2018年深圳市中考数学试卷含答案解析
- 格式:pdf
- 大小:408.52 KB
- 文档页数:26
2018年广东省深圳市龙岗区中考数学一模试卷一、选择题1.的倒数是A. 2B.C.D.2.在圆锥、圆柱、球当中,主视图、左视图、俯视图完全相同的有A. 0个B. 1个C. 2个D. 3个3.2017年龙岗区GDP总量实现历史性突破,生产总值达386000000000元,首次跃居全市各区第二将3860000000000用科学记数法表示为A. B. C. D.4.观察下列图形,其中既是轴对称又是中心对称图形的是A. B. C. D.5.下列计算正确的是A. B. C. D.6.在中,,如果,那么的值是A. B. C. D. 37.如图:能判断的条件是A.B.C.D.8.下列事件中,属于必然事件的是A. 三角形的外心到三边的距离相等B. 某射击运动员射击一次,命中靶心C. 任意画一个三角形,其内角和是D. 抛一枚硬币,落地后正面朝上9.一元二次方程的根是A. ,B. ,C. ,D. ,10.抛物线与y轴的交点的坐标是A. B. C. D.11.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于A. 4cmB. 5cmC. 6cmD. 8cm12.二次函数的图象如图,下列四个结论:;;关于x的一元二次方程没有实数根;为常数.其中正确结论的个数是A. 4个B. 3个C. 2个D. 1个二、填空题13.已知,则______.14.在实数范围内定义一种运算“”,其规则为,根据这个规则求方程的解为______.15.将一次函数的图象向下平移3个单位长度,相应的函数表达式为______.16.如图,已知反比例函数的图象经过点,在该图象上年找一点P,使,则点P的坐标为______.三、解答题17.如图,的半径,AB是弦,直线EF经过点B,于点C,.求证:EF是的切线;若,求AB的长;在的条件下,求图中阴影部分的面积.18.计算:.19.先化简,再求值:,其中.20.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为,,,,现对,,,统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出所在扇形的圆心角的度数;现从,中各选出一人进行座谈,若中有一名女生,中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.21.六一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.求A、B两种品牌服装每套进价分别为多少元?该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A 品牌的服装多少套?22.2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是和,若CD的长是点C到海平面的最短距离.问BD与AB有什么数量关系,试说明理由;求信号发射点的深度结果精确到1m,参考数据:,23.如图,在平面直角坐标系中,抛物线的图象经过点,交x轴于点A、点在B点左侧,顶点为D.求抛物线的解析式及点A、B的坐标;将沿直线BC对折,点A的对称点为,试求的坐标;抛物线的对称轴上是否存在点P,使?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析【答案】1. D2. B3. C4. D5. C6. A7. A8. C9. D10. D11. C12. D13.14.15.16.17. 证明:,,,,,,,是的切线;解:过点O作于点D,则,,∽ ,,即,;解:,为等边三角形,,,,,阴影部分四边形扇形扇形18. 解:原式,,.19. 解:原式.当时,原式.20. 解:总数人数为:人的人数为人补全图形,如图所示所在圆心角度数为:画出树状图如下:故所求概率为:21. 解:设A品牌服装每套进价为x元,则B品牌服装每套进价为元,由题意得:,解得:,经检验:是原分式方程的解,,答:A、B两种品牌服装每套进价分别为100元、75元;设购进A品牌的服装a套,则购进B品牌服装套,由题意得:,解得:,答:至少购进A品牌服装的数量是17套.22. 解:由图形可得,米,在中又含角,得米,可知,,由勾股定理,米,点C的垂直深度CD是346米.23. 解:把代入得,解得.所以抛物线的解析式为.令,可得:,.所以,.如图2,作轴于H,因为,且,所以 ∽ ,所以,可得,由,得,;所以;分两种情况:如图3,以AB为直径作,交抛物线的对称轴于的下方,由圆周角定理得,易得:所以如图4,类比第小题的背景将沿直线BC对折,点A的对称点为,以为直径作,交抛物线的对称轴于的上方,则.作于E,交对称轴于F.则,.所以.在中,,所以.所以综上所述,P的坐标为或【解析】1. 解:,的倒数是.故选:D.根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.主要考查倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2. 解:在圆锥、圆柱、球当中,主视图、左视图、俯视图完全相同的是球,故选:B.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,找到主视图、左视图和俯视图完全相同的选项即可.本题考查的是简单几何体的三视图,考查常见立体图形的三视图和学生的空间想象能力解决本题的关键是找到几何体的三视图,掌握完全相同的含义.3. 解:将3860000000000用科学记数法表示为,故选:C.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:A、不是中心对称图形,也不是轴对称图形,此选项不符合题意;B、不是轴对称图形,也不是中心对称图形,此选项不符合题意;C、不是中心对称图形,是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选:D.根据中心对称图形的定义旋转后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5. 解:A、,故原题计算错误;B、,故原题计算错误;C、,故原题计算正确;D、和不是同类项,故原题计算错误;故选:C.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方法则:底数不变,指数相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.此题主要考查了同底数幂的乘法、积的乘方、幂的乘方、合并同类项,关键是掌握计算法则.6. 解:中,,,,,.故选:A.一个角的正弦值等于它的余角的余弦值.此题考查的是互余两角三角函数的关系,属基础题,掌握正余弦的这一转换关系:一个角的正弦值等于它的余角的余弦值.7. 解:当时,;当时,不能得到;当时,不能得到;当时,不能得到;故选:A.两条直线被第三条所截,如果内错角相等,那么这两条直线平行,据此进行判断.本题主要考查了平行线的判定,解题时注意:内错角相等,两直线平行.8. 解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选:C.必然事件就是一定发生的事件,依据定义即可作出判断.解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9. 解:,故选:D.本题应对原方程进行因式分解,得出,然后根据“两式相乘值为0,这两式中至少有一式值为”来解题.本题考查了一元二次方程的解法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法本题运用的是因式分解法.10. 解:把代入得.所以抛物线的顶点为,故选:D.根据y轴上点的坐标特征,把代入抛物线解析式计算出对应的函数值即可得到交点坐标.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.11. 解:菱形ABCD的周长为48cm,,,是AD的中点,.故选:C.由菱形ABCD的周长为48cm,根据菱形的性质,可求得AD的长,,又由E是AD的中点,根据直角三角形斜边的中线等于斜边的一半,即可求得线段OE的长.此题考查了菱形的性质以及直角三角形斜边的中线的性质此题难度不大,注意掌握数形结合思想的应用.12. 解:因为二次函数的对称轴是直线,由图象可得左交点的横坐标大于,小于,所以,,当时,,即,,,,,所以此选项结论正确;抛物线的对称轴是直线,的值最大,即把代入得:,,,所以此选项结论不正确;,,,,,,,,关于x的一元二次方程有实数根;由图象得:当时,y随x的增大而减小,当k为常数时,,当的值大于的函数值,即,,所以此选项结论不正确;所以正确结论的个数是1个,故选:D.根据对称轴列式,得,由图象可知:左交点的横坐标大于,当时,,代入可得结论正确;开口向下,则顶点坐标的纵坐标是最大值,那么,化简可得结论不正确;计算的值作判断;比较与的值,根据当时,y随x的增大而减小,由图象得出结论.本题考查二次函数与系数关系,在解题时,注意二次函数的系数与其图象的形状、对称轴,特殊点的关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.13. 解:设时,,则.故答案为.根据已知条件,可设,则,然后把它们代入所求式子,即可求出的值.本题根据x、y之间的关系,进而求出分式的值.14. 解:,即,解得,故答案是:.根据新定义运算法则列出关于x的一元二次方程,然后利用直接开平方法解答.本题考查学生读题做题的能力正确理解这种运算的规则是解题的关键.15. 解:将一次函数的图象向下平移3个单位长度,相应的函数是;故答案为:.直接根据函数图象平移的法则进行解答即可.本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.16. 解:作轴于E,将线段OA绕点O顺时针旋转得到,作轴于F,则 ≌ ,可得,,即反比例函数的图象经过点,所以由勾股定理可知:,,,,,的中点,直线OK的解析式为,由,解得或,点P在第一象限,,故答案为作轴于E,将线段OA绕点O顺时针旋转得到,作轴于F,则 ≌ ,可得,,即,求出线段的中垂线的解析式,利用方程组确定交点坐标即可.本题考查反比例函数图象上点的坐标特征,一次函数的应用等知识,解题的关键是学会构造全等三角形解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考填空题中的压轴题.17. 由得到,加上,则,于是可判断,由于,所以,则可根据切线的判定定理得到EF是的切线;过点O作于点D,根据垂径定理得,再证明 ∽ ,利用相似比可计算出;由可判断为等边三角形,则,则,则可计算出,然后根据三角形面积公式和扇形面积公式,利用阴影部分四边形扇形进行计算即可.扇形本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线也考查了等边三角形的判定与性质、相似三角形的判定与性质和扇形面积的计算.18. 本题涉及开平方、零次幂、绝对值、特殊角的三角函数,在计算时,需要针对每个考点分别进行计算,然后再根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.19. 利用同分母的分式减法法则,先算括号里面的,再做乘法运算.本题考查了分式的化简求值注意分式化简的结果需是整式或最简分式代入取值的结果应分母有理化.20. 根据的人数除以所占的百分比即可求出总人数.根据的人数的所占的百分比即可取出圆心角的度数.列出树状图即可求出答案.本题考查统计与概率,解题的关键是熟练运用统计与概率的公式,本题属于基础题型.21. 首先设A品牌服装每套进价为x元,则B品牌服装每套进价为元,根据关键语句“用2000元购进A种服装数量是用750元购进B种服装数量的2倍”列出方程,解方程即可;首先设购进A品牌的服装a套,则购进B品牌服装套,根据“可使总的获利超过1200元”可得不等式,再解不等式即可.本题考查了分式方程组的应用和一元一次不等式的应用,弄清题意,表示出A、B两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.22. 易证三角形ABC的是等腰三角形,再根据所对直角边是斜边的一半可求出DB的长,由结合勾股定理即可求出CD的长.本题考查了解直角三角形的应用,难度适中,解答本题的关键是构造直角三角形,解直角三角形,也考查了把实际问题转化为数学问题的能力.23. 将代入抛物线解析式求得a的值,从而得出抛物线的解析式,再令,得出x的值,即可求得点A、B的坐标;如图2,作轴于H,可证明 ∽ ,得出,由,即可得出的长,即可求得的坐标;分两种情况:如图3,以AB为直径作,交抛物线的对称轴于的下方,由圆周角定理得出点P坐标;如图4,类比第小题的背景将沿直线BC对折,点A的对称点为,以为直径作,交抛物线的对称轴于的上方,作于E,交对称轴于F,求得,在中,由勾股定理得出得的长,从而得出点P的坐标即可.本题考查了二次函数的相关性质、一次函数的相关性质、一元二次方程的解法以及二次根式的运算、勾股定理等本题解题技巧要求高,而且运算复杂,因此对考生的综合能力提出了很高的要求.。
2018年广东省深圳市龙岗区中考数学一模试卷一、选择题1.−2的倒数是()A. 2B. −2C. 12D. −122.在圆锥、圆柱、球当中,主视图、左视图、俯视图完全相同的有()A. 0个B. 1个C. 2个D. 3个3.2017年龙岗区GDP总量实现历史性突破,生产总值达386000000000元,首次跃居全市各区第二.将3860000000000用科学记数法表示为()A. 3.86×1010B. 3.86×1011C. 3.86×1012D. 386×1094.观察下列图形,其中既是轴对称又是中心对称图形的是()A. B. C. D.5.下列计算正确的是()A. x2⋅x3=x6B. (xy)2=xy2C. (x2)4=x8D. x2+x3=x56.在Rt△ABC中,∠C=90∘,如果sinA=13,那么sinB的值是()A. 2√23B. 2√2 C. √24D. 37.如图:能判断AB//CD的条件是()A. ∠A=∠ACDB. ∠A=∠DCEC. ∠B=∠ACBD. ∠B=∠ACD8.下列事件中,属于必然事件的是()A. 三角形的外心到三边的距离相等B. 某射击运动员射击一次,命中靶心C. 任意画一个三角形,其内角和是180∘D. 抛一枚硬币,落地后正面朝上9.一元二次方程x2−5x−6=0的根是()A. x1=1,x2=6B. x1=2,x2=3C. x1=1,x2=−6D. x1=−1,x2=610.抛物线y=2(x+1)2−2与y轴的交点的坐标是()A. (0,−2)B. (−2,0)C. (0,−1)D. (0,0)11.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A. 4cmB. 5cmC. 6cmD. 8cm12.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+b>a(m≠−1);③关于x的一元二次方程ax2+(b−1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个二、填空题13.已知xy =32,则x−yx+y=______.14.在实数范围内定义一种运算“∗”,其规则为a∗b=a2−2ab+b2,根据这个规则求方程(x−4)∗1=0的解为______.15.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为______.16.如图,已知反比例函数y=kx(x>0)的图象经过点A(3,4),在该图象上年找一点P,使∠POA=45∘,则点P的坐标为______.三、解答题17.如图,⊙O的半径OA=2,AB是弦,直线EF经过点B,AC⊥EF于点C,∠BAC=∠OAB.(1)求证:EF是⊙O的切线;(2)若AC=1,求AB的长;(3)在(2)的条件下,求图中阴影部分的面积.18.计算:√27−(−2)0+|1−√3|+2cos30∘.19.先化简,再求值:(a2a−2−4a−2)⋅1a2+2a,其中a=2√2.20.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.21.六⋅一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?22.2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是30∘和60∘,若CD的长是点C到海平面的最短距离.(1)问BD与AB有什么数量关系,试说明理由;(2)求信号发射点的深度.(结果精确到1m,参考数据:√2≈1.414,√3≈1.732)23.如图,在平面直角坐标系中,抛物线y=ax2−3ax−4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析【答案】1. D2. B3. C4. D5. C6. A7. A8. C9. D10. D11. C12. D13. 1514. x1=x2=515. y=2x+116. (2√21,2√217)17. (1)证明:∵OA=OB,∴∠OAB=∠OBA,∵∠BAC=∠OAB,∴∠BAC=∠OBA,∴OB//AC,∵AC⊥EF,∴OB⊥EF,∴EF是⊙O的切线;(2)解:过点O作OD⊥AB于点D,则AD=12AB,∵∠OAD=∠BAC,∴Rt△AOD∽Rt△ABC,AD AC =AOAB,即12AB1=2AB,∴AB=2;(3)解:∵AB=OB=OC=2,∴△OAB为等边三角形,∴∠AOB=60∘,∵OB⊥BC,∴∠ABC=30∘,∴BC=√3AC=√3,∴S阴影部分=S四边形AOBC−S扇形OAB=S△AOB+S△ABC−S扇形OAB=√34×22+12×1×√3−60⋅π⋅22360=3√32−23π.18. 解:原式=3√3−1+√3−1+2×√32,=3√3−1+√3−1+√3,=5√3−2.19. 解:原式=a2−4a−2⋅1a(a+2)=(a+2)(a−2)a−2⋅1a(a+2)=1a.当a=2√2时,原式=2√2=√24.20. 解:(1)总数人数为:6÷40%=15人(2)A2的人数为15−2−6−4=3(人)补全图形,如图所示A1所在圆心角度数为:215×360∘=48∘(3)画出树状图如下:故所求概率为:P=36=1221. 解:(1)设A品牌服装每套进价为x元,则B品牌服装每套进价为(x−25)元,由题意得:2000 x =750x−25×2,解得:x=100,经检验:x=100是原分式方程的解,x−25=100−25=75,答:A、B两种品牌服装每套进价分别为100元、75元;(2)设购进A品牌的服装a套,则购进B品牌服装(2a+4)套,由题意得:(130−100)a+(95−75)(2a+4)>1200,解得:a>16,答:至少购进A品牌服装的数量是17套.22. 解:(1)由图形可得∠BCA=30∘,∴CB=BA=400米,∴在Rt△CDB中又含30∘角,得DB=12CB=200米,可知,BD=12AB,(2)由勾股定理DC=√CB2−BD2=√4002−2002,=200√3米,∴点C的垂直深度CD是346米.23. 解:(1)把C(0,2)代入y=ax2−3ax−4a得−4a=2,解得a=−12.所以抛物线的解析式为y=−12x2+32x+2.令−12x2+32x+2=0,可得:x1=−1,x2=4.所以A(−1,0),B(4,0).(2)如图2,作轴于H,因为OAOC =OCOB=12,且∠AOC=∠COB=90∘,所以△AOC∽△COB,所以∠ACO=∠CBO,可得∠ACB=∠OBC+∠BCO=90∘,由,得OH=OA=1,;所以;(3)分两种情况:①如图3,以AB为直径作⊙M,⊙M交抛物线的对称轴于P(BC的下方),由圆周角定理得∠CPB=∠CAB,易得:MP=12AB.所以P(32,−52).②如图4,类比第(2)小题的背景将△ABC沿直线BC对折,点A的对称点为,以为直径作,交抛物线的对称轴于的上方),则.作于E,交对称轴于F.则,EF=32−1=12.所以.在中,,所以.所以综上所述,P的坐标为(32,−52)或(32,2+√212).【解析】1. 解:∵−2×(−12)=1,∴−2的倒数是−12.故选:D.根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2. 解:在圆锥、圆柱、球当中,主视图、左视图、俯视图完全相同的是球,故选:B.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,找到主视图、左视图和俯视图完全相同的选项即可.本题考查的是简单几何体的三视图,考查常见立体图形的三视图和学生的空间想象能力.解决本题的关键是找到几何体的三视图,掌握完全相同的含义.3. 解:将3860000000000用科学记数法表示为3.86×1012,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:A、不是中心对称图形,也不是轴对称图形,此选项不符合题意;B、不是轴对称图形,也不是中心对称图形,此选项不符合题意;C、不是中心对称图形,是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选:D.根据中心对称图形的定义旋转180∘后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5. 解:A、x2⋅x3=x5,故原题计算错误;B、(xy)2=x2y2,故原题计算错误;C、(x2)4=x8,故原题计算正确;D、x2和x3不是同类项,故原题计算错误;故选:C.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方法则:底数不变,指数相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.此题主要考查了同底数幂的乘法、积的乘方、幂的乘方、合并同类项,关键是掌握计算法则.6. 解:∵Rt △ABC 中,∠C =90∘,sinA =13,∴cosA =√1−sin 2A =√1−(13)2=2√23, ∴∠A +∠B =90∘, ∴sinB =cosA =2√23. 故选:A .一个角的正弦值等于它的余角的余弦值.此题考查的是互余两角三角函数的关系,属基础题,掌握正余弦的这一转换关系:一个角的正弦值等于它的余角的余弦值.7. 解:当∠A =∠ACD 时,AB//CD ; 当∠A =∠DCE 时,不能得到AB//CD ; 当∠B =∠ACB 时,不能得到AB//CD ; 当∠B =∠ACD 时,不能得到AB//CD ; 故选:A .两条直线被第三条所截,如果内错角相等,那么这两条直线平行,据此进行判断. 本题主要考查了平行线的判定,解题时注意:内错角相等,两直线平行.8. 解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180∘,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意; 故选:C .必然事件就是一定发生的事件,依据定义即可作出判断.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9. 解:x 2−5x −6=0(x −6)(x +1)=0x 1=−1,x 2=6 故选:D .本题应对原方程进行因式分解,得出(x −6)(x +1)=0,然后根据“两式相乘值为0,这两式中至少有一式值为0.”来解题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法. 10. 解:把x =0代入y =2(x +1)2−2得y =2−2=0. 所以抛物线的顶点为(0,0), 故选:D .根据y 轴上点的坐标特征,把x =0代入抛物线解析式计算出对应的函数值即可得到交点坐标. 本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式. 11. 解:∵菱形ABCD 的周长为48cm , ∴AD =12cm ,AC ⊥BD , ∵E 是AD 的中点, ∴OE =12AD =6(cm).故选:C.由菱形ABCD的周长为48cm,根据菱形的性质,可求得AD的长,AC⊥BD,又由E是AD的中点,根据直角三角形斜边的中线等于斜边的一半,即可求得线段OE的长.此题考查了菱形的性质以及直角三角形斜边的中线的性质.此题难度不大,注意掌握数形结合思想的应用.12. 解:①因为二次函数的对称轴是直线x=−1,由图象可得左交点的横坐标大于−3,小于−2,所以−b2a=−1,b=2a,当x=−3时,y<0,即9a−3b+c<0,9a−6a+c<0,3a+c<0,∵a<0,∴4a+c<0,所以此选项结论正确;②∵抛物线的对称轴是直线x=−1,∴y=a−b+c的值最大,即把x=m(m≠−1)代入得:y=am2+bm+c<a−b+c,∴am2+bm<a−b,m(am+b)+b<a,所以此选项结论不正确;③ax2+(b−1)x+c=0,△=(b−1)2−4ac,∵a<0,c>0,∴ac<0,∴−4ac>0,∵(b−1)2≥0,∴△>0,∴关于x的一元二次方程ax2+(b−1)x+c=0有实数根;④由图象得:当x>−1时,y随x的增大而减小,∵当k为常数时,0≤k2≤k2+1,∴当x=k2的值大于x=k2+1的函数值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选:D.①根据对称轴列式,得b=2a,由图象可知:左交点的横坐标大于−3,当x=−3时,y<0,代入可得结论正确;②开口向下,则顶点坐标的纵坐标是最大值,那么y=am2+bm+c<a−b+c,化简可得结论不正确;③计算△的值作判断;④比较k2与k2+1的值,根据当x>−1时,y随x的增大而减小,由图象得出结论.本题考查二次函数与系数关系,在解题时,注意二次函数的系数与其图象的形状、对称轴,特殊点的关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.13. 解:设x=3a时,y=2a,则x−yx+y=3a−2a3a+2a=a5a=15.故答案为15.根据已知条件x y =32,可设x =3a ,则y =2a ,然后把它们代入所求式子,即可求出x−y x+y 的值.本题根据x 、y 之间的关系,进而求出分式的值. 14. 解:(x −4)∗1=(x −4)2−2(x −4)+1=x 2−10x +25=0,即(x −5)2=0,解得x 1=x 2=5,故答案是:x 1=x 2=5.根据新定义运算法则列出关于x 的一元二次方程,然后利用直接开平方法解答.本题考查学生读题做题的能力.正确理解这种运算的规则是解题的关键.15. 解:将一次函数y =2x +4的图象向下平移3个单位长度,相应的函数是y =2x +4−3=2x +1; 故答案为:y =2x +1.直接根据函数图象平移的法则进行解答即可.本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.16. 解:作AE ⊥y 轴于E ,将线段OA 绕点O 顺时针旋转90∘得到OA′,作A′F ⊥x 轴于F ,则△AOE≌△A′OF ,可得OF =OE =4,A′F =AE =3,即A′(4,−3)∵反比例函数y =k x (x >0)的图象经过点A(3,4), 所以由勾股定理可知:OA =5, ∴4=k 3,OA =5, ∴k =12,∴y =12x ,∴AA′的中点K(72,12),∴直线OK 的解析式为y =17x ,由{y =17x y =12x ,解得{x =2√21y =2√217或{x =−2√21y =−2√217, ∵点P 在第一象限,∴P(2√21,2√217), 故答案为(2√21,2√217). 作AE ⊥y 轴于E ,将线段OA 绕点O 顺时针旋转90∘得到OA′,作A′F ⊥x 轴于F ,则△AOE≌△A′OF ,可得OF =OE =4,A′F =AE =3,即A′(4,−3),求出线段AA′的中垂线的解析式,利用方程组确定交点坐标即可. 本题考查反比例函数图象上点的坐标特征,一次函数的应用等知识,解题的关键是学会构造全等三角形解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考填空题中的压轴题.17. (1)由OA =OB 得到∠OAB =∠OBA ,加上∠BAC =∠OAB ,则∠BAC =∠OBA ,于是可判断OB//AC ,由于AC ⊥EF ,所以OB ⊥EF ,则可根据切线的判定定理得到EF 是⊙O 的切线;AB,再证明Rt△AOD∽Rt△ABC,利用相似比可计算(2)过点O作OD⊥AB于点D,根据垂径定理得AD=12出AB=2;(3)由AB=OB=OC=2可判断△OAB为等边三角形,则∠AOB=60∘,则∠ABC=30∘,则可计算出BC=√3AC=√3,然后根据三角形面积公式和扇形面积公式,利用S阴影部分=S四边形AOBC−S扇形OAB=S△AOB+S△ABC−S进行计算即可.扇形OAB本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等边三角形的判定与性质、相似三角形的判定与性质和扇形面积的计算.18. 本题涉及开平方、零次幂、绝对值、特殊角的三角函数,在计算时,需要针对每个考点分别进行计算,然后再根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.19. 利用同分母的分式减法法则,先算括号里面的,再做乘法运算.本题考查了分式的化简求值.注意分式化简的结果需是整式或最简分式.代入取值的结果应分母有理化.20. (1)根据A3的人数除以A3所占的百分比即可求出总人数.(2)根据A1的人数的所占的百分比即可取出圆心角的度数.(3)列出树状图即可求出答案.本题考查统计与概率,解题的关键是熟练运用统计与概率的公式,本题属于基础题型.21. (1)首先设A品牌服装每套进价为x元,则B品牌服装每套进价为(x−25)元,根据关键语句“用2000元购进A种服装数量是用750元购进B种服装数量的2倍.”列出方程,解方程即可;(2)首先设购进A品牌的服装a套,则购进B品牌服装(2a+4)套,根据“可使总的获利超过1200元”可得不等式(130−100)a+(95−75)(2a+4)>1200,再解不等式即可.本题考查了分式方程组的应用和一元一次不等式的应用,弄清题意,表示出A、B两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.22. (1)易证三角形ABC的是等腰三角形,再根据30∘所对直角边是斜边的一半可求出DB的长,(2)由(1)结合勾股定理即可求出CD的长.本题考查了解直角三角形的应用,难度适中,解答本题的关键是构造直角三角形,解直角三角形,也考查了把实际问题转化为数学问题的能力.23. (1)将(0,2)代入抛物线解析式求得a的值,从而得出抛物线的解析式,再令y=0,得出x的值,即可求得点A、B的坐标;(2)如图2,作轴于H,可证明△AOC∽△COB,得出∠ACO=∠CBO,由,即可得出A′H的长,即可求得A′的坐标;(3)分两种情况:①如图3,以AB为直径作⊙M,⊙M交抛物线的对称轴于P(BC的下方),由圆周角定理得出点P坐标;②如图4,类比第(2)小题的背景将△ABC沿直线BC对折,点A的对称点为,以为直径作,交抛物线的对称轴于的上方),作于E,交对称轴于F,求得,在中,由勾股定理得出得的长,从而得出点P的坐标即可.本题考查了二次函数的相关性质、一次函数的相关性质、一元二次方程的解法以及二次根式的运算、勾股定理等.本题解题技巧要求高,而且运算复杂,因此对考生的综合能力提出了很高的要求.。
此文档为word格式,可任意修改编辑2018年广东省深圳市龙岗区中考数学一模试卷一、选择题1.的倒数是A. 2B.C.D.2.在圆锥、圆柱、球当中,主视图、左视图、俯视图完全相同的有A. 0个B. 1个C. 2个D. 3个3.2017年龙岗区GDP总量实现历史性突破,生产总值达386000000000元,首次跃居全市各区第二将3860000000000用科学记数法表示为A. B. C. D.4.观察下列图形,其中既是轴对称又是中心对称图形的是A. B. C. D.5.下列计算正确的是A. B. C. D.6.在中,,如果,那么的值是A. B. C. D. 37.如图:能判断的条件是A.B.C.D.8.下列事件中,属于必然事件的是A. 三角形的外心到三边的距离相等B. 某射击运动员射击一次,命中靶心C. 任意画一个三角形,其内角和是D. 抛一枚硬币,落地后正面朝上9.一元二次方程的根是A. ,B. ,C. ,D. ,10.抛物线与y轴的交点的坐标是A. B. C. D.11.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于A. 4cmB. 5cmC. 6cmD. 8cm12.二次函数的图象如图,下列四个结论:;;关于x的一元二次方程没有实数根;为常数.其中正确结论的个数是A. 4个B. 3个C. 2个D. 1个二、填空题13.已知,则______.14.在实数范围内定义一种运算“”,其规则为,根据这个规则求方程的解为______.15.将一次函数的图象向下平移3个单位长度,相应的函数表达式为______.16.如图,已知反比例函数的图象经过点,在该图象上年找一点P,使,则点P的坐标为______.三、解答题17.如图,的半径,AB是弦,直线EF经过点B,于点C,.求证:EF是的切线;若,求AB的长;在的条件下,求图中阴影部分的面积.18.计算:.19.先化简,再求值:,其中.20.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为,,,,现对,,,统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出所在扇形的圆心角的度数;现从,中各选出一人进行座谈,若中有一名女生,中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.21.六一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.求A、B两种品牌服装每套进价分别为多少元?该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?22.2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是和,若CD的长是点C到海平面的最短距离.问BD与AB有什么数量关系,试说明理由;求信号发射点的深度结果精确到1m,参考数据:,23.如图,在平面直角坐标系中,抛物线的图象经过点,交x轴于点A、点在B点左侧,顶点为D.求抛物线的解析式及点A、B的坐标;将沿直线BC对折,点A的对称点为,试求的坐标;抛物线的对称轴上是否存在点P,使?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析【答案】1. D2. B3. C4. D5. C6. A7. A8. C9. D10. D11. C12. D13.14.15.16.17. 证明:,,,,,,,是的切线;解:过点O作于点D,则,,∽ ,,即,;解:,为等边三角形,,,,,阴影部分四边形扇形扇形18. 解:原式,,.19. 解:原式.当时,原式.20. 解:总数人数为:人的人数为人补全图形,如图所示所在圆心角度数为:画出树状图如下:故所求概率为:21. 解:设A品牌服装每套进价为x元,则B品牌服装每套进价为元,由题意得:,解得:,经检验:是原分式方程的解,,答:A、B两种品牌服装每套进价分别为100元、75元;设购进A品牌的服装a套,则购进B品牌服装套,由题意得:,解得:,答:至少购进A品牌服装的数量是17套.22. 解:由图形可得,米,在中又含角,得米,可知,,由勾股定理,米,点C的垂直深度CD是346米.23. 解:把代入得,解得.所以抛物线的解析式为.令,可得:,.所以,.如图2,作轴于H,因为,且,所以 ∽ ,所以,可得,由,得,;所以;分两种情况:如图3,以AB为直径作,交抛物线的对称轴于的下方,由圆周角定理得,易得:所以如图4,类比第小题的背景将沿直线BC对折,点A的对称点为,以为直径作,交抛物线的对称轴于的上方,则.作于E,交对称轴于F.则,.所以.在中,,所以.所以综上所述,P的坐标为或【解析】1. 解:,的倒数是.故选:D.根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.主要考查倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2. 解:在圆锥、圆柱、球当中,主视图、左视图、俯视图完全相同的是球,故选:B.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,找到主视图、左视图和俯视图完全相同的选项即可.本题考查的是简单几何体的三视图,考查常见立体图形的三视图和学生的空间想象能力解决本题的关键是找到几何体的三视图,掌握完全相同的含义.3. 解:将3860000000000用科学记数法表示为,故选:C.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:A、不是中心对称图形,也不是轴对称图形,此选项不符合题意;B、不是轴对称图形,也不是中心对称图形,此选项不符合题意;C、不是中心对称图形,是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选:D.根据中心对称图形的定义旋转后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5. 解:A、,故原题计算错误;B、,故原题计算错误;C、,故原题计算正确;D、和不是同类项,故原题计算错误;故选:C.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方法则:底数不变,指数相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.此题主要考查了同底数幂的乘法、积的乘方、幂的乘方、合并同类项,关键是掌握计算法则.6. 解:中,,,,,.故选:A.一个角的正弦值等于它的余角的余弦值.此题考查的是互余两角三角函数的关系,属基础题,掌握正余弦的这一转换关系:一个角的正弦值等于它的余角的余弦值.7. 解:当时,;当时,不能得到;当时,不能得到;当时,不能得到;故选:A.两条直线被第三条所截,如果内错角相等,那么这两条直线平行,据此进行判断.本题主要考查了平行线的判定,解题时注意:内错角相等,两直线平行.8. 解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选:C.必然事件就是一定发生的事件,依据定义即可作出判断.解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9. 解:,故选:D.本题应对原方程进行因式分解,得出,然后根据“两式相乘值为0,这两式中至少有一式值为”来解题.本题考查了一元二次方程的解法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法本题运用的是因式分解法.10. 解:把代入得.所以抛物线的顶点为,故选:D.根据y轴上点的坐标特征,把代入抛物线解析式计算出对应的函数值即可得到交点坐标.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.11. 解:菱形ABCD的周长为48cm,,,是AD的中点,.故选:C.由菱形ABCD的周长为48cm,根据菱形的性质,可求得AD的长,,又由E是AD的中点,根据直角三角形斜边的中线等于斜边的一半,即可求得线段OE的长.此题考查了菱形的性质以及直角三角形斜边的中线的性质此题难度不大,注意掌握数形结合思想的应用.12. 解:因为二次函数的对称轴是直线,由图象可得左交点的横坐标大于,小于,所以,,当时,,即,,,,,所以此选项结论正确;抛物线的对称轴是直线,的值最大,即把代入得:,,,所以此选项结论不正确;,,,,,,,,关于x的一元二次方程有实数根;由图象得:当时,y随x的增大而减小,当k为常数时,,当的值大于的函数值,即,,所以此选项结论不正确;所以正确结论的个数是1个,故选:D.根据对称轴列式,得,由图象可知:左交点的横坐标大于,当时,,代入可得结论正确;开口向下,则顶点坐标的纵坐标是最大值,那么,化简可得结论不正确;计算的值作判断;比较与的值,根据当时,y随x的增大而减小,由图象得出结论.本题考查二次函数与系数关系,在解题时,注意二次函数的系数与其图象的形状、对称轴,特殊点的关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.13. 解:设时,,则.故答案为.根据已知条件,可设,则,然后把它们代入所求式子,即可求出的值.本题根据x、y之间的关系,进而求出分式的值.14. 解:,即,解得,故答案是:.根据新定义运算法则列出关于x的一元二次方程,然后利用直接开平方法解答.本题考查学生读题做题的能力正确理解这种运算的规则是解题的关键.15. 解:将一次函数的图象向下平移3个单位长度,相应的函数是;故答案为:.直接根据函数图象平移的法则进行解答即可.本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.16. 解:作轴于E,将线段OA绕点O顺时针旋转得到,作轴于F,则 ≌ ,可得,,即反比例函数的图象经过点,所以由勾股定理可知:,,,,,的中点,直线OK的解析式为,由,解得或,点P在第一象限,,故答案为作轴于E,将线段OA绕点O顺时针旋转得到,作轴于F,则≌ ,可得,,即,求出线段的中垂线的解析式,利用方程组确定交点坐标即可.本题考查反比例函数图象上点的坐标特征,一次函数的应用等知识,解题的关键是学会构造全等三角形解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考填空题中的压轴题.17. 由得到,加上,则,于是可判断,由于,所以,则可根据切线的判定定理得到EF是的切线;过点O作于点D,根据垂径定理得,再证明 ∽ ,利用相似比可计算出;由可判断为等边三角形,则,则,则可计算出,然后根据三角形面积公式和扇形面积公式,利用进行计算即可.阴影部分四边形扇形扇形本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线也考查了等边三角形的判定与性质、相似三角形的判定与性质和扇形面积的计算.18. 本题涉及开平方、零次幂、绝对值、特殊角的三角函数,在计算时,需要针对每个考点分别进行计算,然后再根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.19. 利用同分母的分式减法法则,先算括号里面的,再做乘法运算.本题考查了分式的化简求值注意分式化简的结果需是整式或最简分式代入取值的结果应分母有理化.20. 根据的人数除以所占的百分比即可求出总人数.根据的人数的所占的百分比即可取出圆心角的度数.列出树状图即可求出答案.本题考查统计与概率,解题的关键是熟练运用统计与概率的公式,本题属于基础题型.21. 首先设A品牌服装每套进价为x元,则B品牌服装每套进价为元,根据关键语句“用2000元购进A种服装数量是用750元购进B种服装数量的2倍”列出方程,解方程即可;首先设购进A品牌的服装a套,则购进B品牌服装套,根据“可使总的获利超过1200元”可得不等式,再解不等式即可.本题考查了分式方程组的应用和一元一次不等式的应用,弄清题意,表示出A、B两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.22. 易证三角形ABC的是等腰三角形,再根据所对直角边是斜边的一半可求出DB的长,由结合勾股定理即可求出CD的长.本题考查了解直角三角形的应用,难度适中,解答本题的关键是构造直角三角形,解直角三角形,也考查了把实际问题转化为数学问题的能力.23. 将代入抛物线解析式求得a的值,从而得出抛物线的解析式,再令,得出x的值,即可求得点A、B的坐标;如图2,作轴于H,可证明 ∽ ,得出,由,即可得出的长,即可求得的坐标;分两种情况:如图3,以AB为直径作,交抛物线的对称轴于的下方,由圆周角定理得出点P坐标;如图4,类比第小题的背景将沿直线BC 对折,点A的对称点为,以为直径作,交抛物线的对称轴于的上方,作于E,交对称轴于F,求得,在中,由勾股定理得出得的长,从而得出点P的坐标即可.本题考查了二次函数的相关性质、一次函数的相关性质、一元二次方程的解法以及二次根式的运算、勾股定理等本题解题技巧要求高,而且运算复杂,因此对考生的综合能力提出了很高的要求.。
2018年深圳市中考数学试卷及答案,解答题详解本卷解答题部分共 7 小题,其中 3 道容易题,1 道中等题,3 道难题。
考查的知识点主要有负整数指数幂、特殊角三角函数值、绝对值、零指数幂、分式的运算、乘法公式、统计图表、菱形的判定与性质,相似三角形的判定与性质、分式方程,一元一次不等式、全等三角形的判定与性质、等腰三角形的性质、圆内接四边形的性质、锐角三角函数、二次函数的性质、待定系数法、二元一次方程组、图形的翻折、勾股定理、一元二次方程、轴对称等22个。
实数的混合运算虽然看起来简单,但考查的知识点比较多,需要熟记公式和细心。
代数式的化简和求值也是常见的题型,其中涉及分式的通分、约分,因式分解等。
第19题考查了统计图表的综合运用,是各地中考中常见的题型。
需要图表结合,并运用频率的计算公式或适当变形求解。
第20题虽然考查的知识点不多,但是属于一种“自定义概念”的新题型,主要考查学生的思维拓展能力,但是知识点还是我们学过的菱形以及相似三角形的判定和性质。
这种类型的题目目的在于引导同学们跳出书本知识,做到活学活用。
21题则属于常见的解应用题类型,不过这里的两小题一个是列分式方程求解,在得到方程的根以后要有检验的步骤,第二小题则是列一元一次不等式求解,难度不大。
22题考查的知识点较多,将圆的有关性质和三角形结合起来,涉及到全等三角形的判定与性质、等腰三角形的性质、圆内接四边形的性质、相似三角形的判定与性质、锐角三角函数的定义等等,图形和数量关系比较复杂,辅助线的添加需要一定的构思,有计算,有证明,综合性强,难度较大。
第23题则考查了二次函数的性质、图形的翻折、一元二次方程、轴对称等重量级知识点,且涉及到动点问题,而且放在平面直角坐标系中,需要分类讨论,综合性强,难度大,作为本卷的压轴题,确实是够分量的。
第⑴⑵两小题前面运用待定系数法求解析式相对比较简单,后面求平面直角坐标系内两点之间的距离则需要根据点的坐标再运用勾股定理求解。
2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)(2018•广东)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)(2018•广东)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×1083.(3分)(2018•广东)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)(2018•广东)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)(2018•广东)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)(2018•广东)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)(2018•广东)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE 与△ABC的面积之比为()A.B.C.D.8.(3分)(2018•广东)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)(2018•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)(2018•广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2018•广东)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)(2018•广东)分解因式:x2﹣2x+1=.13.(3分)(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)(2018•广东)已知+|b﹣1|=0,则a+1=.15.(3分)(2018•广东)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)(2018•广东)如图,已知等边△OA1B1,顶点A1在双曲线y=(x >0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)(2018•广东)计算:|﹣2|﹣20180+()﹣118.(6分)(2018•广东)先化简,再求值:•,其中a=.19.(6分)(2018•广东)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)(2018•广东)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)(2018•广东)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)(2018•广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)(2018•广东)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a ≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)(2018•广东)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)(2018•广东)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)(2018•广东)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【考点】2A:实数大小比较.【专题】1 :常规题型.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)(2018•广东)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×108【考点】1I:科学记数法—表示较大的数.【专题】2B :探究型.【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)(2018•广东)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)(2018•广东)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【考点】W4:中位数.【专题】542:统计的应用.【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2018•广东)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【考点】R5:中心对称图形;P3:轴对称图形.【专题】1 :常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)(2018•广东)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【考点】C6:解一元一次不等式.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)(2018•广东)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE 与△ABC的面积之比为()A.B.C.D.【考点】S9:相似三角形的判定与性质;KX:三角形中位线定理.【专题】55D:图形的相似.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)(2018•广东)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)(2018•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【考点】AA:根的判别式.【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)(2018•广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象.【专题】31 :数形结合.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2018•广东)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【考点】M5:圆周角定理.【专题】11 :计算题.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)(2018•广东)分解因式:x2﹣2x+1=(x﹣1)2.【考点】54:因式分解﹣运用公式法.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=2.【考点】21:平方根.【专题】11 :计算题;511:实数.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)(2018•广东)已知+|b﹣1|=0,则a+1=2.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【专题】1 :常规题型.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a +1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a ,b 的值是解题关键.15.(3分)(2018•广东)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【考点】MC :切线的性质;LB :矩形的性质;MO :扇形面积的计算.【专题】11 :计算题.【分析】连接OE ,如图,利用切线的性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)(2018•广东)如图,已知等边△OA1B1,顶点A1在双曲线y=(x >0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【考点】G6:反比例函数图象上点的坐标特征;KK:等边三角形的性质.【专题】1 :常规题型.【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17.(6分)(2018•广东)计算:|﹣2|﹣20180+()﹣1【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】1 :常规题型.【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)(2018•广东)先化简,再求值:•,其中a=.【考点】6D:分式的化简求值.【专题】11 :计算题;513:分式.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)(2018•广东)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;L8:菱形的性质.【专题】555:多边形与平行四边形.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)(2018•广东)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【考点】B7:分式方程的应用.【专题】34 :方程思想;521:一次方程(组)及应用;522:分式方程及应用.【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)(2018•广东)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)(2018•广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【考点】PB:翻折变换(折叠问题);KD:全等三角形的判定与性质;LB:矩形的性质.【专题】14 :证明题.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)(2018•广东)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a ≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】53:函数及其图象.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)(2018•广东)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【考点】MR:圆的综合题.【专题】15 :综合题;55A:与圆有关的位置关系.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD 中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)(2018•广东)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【考点】RB:几何变换综合题.【专题】152:几何综合题.【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,=•OM•NE=×1.5x×x,∴S△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G...MN=12﹣2.5x ,OG=AB=2, ∴y=•MN•OG=12﹣x ,当x=4时,y 有最大值,最大值=2,综上所述,y 有最大值,最大值为. 【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x 轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1=2.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a ,b 的值是解题关键.15.(3分)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【分析】连接OE ,如图,利用切线的性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图, ∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y=(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE 为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD 中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N 在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,∴S=•OM•NE=×1.5x×x,△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2018年广东省深圳市中考数学试卷
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是( )A.﹣6B.C.D.62.(3.00分)260000000用科学记数法表示为( )A.0.26×109B.2.6×108C.2.6×109D.26×107
3.(3.00分)图中立体图形的主视图是( )
A.B.C.D.4.(3.00分)观察下列图形,是中心对称图形的是( )
A.B.C.D.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是(
)A.85,10B.85,5C.80,85D.80,106.(3.00分)下列运算正确的是( )A.a2•a3=a6B.3a﹣a=2aC.a8÷a4=a2D.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A.(2,2)B.(2,3)C.(2,4)D.(2,5)8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )A.∠1=∠2B.∠3=∠4C.∠2+∠4=180°D.∠1+∠4=180°9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.B.
C.D.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是( )
A.3B.C.6D.11.(3.00分)二次函数y=ax2
+bx+c(a≠0)的图象如图所示,下列结论正确是
( )
A.abc>0B.2a+b<0C.3a+c<0D.ax2
+bx+c﹣3=0有两个不相等的实数根
12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,
PA∥x轴,下列说法正确的是( )①△AOP≌△BOP;②S△AOP=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△
BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④
二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2
﹣9= .
14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率: .15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是 .
16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC= .
三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.
18.(6.00分)先化简,再求值:,其中x=2.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为 人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?
20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.
21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.
23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.
2018年广东省深圳市中考数学试卷参考答案与试题解析
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是( )A.﹣6B.C.D.6
【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.
2.(3.00分)260000000用科学记数法表示为( )A.0.26×109B.2.6×108C.2.6×109D.26×107
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.(3.00分)图中立体图形的主视图是( )
A.B.C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.
4.(3.00分)观察下列图形,是中心对称图形的是( )
A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是( )A.85,10B.85,5C.80,85D.80,10【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.
6.(3.00分)下列运算正确的是( )A.a2•a3=a6B.3a﹣a=2aC.a8÷a4=a2D.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4
,故此选项错误;
D、+无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.
7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A.(2,2)B.(2,3)C.(2,4)D.(2,5)【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.
8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )
A.∠1=∠2B.∠3=∠4C.∠2+∠4=180°D.∠1+∠4=180°【分析】依据两直线平行,同位角相等,即可得到正确结论.