单因素方差分析培训
- 格式:ppt
- 大小:10.63 MB
- 文档页数:42
第62讲单因素方差分析(参数估计及均值的多重比较)在第61讲建立了单因素方差分析模型:012112:...,:,,...,r r H H μμμμμμ===解决了问题一:检验假设不全相等.2,~(0,),1,2,,1,2,,.ij i ij ij ij i X N j n i r μεεσε=+⎧⎪⎨⎪==⎩ 各独立,,除此之外,还有两个问题需要解决.问题二:未知参数的估计2,,1,...,.i i r σμ=单因素试验方差分析模型中的未知参数有:其无偏估计为:22ˆ1;ˆ2,1,2,...,E E i i i S MS n r X i r σσμμ∙==-==()的估计()的估计.0H 问题三:在方差分析中,如果拒绝原假设,只能说明均值不全相等。
那么,它们中有没有部分是相等的?2201(,)(,)():,:i j i j i j i j N N i j H H μσμσμμμμμμ-≠=≠比较和的差异的两个方法:(1)作的区间估计;(2)作的假设检验。
211(),(),i j i j i j i j E X X D X X n n μμσ∙∙∙∙⎛⎫-=--=+ ⎪ ⎪⎝⎭因为2ˆi j E X X MS σ∙∙-=且与相互独立。
2()()()()()(11)(11)~()i j i j i j i j E i j E i j X X X X S n r n n MS n n t n r μμμμσσ∙∙∙∙------=-++-故()1i j μμα--得的水平为的置信区间()2()(11)i j E i j X X t n r MS n n α∙∙-±-+(1)置信区间(2)假设检验01:,:,i j i j H H i jμμμμ=≠≠,(11)i j ij E i j XX t MS n n ∙∙-=+检验统计量0~(),ij H t t n r -当成立时,2{()}.ij W t t n r α=≥-拒绝域例1.为了比较三种不同类型日光灯管的寿命(小时),现从每种类型日光灯管中抽取8个,总共24个日光灯管进行老化试验,下页数据是经老化试验后测算得出的各个日光灯管的寿命(小时)。
幻灯片1【例】调查了5个不同小麦品系的株高,结果如下。
试判断这5个品系的株高是否存在显著性差异。
5个小麦品系株高(cm)调查结果幻灯片2第八章单因素方差分析One-factor analysis of variance幻灯片3本章内容第一节方差分析简述第二节固定效应模型第三节随机效应模型第四节多重比较第五节方差分析应具备的条件幻灯片4第一节方差分析简述一、方差分析的一般概念1、概念方差分析( analysis of variance,ANOVA):是同时判断多组数据平均数之间差异显著性的统计假设检验,是两组数据平均数差异显著性t 检验的延伸。
ANOVA 由英国统计学家R.A.Fisher首创,用于推断多个总体均数有无差异。
幻灯片5单因素方差分析(一种方式分组的方差分析):研究对象只包含一个因素(factor)的方差分析。
单因素实验:实验只涉及一个因素,该因素有a个水平(处理),每个水平有n次实验重复,这样的实验称为单因素实验。
水平(level):每个因素不同的处理(treatment)。
幻灯片6方差分析Analysis of Variance (ANOVA )因素也称为处理因素(factor)(名义分类变量),每一处理因素至少有两个水平(level)(也称“处理组”)。
一个因素(水平间独立)——单向方差分析(第八章)两个因素(水平间独立或相关)——双向方差分析(第九章)一个个体多个测量值——重复测量资料的方差分析 ANOVA与回归分析相结合——协方差分析目的:用这类资料的样本信息来推断各处理组间多个总体均数的差别有无统计学意义。
幻灯片7【例】随机选取4窝动物,每窝中均有4只幼仔,称量每只幼仔的出生重,结果如下。
判断不同窝的动物出生重是否存在显著性差异。
4窝动物的出生重单位:g幻灯片82、单因素方差分析的数据格式:幻灯片9二、不同处理效应与不同模型 1、方差分析中每一观测值的描述——线性统计模型yij :在第i 水平下的第j 次观测值; μ:总平均数,是对所有观测值的一个参数;αi :处理效应,是仅限于对第i 次处理的一个参数; εij :随机误差成分。