f a ⎛⎫⎛⎫=-=+--≥ ⎪ ⎪⎝⎭⎝⎭,解得1220e a -≤<;综上,实数a 的取值范围为122,1e ⎡⎤-⎢⎥⎣⎦; (2)显然1x =不是()g x 的零点,由()0g x =得22ln x a x=.令()()2*ln x h x x =.则()()()22ln 1ln x x h x x -'=,令()0h x '=,解得12x e =;()0h x '>,解得12e x e <<;()0h x '<,解得11x e<<或121x e <<.当1,1x e ⎡⎫∈⎪⎢⎣⎭和(x ∈时,()h x单调递减,当)x e ∈时,()h x 单调递增,又1,1x e ⎡⎫∈⎪⎢⎣⎭时,()()0*h x <不成立.∴只需()122222a h e e a h e e ⎧⎛⎫>=⎪ ⎪⎨⎝⎭⎪≤=⎩,∴实数a的取值范围为,e e ⎡⎤-⋃⎣⎦.【点睛】本题考查利用导数研究恒成立问题以及零点问题,分离参数以及分类讨论是解决问题的关键.21.已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为1F ,2F,若椭圆经过点)1P-,且12PF F △的面积为2.(1)求椭圆C 的标准方程;(2)设斜率为1的直线l 与圆22:O x y b +=交于A ,B 两点,与椭圆C 交于C ,D 两点,且()R CD AB λλ=∈,当λ取得最小值时,求直线l 的方程并求此时λ的值.【答案】(1)22184x y +=;(2)3,y x=. 【解析】(1)根据三角形面积可2c =,将P 点代入椭圆得到22611a b+=,联立即可求得a ,b ;(2)设直线l 的方程为y x m =+,表示出||AB =,联立直线与椭圆,根据根的判别式得到m的取值范围,结合条件表示出λm 取值范围求得其范围. 【详解】解:(1)由12PF F △的面积可得12122c ⨯⨯=.即2c =,∴224a b -=.① 又椭圆C过点)1P,∴22611a b+=.②由①②解得a =2b =.故椭圆C 的标准方程为22184x y +=.(2)由题知圆221:2O x y +=,设直线l 的方程为y x m =+,则原点到直线l 的距离d =,由弦长公式可得AB ==将y x m =+代入椭圆方程22184x y+=,得2234280x mx m ++-=,由判别式()221612280m m ∆=-->,解得m -< 由直线和圆相交的条件可得d r <<,也即22m -<<,综上可得m 的取值范围是()2,2-. 设()11,C x y ,()22,D x y ,则1243m x x +=-,212283m x x -=,由弦长公式,得CD === 由CD AB λ=,得CD AB λ=== ∵22m -<<,∴2044m <-≤,则当0m =时,λ,此时直线l 的方程为y x =. 【点睛】本题考查椭圆标准方程的求法,考查直线与椭圆的综合,根的判别式,弦长公式,考查学生运算能力,属于中档题.22.在直角坐标系中,直线l的参数方程为,2y 12x ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数).以原点为极点,x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,曲线C 的极坐标方程为2cos a ρθ=,0a >.(1)求直线l 的极坐标方程和曲线C 的直角坐标方程;(2)已知直线l 与曲线C 交于P ,Q .设()0,1M -,且24PQ MP MQ =⋅,求实数a 的值.【答案】(1)cos sin 1ρθρθ-=;()2220x y ax a +=>;(2)1a =.【解析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间的进行转换.(2)利用一元二次方程根和系数的关系式的应用求出结果. 【详解】解:(1)由直线l的参数方程21x t y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数),消去t 得1x y -=,所以直线的极坐标方程为cos sin 1ρθρθ-=, 由()2cos 0a a ρθ=>,得()22cos 0a a ρρθ=>,由cos x ρθ=,sin y ρθ=代入,得曲线C 的直角坐标方程为()2220x y ax a +=>,(2)显然M 在直线l 上,将直线l 的参数方程与C 的直角坐标方程联立得)2110t a t ++=.则)2140a ⎤∆=+->⎦且)121t t a +=+,121t t =,设点P ,Q 分别对应参数1t ,2t 恰为上述方程的根. 则1MP t =,2MQ t =,12PQ t t =-, 由题设得212124t t t t -=,则有()212128t t t t +=,得1a =或3a =-. 因为0a >,且1a =满足>0∆,所以1a =. 【点睛】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题. 23.设函数()213f x x x =--+.(1)解不等式()0f x >;(2)若()33f x x a ++≥对一切实数x 均成立,求实数a 的取值范围. 【答案】(1)2{|3x x <-或4}x > ;(2)(,7]-∞. 【解析】(1)方法一:根据绝对值不等式的意义解不等式;方法二:将不等式2130x x --+>变形为213x x ->+,两端平方整理成关于x 的一元二次不等式,求解即可;(2)利用绝对值不等式()()33212321267f x x x x x x ++=-++≥--+=,可得7a ≤. 【详解】(1)解法一:当12x ≥时,()()21340f x x x x =--+=->,解得4x >; 当132x -≤<时,()()213320f x x x x =-+-+=-->,解得233x -≤<-;当3x <-时,()()21340f x x x x =-+++=-+>,解得3x <-, 综上,原不等式的解集为2{|3x x <-或4}x > ; 解法二:()0213f x x x >⇔->+,两边平方整理得,231080x x -->,解得23x <-或4x >,所以,原不等式的解集为2{|3x x <-或4}x >;(2)()()33212321267f x x x x x x ++=-++≥--+=,当132x -≤≤时等号成立,所以7a ≤ .故实数a 的取值范围为(],7-∞. 【点睛】本题主要考查绝对值不等式的解法以及利用绝对值不等式求参数的取值范围,属于高考常考题型.。
绝密★启用前广东省佛山市普通高中2020届高三毕业班下学期教学质量监测(二)(二模)数学(理)试题(解析版)2020年5月本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目旨定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|2A x x x =>,{}|13B x x =≤≤,则A B =( ) A. {}|01x x ≤< B. {0x x <或}1x ≥ C. {}|23x x <≤ D. {1x x ≤或}3x >【答案】B【解析】【分析】 解一元二次不等式得到集合A ,根据并集的概念即可得出结果.【详解】∵{}{222A x x x x x ==>或}0x <,{}|13B x x =≤≤, ∴A B ={0x x <或}1x ≥,故选:B .【点睛】本题主要考查了一元二次不等式的解法,集合间并集的运算,属于基础题.2.复数z 满足()()21i 3i z ++=+,则z =( )A. 1 D. 2 【答案】A【解析】【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【详解】因为复数z 满足()()213z i i ++=+, ∴()()()()313422221112i i i i z i i i i +-+-=-=-=-=-++-, 则1z =,故选:A .【点睛】本题主要考查了复数代数形式的乘除运算,考查了复数模的求法,属于基础题.3.(101-的二项展开式中,x 的系数与4x 的系数之差为( )A. 220-B. 90-C. 90D. 0 【答案】D【解析】【分析】由题意利用二项展开式的通项公式,求出x 的系数与4x 的系数,再求其差即可.【详解】∵(101-的二项展开式中,通项公式为()21101r r rr T C x +=⋅-,。
2020届河南省普通高中高三第二次质量检测数学(理)试卷★祝考试顺利★(解析版)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上相应的位置.2.全部答案在答题卡完成,答在本试题上无效.3.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案用0.5毫米及以上黑色笔迹签字笔写在答题卡上.4.考试结束后,将本试题和答题卡一并交回.参考公式:锥体的体积公式:13V Sh =(其中S 为锥体的底面积,h 为锥体的高). 第Ⅰ卷(共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{}2|log 1A x x =<,{}2|0B x x x =->,则A B =( )A. {|12x x <<}B. {|2x x <}C. {|12x x ≤≤}D. {|14x x ≤<}【答案】A【解析】 求出不等式2log 1x <和20x x ->的解,然后根据集合的交集运算,即可得到本题答案.【详解】由2log 1x <,得02x <<,故{|02}A x x =<<,由20x x ->,得1x >或0x <,故{|1B x x =>或0}x <,所以,{|12}A B x x =<<.故选:A2.已知复数z 满足21i z i-=+,则z =( )A. 132i +B. 132i -C. 32i +D. 32i - 【答案】B【解析】利用复数的除法运算,即可得答案.【详解】∵2(2)(1)131(1)(1)2i i i i z i i i ----===++-. 故选:B.3.由我国引领的5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G 经济产出所做的预测.结合下图,下列说法正确的是( )A. 5G 的发展带动今后几年的总经济产出逐年增加B. 设备制造商的经济产出前期增长较快,后期放缓C. 设备制造商在各年的总经济产出中一直处于领先地位D. 信息服务商与运营商的经济产出的差距有逐步拉大的趋势【答案】ABD【解析】本题结合图形即可得出结果.【详解】由图可知设备制造商在各年的总经济产出中在前期处于领先地位,而后期是信息服务商处于领先地位,故C 项表达错误.故选:ABD .4.411(12)x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A. 10B. 24C. 32D. 56。
2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.45.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.86.设x,y 满足约束条件,则目标函数z=的最小值为()A.2 B.1 C.D.﹣27.设f(x)定义如下面数表,{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),则x2022的值为()x 1 234 5f(x)4 135 2A.4 B.1 C.3 D.28.如图,长沙河西先导区某广场要划定一矩形区域ABCD,并在该区域内开拓出三块外形大小相同的矩形绿化区,这三块绿化区四周和绿化区之间设有1米宽的走道.已知三块绿化区的总面积为800平方米,则该矩形区域ABCD占地面积的最小值为()平方米.A.900 B.920 C.948 D.9689.已知函数,若存在x1<x2,使得f(x1)=f(x2),则x1•f(x2)的取值范围为()A.B.C.D.10.设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为()A.12 B.1 6 C.18 D.20二.填空题:本大题共1小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第11、12、13题中任选两题作答,假如全做,则按前两题给分)【几何证明选讲】11.如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,已知⊙O的半径为3,PA=2,则OE=.【极坐标系与参数方程选讲】12.已知曲线C的参数方程为(θ为参数),直线l的极坐标方程为,它们的交点在平面直角坐标系中的坐标为.【不等式选讲】1011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B=.(二)必做题(14~16题)14.设(其中e为自然对数的底数),则的值为.15.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是.16.已知数列{a n}的前n项和S n=(﹣1)n •n,若对任意正整数n,(a n+1﹣p)(a n﹣p )<0恒成立,则实数P 的取值范围是.三.解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.17.设函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)当时,求函数f(x)的最大值和最小值.18.设数列{a n}的前n项和为S n,已知对任意正整数n,都有S n+2=2a n成立.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求证:T n<3.19.如图所示,在平面四边形ABCD中,,与的夹角为,与的夹角为.(1)求△CDE的面积S;(2)求.20.已知函数f(x )=lnx﹣ax+﹣1(a∈R)(1)当a=﹣1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤时,争辩f(x)的单调性.21.若数列{a n}(n∈N*)满足:①a n≥0;②a n﹣2a n+1+a n+2≥0;③a1+a2+…+a n≤1,则称数列{a n}为“和谐”数列.(1)已知数列{a n},(n∈N*),推断{a n}是否为“和谐”数列,说明理由;(2)若数列{a n}为“和谐”数列,证明:.(n∈N*)22.已知函数f(x)=(1)当x>0时,证明:f(x)>;(2)当x>﹣1且x≠0时,不等式f(x)<恒成立,求实数k的值.2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)参考答案与试题解析一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}考点:交集及其运算.专题:集合.分析:依据集合的基本运算进行求解即可.解答:解:∵A={﹣2,﹣1,0,1,2,3},集合,∴A∩B={﹣1,0,1},故选:B点评:本题主要考查集合的基本运算,比较基础.2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:规律型.分析:推断出“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则能推出A∩B≠∅”确定成立,利用充要条件的有关定义得到结论.解答:解:若“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则有A∩B=A≠∅,所以A∩B≠∅”确定成立,所以A∩B≠∅是A⊆B的必要不充分条件,故选B.点评:本题考查推断一个条件是另一个的什么条件,应当先化简各个条件,若条件是数集的形式,常转化为推断集合间的包含关系.3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.考点:同角三角函数基本关系的运用.专题:计算题.分析:先依据诱导公式化简已知条件,得到sinα的值,然后由α的范围,利用同角三角函数间的基本关系求出cosα的值,把所求的式子利用诱导公式化简后,再依据同角三角函数间的基本关系把切化弦后,将sinα和cosα的值代入即可求出值.解答:解:由,又,得,则.故选B点评:此题考查同学机敏运用诱导公式及同角三角函数间的基本关系化简求值,是一道中档题.同学在求cosα的值时应留意α的范围.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.4考点:简洁空间图形的三视图.专题:计算题;空间位置关系与距离.分析:三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中做出底边上的高的长度,得到结果.解答:解:由题意知三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是,∴侧视图的面积是2故选:A.点评:本题考查简洁的空间图形三视图,考查三视图的面积的计算,考查通过原图观看三视图的大小,比较基础.5.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.8考点:平面对量数量积的运算.。
绝密★启用前安徽省马鞍山市普通高中2020届高三毕业班下学期第二次教学质量检测(二模)数学(理)试题2020年5月本试卷4页,满分150分。
考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号和座位号填在答题卡上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔将答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共12个题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知{|21}x A x =>,2{|20}B x x x =+-≤,则A B =UA .{|2}x x >-B .{|2}x x ≥-C .{|01}x x <≤D .{|01}x x ≤≤2.已知复数12z =-,则复数2z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.已知函数()f x 与它的导函数()f x '的定义域均为R ,则下列命题中,正确的是A .若0x 是()f x 的极值点,则()00f x '=B .若()f x 是偶函数,则()f x '一定是偶函数C .若()22log f x x =,则()14f '=D .若()f x 的图象在区间(),a b 连续不断,则()f x 在(),a b 上一定有最大值4.为抗战新冠病毒,社会各界积极捐赠医疗物资.爱心人士向某市捐赠了6箱相同规格的医用外科口罩,现需将这6箱口罩分配给4家医院,每家医院至少1箱,则不同的分法共有 A .10种 B .40种C .80种D .240种5.已知非零向量a r ,b r满足||||a b a b a -=+=r r r r r,则a r 与b r的夹角为A .6πB .3πC .23πD .56π6.执行如图所示的程序框图,输出的结果为 A .4B .5C .6D .77.关于函数21()cos cos 2f x x x x =-有下述四个结论: ①()f x 在区间[,]42ππ上是减函数;②()f x 的图象关于直线3x π=-对称;③()f x 的图象关于点()3,0π对称;④ ()f x 在区间[,]4ππ上的值域为[-.其中所有正确结论的个数是A .1B .2C .3D .48.已知ABC △外接圆面积为π,1cos 2A =-,则ABC △周长的最大值为A.2B.1+C .3D.9.已知F 为椭圆22:12516x y C +=的左焦点,O 为坐标原点,点P 在椭圆C 上且位于x 轴上方,点(3,4)A -,若直线OA 平分线段PF ,则PAF ∠的大小为第6题图。
武汉中学2020年高三第二次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)注意事项1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚,必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草纸上答题无效.第Ⅰ卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A. {|0}A B x x =< B. A B R = C. {|1}AB x x =>D. AB =∅【答案】A 【解析】∵集合{|31}xB x =< ∴{}|0B x x =< ∵集合{|1}A x x =<∴{}|0A B x x ⋂=<,{}|1A B x x ⋃=< 故选A2.已知函数1()3()3x xf x =-,则()f xA. 是奇函数,且在R 上是增函数B. 是偶函数,且在R 上是增函数C. 是奇函数,且在R 上是减函数D. 是偶函数,且在R 上是减函数【答案】A【解析】分析:讨论函数()133xx f x ⎛⎫=- ⎪⎝⎭的性质,可得答案. 详解:函数()133xxf x ⎛⎫=- ⎪⎝⎭的定义域为R ,且()()111333,333xxx xxx f x f x --⎡⎤⎛⎫⎛⎫⎛⎫-=-=-+=--=-⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦即函数()f x 是奇函数,又1y 3,3xxy ⎛⎫==- ⎪⎝⎭在R 都是单调递增函数,故函数()f x 在R 上是增函数.故选A.点睛:本题考查函数的奇偶性单调性,属基础题.3.z 是z 的共轭复数,若()2,2(z z z z i i +=-=为虚数单位) ,则z =( ) A. 1i + B. 1i --C. 1i -+D. 1i -【答案】D 【解析】【详解】试题分析:设,,,z a bi z a bi a b R =+=-∈,依题意有22,22a b =-=, 故1,1,1a b z i ==-=-. 考点:复数概念及运算.【易错点晴】在复数四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.4.已知当[0,1]x ∈ 时,函数2(1)y mx =- 的图象与y m = 的图象有且只有一个交点,则正实数m 的取值范围是 A. (0,1])⋃+∞B. (0,1][3,)⋃+∞C. )⋃+∞D. [3,)⋃+∞【答案】B 【解析】 当01m <≤时,11m≥ ,2(1)y mx =- 单调递减,且22(1)[(1),1]y mx m =-∈-,y m =单调递增,且[,1]y m m m =+∈+ ,此时有且仅有一个交点;当1m 时,101m<< ,2(1)y mx =-在1[,1]m 上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥ 选B.【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.5.若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )A. sin y x =B. ln y x =C. xy e =D. 3y x =【答案】A 【解析】 【分析】若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案.【详解】解:函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直, 则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1, 当y =sin x 时,y ′=cos x ,满足条件; 当y =lnx 时,y ′1x=>0恒成立,不满足条件; 当y =e x 时,y ′=e x >0恒成立,不满足条件; 当y =x 3时,y ′=3x 2>0恒成立,不满足条件; 故选A .考点:导数及其性质.6.若3cos()45πα-=,则sin 2α=( ) A. 725 B. 15C. 15-D. 725-【答案】D 【解析】试题分析:2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⨯-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.7.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C. 把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D. 把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x+π12)=cos(2x+π6)=sin(2x+2π3)的图象,即曲线C2,故选D.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x而言. 函数sin()()y A x x Rωϕ=+∈是奇函数π()k k Zϕ⇔=∈;函数sin()()y A x x Rωϕ=+∈是偶函数ππ+()2k k Zϕ⇔=∈;函数cos()()y A x x Rωϕ=+∈是奇函数ππ+()2k k Zϕ⇔=∈;函数cos()()y A x x Rωϕ=+∈是偶函数π()k k Zϕ⇔=∈.8.设x,y满足约束条件2330233030x yx yy+-≤⎧⎪-+≥⎨⎪+≥⎩则z=2x+y的最小值是()A. -15B. -9C. 1D. 9【答案】A【解析】【分析】作出不等式组表示的可行域,平移直线z=2x+y,当直线经过B(-6,-3)时,取得最小值.【详解】作出不等式组表示的可行域,结合目标函数的几何意义得函数在点B(-6,-3)处取得最小值z min=-12-3=-15.故选:A【点睛】此题考查二元一次不等式组表示平面区域,解决线性规划问题,通过平移目标函数表示的直线求得最值.9.已知F为抛物线2:4C y x=的焦点,过F作两条互相垂直的直线12,l l,直线1l与C交于A B 、两点,直线2l 与C 交于D E 、两点,则|||||AB DE +的最小值为( )A. 16B. 14C. 12D. 10【答案】A 【解析】 【分析】根据12l l ⊥,要使|||||AB DE +最小,则A 与D ,B 与E 关于x 轴对称,即直线2l 的斜率为1时,取得最小值.【详解】解法一:如图所示因为12l l ⊥,直线1l 与C 交于A B 、两点,直线2l 与C 交于D E 、两点,要使||||AB DE +最小,则A 与D ,B 与E 关于x 轴对称,即直线2l 的斜率为1, 又直线2l 过点()1,0,所以直线2l 的方程为1y x =-,联立方程组241y x y x ⎧=⎨=-⎩,得2440y y --=,12124,4y y y y +==-,所以128DE y y =-==,所以|||||AB DE +的最小值为16. 故选:A解法二:设AB 为(1)y k x =-,DE 为1(1)y x k=--.分别代入抛物线方程得:2222(24)0k x k k -++=⋯(1),22(24)10x k x -++=⋯(2).由于21234242()2()44482416AB DE x x x x k k +=+++++=+++>=+⨯=.此时2244k k =,1k =或1k =-, 故选:A .【点睛】本题主要考查抛物线的几何性质直线与抛物线的位置关系,弦长公式等,还考查了运算求解的能力,属于中档题.10.若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ).A. 1-B. 32e --C. 35e -D. 1【答案】A 【解析】由题可得()()()()121212121x x x f x x a e x ax e x a x a e ---⎡⎤=+++-=+++-⎣⎦',因为()20f '-=,所以1a =-,()()211x f x x x e-=--,故()()212x f x x x e--'=+,令()0f x '>,解得2x <-或1x >,所以()f x 在()(),2,1,-∞-+∞上单调递增,在()2,1-上单调递减, 所以()f x 的极小值为()()1111111f e-=--=-,故选A .【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值. 11.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A. 12-B.13C.12D. 1【答案】C 【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+,设()11eex x g x --+=+,则()()21111111e 1eeee e x x x x x x g x ---+----'=-=-=, 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【名师点睛】利用函数零点的情况求参数的值或取值范围的方法: (1)利用零点存在性定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图像的上、下关系问题,从而构建不等式求解.12.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A. 3D. 2【答案】A 【解析】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆的半径5r =,即圆C 的方程是()22425x y -+=, ()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+, 则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤21514z -≤+,解得13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分.把答案填在答题卡上的相应位置.13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 【答案】79-【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-.【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z .14.已知函数f (x )=23,12,1x x x x x x ⎧-+≤⎪⎨+>⎪⎩,设a ∈R ,若关于x 的不等式f(x)2x a ≥+在R 上恒成立,则a 的取值范围是__ 【答案】﹣4716≤a ≤2 【解析】 【分析】先求画出函数()f x 的图像,然后对2y x a =+的图像进行分类讨论,使得2y x a =+的图像在函数()f x 的图像下方,由此求得a 的取值范围.【详解】画出函数()f x 的图像如下图所示,而,22222xa x a x y a x a a ⎧+≥-⎪⎪=+=⎨⎛⎫⎪-+<- ⎪⎪⎝⎭⎩,是两条射线组成,且零点为2x a =-.将2xy a =+向左平移,直到和函数()f x 图像相切的位置,联立方程22xy a yxx⎧=+⎪⎪⎨⎪=+⎪⎩消去y并化简得2240x ax-+=,令判别式24160a∆=-=,解得2a=.将2xy a=+向右平移,直到和函数()f x图像相切的位置,联立方程223xy ay x x⎧⎛⎫=-+⎪ ⎪⎝⎭⎨⎪=-+⎩消去y并化简得2302xx a-++=,令判别式()14304a∆=-+=,解得4716a=-.根据图像可知47,216a⎡⎤∈-⎢⎥⎣⎦【点睛】本小题主要考查分段函数的图像与性质,其中包括二次函数的图像、对勾函数的图像,以及含有绝对值函数的图像,考查恒成立问题的求解方法,考查数形结合的数学思想方法以及分类讨论的数学思想方法,属于中档题.形如y ax b=+函数的图像,是,0ba⎛⎫- ⎪⎝⎭引出的两条射线.15.设抛物线22{2x pty pt==(0p>)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设7 (,0)2C p,AF与BC相交于点E,若||2||CF AF=,且ACE∆的面积为32,则p的值为__________.【答案】6【解析】试题分析:抛物线的普通方程为22y px=,(,0)2pF,7322pCF p p=-=,又2CF AF=,则32AF p=,由抛物线的定义得32AB p=,所以Ax p=,则2Ay p=,由//CF AB得EF CFEA AB=,即2EF CFEA AF==,所以262CEF CEAS S==,92ACF AEC CFES S S=+=,所以132922p p⨯⨯=,解得6p=.【考点】抛物线定义【名师点睛】1.凡涉及抛物线上的点到焦点的距离时,一般运用定义转化为到准线的距离进行处理.2.若P(x0,y0)为抛物线y2=2px(p>0)上一点,由定义易得|PF|=x0+2p;若过焦点的弦AB的端点坐标为A(x1,y1),B(x2,y2),则弦长|AB|=x1+x2+p,x1+x2可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.16.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1 ,球O的体积为V2,则12VV的值是_____【答案】32【解析】设球半径为r ,则213223423V r r V r π⨯==π.故答案为32. 点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤. 17.已知函数()()22f x sin x cos x x cos x x R =--∈(I )求2f 3π⎛⎫⎪⎝⎭的值 (II )求()f x 的最小正周期及单调递增区间.【答案】(I )2;(II )()f x 的最小正周期是π,2+k +k k 63Z ππππ⎡⎤∈⎢⎥⎣⎦,. 【解析】 【分析】(Ⅰ)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的值.(Ⅱ)直接利用函数的关系式,求出函数的周期和单调区间. 【详解】(Ⅰ)f (x )=sin 2x ﹣cos 2x -sin x cos x , =﹣cos2x x ,=﹣226sin x π⎛⎫+ ⎪⎝⎭,则f (23π)=﹣2sin (436ππ+)=2, (Ⅱ)因为()2sin(2)6f x x π=-+.所以()f x 的最小正周期是π. 由正弦函数的性质得3222,262k x k k Z πππππ+≤+≤+∈, 解得2,63k x k k Z ππππ+≤≤+∈, 所以,()f x 的单调递增区间是2[,]63k k k ππ+π+π∈Z ,.【点睛】本题主要考查了三角函数的化简,以及函数的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.18. 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率.【答案】(1)取出1球为红球或黑球的概率为3.4(2)取出1球为红球或黑球或白球的概率为11.12【解析】试题分析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的球是红球或黑球,根据古典概型和互斥事件的概率公式得到结果;(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的一球是红球或黑球或白球,根据古典概型公式得到结果 试题解析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果; 满足条件的事件是取出的球是红球或黑球共有9种结果, ∴概率为.(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果; 满足条件的事件是取出的一球是红球或黑球或白球共有11种结果, ∴概率为.即取出的1球是红球或黑球的概率为;取出的1球是红球或黑球或白球的概率为.考点:等可能事件的概率19.(2017新课标全国Ⅲ理科)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.【答案】(1)见解析;(2)77. 【解析】试题分析:(1)利用题意证得二面角的平面角为90°,则可得到面面垂直;(2)利用题意求得两个半平面的法向量,然后利用二面角的夹角公式可求得二面角D –AE –C 7. 试题解析:(1)由题设可得,ABD CBD ≌△△,从而AD DC =. 又ACD 是直角三角形,所以=90ADC ∠︒. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又由于ABC 是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB 中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==, 故90DOB ∠=. 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,,,OA OB OD 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz -.则()()()()1,0,0,0,3,0,1,0,0,0,0,1A B C D -.由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得31,22E ⎛⎫ ⎪ ⎪⎝⎭. 故()()311,0,1,2,0,0,1,22AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭. 设(),,n x y z =是平面DAE 的法向量,则00n AD n AE ⎧⋅=⎨⋅=⎩,,即0,310.22x z x y z -+=⎧⎪⎨-++=⎪⎩可取31,3⎛⎫= ⎪ ⎪⎝⎭n .设m 是平面AEC 的法向量,则00m AC m AE ⎧⋅=⎨⋅=⎩,,同理可取(0,3=-m .则7cos ,⋅==n m n m n m . 所以二面角D -AE -C 7. 【名师点睛】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算时,要认真细心,准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与,m n 互补或相等,故有cos cos ,m nm n m nθ⋅==.求解时一定要注意结合实际图形判断所求角是锐角还是钝角. 20.如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I )求直线AP 斜率的取值范围; (II )求PA?PQ 的最大值 【答案】(I )(-1,1);(II )2716. 【解析】试题分析:本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.满分15分. (Ⅰ)由斜率公式可得AP 的斜率为12x -,再由1322x -<<,得直线AP 的斜率的取值范围;(Ⅱ)联立直线AP 与BQ 的方程,得Q 的横坐标,进而表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.试题解析:(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是22432(1)Q k k x k -++=+.因为|PA1)2x +1)k +, |PQ2)Q x x -=所以3(1)(1)k k PA PQ ⋅--+=. 令3()(1)(1)f k k k =--+, 因为2'()(42)(1)f k k k =--+,所以 f (k )在区间1(1,)2-上单调递增,1(,1)2上单调递减, 因此当k =12时,||||PA PQ ⋅取得最大值2716. 【名师点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.21.已知函数(),nf x nx x x R =-∈,其中*,2n N n ∈≥.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(Ⅲ)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证:21-21ax x n<+- 【答案】(Ⅰ) 当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (Ⅱ)见解析; (Ⅲ)见解析. 【解析】(Ⅰ)由()nf x nx x =-,可得,其中*n N ∈且2n ≥, 下面分两种情况讨论: (1)当n 为奇数时:令()0f x '=,解得1x =或1x =-,当x 变化时,(),()f x f x '的变化情况如下表:x(,1)-∞-(1,1)-(1,)+∞()f x ' -+-()f x所以,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增. (2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增; 当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (Ⅱ)证明:设点P 的坐标为0(,0)x ,则110n x n-=,20()f x n n '=-,曲线()y f x =在点P处的切线方程为()00()y f x x x =-',即()00()()g x f x x x '=-,令()()()F x f x g x =-,即,则0()()()F x f x f x -'''=由于1()n f x nxn -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减,又因为0()0F x '=,所以当0(0,)x x ∈时,0()0F x '>,当0(,)x x ∈+∞时,0()0F x '<,所以()F x在0(0,)x 内单调递增,在0(,)x +∞内单调递减,所以对任意的正实数x 都有0()()0F x F x ≤=,即对任意的正实数x ,都有()()f x g x ≤.(Ⅲ)证明:不妨设12x x ≤,由(Ⅱ)知()()2()g x n nx x =--,设方程()g x a =的根为2x',可得202.ax x n n'=+-,当2n ≥时,()g x 在(),-∞+∞上单调递减,又由(Ⅱ)知222()()(),g x f x a g x '≥==可得22x x '≤.类似的,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当(0,)x ∈+∞,()()0n f x h x x -=-<,即对任意(0,)x ∈+∞,()().f x h x <设方程()h x a =的根为1x ',可得1ax n'=,因为()h x nx =在(),-∞+∞上单调递增,且111()()()h x a f x h x '==<,因此11x x '<.由此可得212101ax x x x x n''-<-=+-. 因为2n ≥,所以11112(11)111n n n C n n ---=+≥+=+-=,故1102n n x -≥=,所以2121ax x n-<+-. 考点:1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. 选修4-4:坐标系与参数方程22.11,22x t y t⎧=-⎪⎪⎨⎪=⎪⎩(t为参数)被曲线cos ,x y θθ=⎧⎪⎨=⎪⎩(θ为参数)所截得的弦长.【答案】2 【解析】 【分析】由cos ,x y θθ=⎧⎪⎨=⎪⎩消去θ得到直角坐标方程,然后将11,22x t y ⎧=-⎪⎪⎨⎪=⎪⎩代入曲线的直角坐标方程,再利用直线参数方程的几何意义求弦长.【详解】由cos ,x y θθ=⎧⎪⎨=⎪⎩消去θ得2213y x +=,将11,22x t y ⎧=-⎪⎪⎨⎪=⎪⎩代入2213y x +=并整理得:220t t -=, 解得120,2t t ==, 所截得的弦长为122t t -=【点睛】本题主要考查参数方程与直角坐标方程的转化,以及直线参数方程的几何意义,还考查了运算求解的能力,属于中档题.选修4-5:不等式选讲23.设0,0x y >>,已知1x y +=,求2223x y +的最小值. 【答案】65【解析】【分析】根据柯西不等式的性质求解.【详解】由柯西不等式得()()222222231x y x y ⎡⎤+⋅+≥=+=⎢⎥⎢⎥⎣⎦ 所以226235x y +≥,当且仅当23x y =,即32,55x y ==时,取等号. 所以2223x y +的最小值为65【点睛】本题主要考查柯西不等式的性质,还考查了转化化归的思想和运算求解的能力,属于基础题.。
绝密★启用前广东省深圳市普通高中2020届高三毕业班下学期第二次调研考试(二模)理科数学试题(解析版)2020年6月一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设z 21(1)i i +=-,则|z |=( )A. 12 C. 1【答案】B【解析】【分析】把已知等式变形,再由商的模等于模的商求解即可.【详解】解:∵z 211(1)2i i i i++==--,∴|z |=|12i i+-|122i i +==-. 故选:B.【点睛】本题考查复数模的求法,考查数学转化思想方法,是基础题.2.已知集合{}|2x A y y ==,{}2|320B x x x =-+≤则( ) A. A B =∅B. A B R =C. A B ⊆D. B A ⊆【答案】D【解析】【分析】根据指数函数的值域化简集合A 的表示,解一元二次不等式化简集合B 的表示,最后根据集合的交集和并集的定义、子集的定义进行判断即可.【详解】因为{}{}|2|0x A y y y y ===>,{}{}2|320|12B x x x x x =-+≤=≤≤, 所以{}|12A B x x =≤≤≠∅,故选项A 不正确;{}|0y y A B R =>≠,故选项B 不正确;根据子集的定义有B A ⊆.故选:D【点睛】本题考查了集合交集、并集的运算,考查了子集的定义,考查了指数函数的值域,考查了解一元二次不等式,考查了数学运算能力.3.设α为平面,m ,n 为两条直线,若m α⊥,则“m n ⊥”是“n ⊂α”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据充分性和必要性的定义,结合线面垂直的性质进行判断即可.【详解】当m α⊥时,如果m n ⊥,不一定能推出n ⊂α,因为直线n 可以在平面α外,当m α⊥时,如果n ⊂α,根据线面垂直的性质一定能推出m n ⊥,所以若m α⊥,则“m n ⊥”是“n ⊂α”的必要不充分条件.故选:C【点睛】本题考查了必要不充分条件的判断,考查了线面垂直的性质,考查了推理论证能力.4.已知双曲线C :22221y x a b -=(0a >,0b >)的两条渐近线互相垂直,则C 的离心率为( )B. 2 D. 3。