全国各地2008年数学高考真题及答案-(江西.文)含详解
- 格式:doc
- 大小:1.03 MB
- 文档页数:10
绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。
第Ⅰ卷考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上作答。
若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
参考公式如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B ,相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅ 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 343VR π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k kn k n n P k C p p -=-一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数sin 2cos 2z i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【解析】D 。
因sin 20,cos 20><所以sin 2cos 2z i =+对应的点在第四象限。
2.定义集合运算:{},,.A B z z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为A .0B .2C .3D .6 【解析】D 因{0,2,4}A B *=。
3.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是A .1[,3]2B .10[2,]3C .510[,]23D .10[3,]3【解析】B. (换元法)令()t f x =,则1[,3]2t ∈,110()2,[2,]3F x t t =+≥ ∈4.1x →=A .12 B .0 C .12- D .不存在 【解析】A1x x →→=112x →==. 5.在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 【解析】A. 211ln(1)1a a =++,321ln(1)2a a =++,…,11ln(1)1n n a a n -=++- 121321()()()n n n a a a a a a a a -⇒=+-+-+⋅⋅⋅+-1234ln()()()()2ln 1231na n n =+⋅⋅⋅⋅=+- .6.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是【解析】D.函数2tan ,tan sin ,,2tan sin tan sin 32sin ,tan sin ,,2x x x x y x x x x x x x x ππππ⎧⎛⎤<∈ ⎪⎥⎪⎝⎦=+--=⎨⎛⎫⎪≥∈ ⎪⎪⎝⎭⎩当时当时即即7.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C .(0,)2 D.[,1)2【解析】C . 由题知,垂足的轨迹为以焦距为直径的圆,则2222c b c b a c <⇒<=-212e ⇒<。
2008年全国各地高考数学试题及解答分类汇编大全(08三角函数 三角恒等变换)一、选择题:1.(2008安徽文)函数sin(2)3y x π=+图像的对称轴方程可能是( D )A .6x π=-B .12x π=-C .6x π=D .12x π=2.(2008安徽理)将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C )A .(,0)12π-B .(,0)6π-C .(,0)12π D .(,0)6π3.(2008福建文)函数cos ()y x x R =∈的图像向左平移2π个单位后,得到()y g x =的图像,则()g x 的解析式为( A )A.sin x - B.sin x C.cos x - D.cos x4.(2008福建理)函数f (x )=cos x (x ∈R )的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象, 则m 的值可以为(A )A.2πB.πC.-πD.-2π5.(2008广东文)已知函数R x x x x f ∈+=,sin )2cos 1()(2,则)(x f 是( D )A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数6、(2008海南、宁夏文)函数()cos22sin f x x x =+的最小值和最大值分别为( C )A. -3,1B. -2,2C. -3,32D. -2,327、(2008海南、宁夏理)已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=( B ) A. 1 B. 2 C. 1/2 D. 1/38、(2008海南、宁夏理)0203sin 702cos 10--=( C )A. 12B. C. 2D.9. (2008湖北文、理)将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′, 若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是(.A ) A .512π B.512π- C.1112π D.1112π-2005年普通高等学校招生全国统一考试数学分类整理- 1 -10. (2008湖南理)函数2()sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( C. ) A.1C.3211.(2008江西文)函数sin ()sin 2sin2x f x xx =+是(A )A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数12.(2008江西文、理)函数tan sin tan sin y x x x x =+--在区间(2π,23π)内的图象大致是(D )A B C D13.(2008全国Ⅰ卷文) 2(sin cos )1y x x =--是( D ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数14.(2008全国Ⅰ卷文)为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像( C ) A .向左平移π6个长度单位 B .向右平移π6个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位15.(2008全国Ⅰ卷理)为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位16. (2008全国Ⅱ卷文).若sin 0α<且tan 0α>是,则α是( C ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角17.(2008全国Ⅱ卷理)若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( B )A .1BCD .22008年高考数学试题分类选编北大附中广州实验学校 王 生E-mail: wangsheng@第3页 (共15页)18.(2008全国Ⅱ卷文)函数x x x f cos sin )(-=的最大值为( B ) A .1 B .2 C .3D .219.(2008山东文、理)函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )20.(2008山东文、理)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( C )A. BC .45-D .4521.(2008陕西文) sin 330︒等于( B ) A. B .12-C .12D22.(2008四川文、理)()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x23.(2008四川理)若02,sin απαα≤≤,则α的取值范围是:( C ) (A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫ ⎪⎝⎭23.【解】:∵sin αα>∴sin 0αα>,即12sin 2sin 023πααα⎛⎫⎛⎫=-> ⎪ ⎪ ⎪⎝⎭⎝⎭又∵02απ≤≤ ∴5333πππα-≤-≤,∴03παπ≤-≤ ,即4,33x ππ⎛⎫∈ ⎪⎝⎭故选C ;24.(2008四川理) 设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f =(D)()'00f=24.【解】:∵()()sin f x x ωϕ=+是偶函数∴由函数()()sin f x x ωϕ=+图象特征可知0x =必是()f x 的极值点, ∴()'00f = 故选D25.(2008天津理)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是( B ) (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数xxA .B .C .D .2005年普通高等学校招生全国统一考试数学分类整理- 1 -(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数26.(2008天津文)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( C ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈ ⎪⎝⎭R ,C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R ,D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R ,27. (2008天津文)设5sin7a π=,2cos 7b π=,2tan 7c π=,则( D ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<28.(2008浙江文)函数1)cos (sin 2++=x x y 的最小正周期是( B ) (A )2π(B )π (C)23π (D) 2π29.(2008浙江文、理)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的 图象和直线21=y 的交点个数是(C ) (A )0 (B )1 (C )2 (D )430.(2008浙江理)若,5sin 2cos -=+a a 则a tan =( B ) (A )21 (B )2 (C )21- (D )2-31.(2008重庆文)函数f (x≤x ≤2π)的值域是( C )(A)[-11,44] (B)[-11,33] (C)[-11,22] (D)[-22,33]32. (2008重庆理)函数f(x)02x π≤≤) 的值域是 (B )(A )[-2] (B)[-1,0] (C )] (D )]二、填空题:1.(2008北京文)若角α的终边经过点P (1,-2),则tan 2α的值为 43.2008年高考数学试题分类选编北大附中广州实验学校 王 生E-mail: wangsheng@第5页 (共15页)2.(2008北京文、理)已知函数2()cos f x x x =-,对于[-22ππ,]上的任意x 1,x 2,有如下条件: ①x 1>x 2; ②x 21>x 22; ③|x 1|>x 2.其中能使f (x 1)> f (x 2)恒成立的条件序号是 ② .3. (2008广东理)已知函数R x x x x x f ∈-=,sin )cos (sin )(,则)(x f 的最小正周期是__π__.4. (2008江苏)()cos 6f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= 10 .5.(2008辽宁文)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=6.(2008辽宁理)已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=_____143_____.7.(2008上海理)函数f (x )=3sin x +sin(π2+x )的最大值是 2.8.(2008浙江文)若==+θθπ2cos ,53)2sin(则 257- .三、解答题:1.(2008安徽文、理)已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域1.解:(1)()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )2x x x x x x =+-+221cos 22sin cos 22x x x x =++-1cos 22cos 22x x x =- s i n (2)6x π=- 2T 2ππ==周期∴2005年普通高等学校招生全国统一考试数学分类整理- 1 -(2)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()1222f f ππ-=<=,∴当12x π=-时,()f x 取最小值所以 函数 ()f x 在区间[,]122ππ-上的值域为[2-2.(2008北京文、理)已知函数2()sin sin()(0)2f x x x x πωωωω=++的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数f (x )在区间[0,23π]上的取值范围. 2.解:(Ⅰ)1cos 2()22x f x x ωω-=11cos 222x x ωω-+ =1sin(2).62x πω-+因为函数f (x )的最小正周期为π,且ω>0,所以22ππω= 解得ω=1.(Ⅱ)由(Ⅰ)得1()sin(2).62f x x π=-+ 因为0≤x ≤23π, 所以12-≤26x π-≤7.6π所以12-≤(2)6x π-≤1.因此0≤1sin(2)62x π-+≤32,即f (x )的取值范围为[0,32]4.(2008福建文、理) 已知向量(sin ,cos ),(1,2),m A A n ==-且0m n ⋅=。
2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。
第Ⅰ卷考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上作答。
若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
参考公式如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B ,相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅ 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 343V R π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)kkn kn n P k C p p -=-一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数sin 2cos 2z i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.定义集合运算:{},,.A B z z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为A .0B .2C .3D .63.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是A .1[,3]2B .10[2,]3C .510[,]23 D .10[3,]34.1limx →=A .12B .0C .12- D .不存在5.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++6.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是7.已知1F 、2F 是椭圆的两个焦点,满足120M F M F ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C.(0,2D.28.6101(1(1++展开式中的常数项为A .1B .46C .4245D .42469若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是 A .1122a b a b + B .1212a a b b + C .1221a b a b + D .1210.连结球面上两点的线段称为球的弦。
2008年普通高等学校招生全国统一考试理科数学 第Ⅰ卷参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-=,,, 一、选择题 1.函数y )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .2133+b cB .5233-c bC .2133-b cD .1233+b cA .B .C .D .4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2 B .1 C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( )A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()f x f x x --<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x y a b +=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b +≤ D .22111a b +≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B. C. D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96B .84C .60D .48第Ⅱ 卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c-=. (Ⅰ)求tan cot A B 的值;(Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.C DE AB21.(本小题满分12分)双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b -≥.证明:1k a b +>.答案与解析:1.C解析: 由(1)x x x -≥≥0,0得0x x =≥1,或; 2.A解析:根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图象可知. 3. A解析:2(),322AD AB AC AD AD AB AC -=-=+=c +b ,1233AD =c +b4. D解析:222()(21)2(1)0,1a i i a ai i a a i a +=+-=-+->=- 5.C解析:243511014,104,3,10454013595a a a a a d S a d +=+==-==+=-+=由得6. B解析:2(1)2(1)21,(1),()y x xy x e f x e f x e --=⇒=-==7. D解析:3212211,,11(1)2x x y y y x x x =+''==+=-=----,2,2a a -==-8.A解析:π55cos 2sin(2)sin 2()3612y x x x ππ⎛⎫=+=+=+ ⎪⎝⎭,只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像. 9.D解析:由奇函数()f x 可知()()2()0f x f x f x x x --=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或. 10.D解析:由题意知直线1x ya b +=与圆221x y +=22111a b+1,≥.另解:设向量11(cos ,sin ),(,)a b ααm =n =,由题意知cos sin 1a b αα+=由⋅≤m n m n可得cos sin 1a b αα=+11.C解析:由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB =,棱柱的高13AO a ==(即点1B 到底面ABC 的距离),故1AB 与底面ABC所成角的正弦值为11AO AB =. 另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060长度均为a ,平面ABC 的法向量为111133OA AA AB AC=--,11AB AB AA =+ 2111126,,333OA AB a OA AB ⋅===则1AB 与底面ABC 所成角的正弦值为111123OA AB AO AB ⋅=.12.B解析:分三类:种两种花有24A 种种法;种三种花有342A 种种法;种四种花有44A 种种法.共有234444284A A A ++=. 另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯= 13.答案:9解析:如图,作出可行域,作出直线0:20l x y -=,将0l 平移至过点A 处时,函数2z x y =-有最大值9. 14. 答案:2解析:由抛物线21y ax =-的焦点坐标为1(0,1)4a -为坐标原点得,14a =,则2114y x =-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯= 15.答案:38解析:设1AB BC ==,7cos 18B =-则222252cos 9AC AB BC AB BC B =+-⋅⋅=53AC =,582321,21,3328c a c e a =+====.16.答案:16解析:设2AB =,作CO ABDE ⊥面,OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --cos 1CH OH CH CHO =⋅∠=,结合等边三角形ABC与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM CH ===11(),22AN AC AB EM AC AE =+=-,11()()22AN EM AB AC AC AE ⋅=+⋅-=12 故EM AN ,所成角的余弦值16AN EMAN EM⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,,(,,222222M N ---,则3121321(,,),(,,),,322222AN EM AN EM AN EM ==-⋅===故EM AN ,所成角的余弦值16AN EMAN EM ⋅=.17.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a B b A c-= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B-==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,∴AF CE ⊥.tan tan 2CED FDC ∠=∠=,∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥,则CGE ∠即为所求二面角的平面角.23AC CD CG AD==,DG =,EG ==,CE =222cos 2CG GE CE CGE CG GE +-∠==,πarccos CGE ∴∠=-⎝⎭,即二面角C AD E --的大小πarccos -⎝⎭.19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为x =即()f x在3a ⎛--∞ ⎪⎝⎭,递增,33a a ⎛--+ ⎪⎝⎭,递减,3a ⎛⎫-++∞⎪ ⎪⎝⎭递增 (2)2313--,且23a >解得:74a ≥20.解:(Ⅰ)对于甲:对于乙:0.20.40.20.80.210.210.64⨯+⨯+⨯+⨯=.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠==由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e =. (Ⅱ)过F 直线方程为()a y x c b =--,与双曲线方程22221x y a b -=联立将2a b =,c =代入,化简有22152104x x b b -+=124x =-=将数值代入,有4=解得3b = 故所求得双曲线方程为:221369x y -=.22. 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b -≥.证明:1k a b +>. 22.解析:(Ⅰ)证明:()ln f x x x x =-,()ln f x x '=-,当(01)x ∈,时,()ln 0f x x '=-> 故函数()f x 在区间(01),是增函数; (Ⅱ)证明:(数学归纳法证明)(ⅰ)当1n =时,101a <<,11ln 0a a < 211111()ln a f a a a a a ==->由函数()f x 在区间(01),是增函数,且函数()f x 在1x =处连续,则()f x 在区间(01],是增函数,21111()ln 1a f a a a a ==-<,即121a a <<成立; (ⅱ)假设当(*)x k k N =∈时,11k k a a +<<成立,即1101k k a a a +<<<≤那么当1n k =+时,由()f x 在区间(01],是增函数,1101k k a a a +<<<≤得 1()()(1)k k f a f a f +<<.而1()n n a f a +=,则121(),()k k k k a f a a f a +++==, 121k k a a ++<<,也就是说当1n k =+时,11n n a a +<<也成立; 根据(ⅰ)、(ⅱ)可得对任意的正整数n ,11n n a a +<<恒成立.(Ⅲ)证明:由()ln f x x x x =-.1()n n a f a +=可得 k k k k a a b a b a ln 1--=-+11ln k i i i a b a a ==--∑ 若存在某i k ≤满足i a b ≤,则由⑵知:1k i a b a b +-<-≥0 若对任意i k ≤都有b a i >,则k k k k a a b a b a ln 1--=-+ 11ln k i i i a b a a ==--∑11ln k i i a b a b ==--∑11()ln k i i a b a b==--∑b ka b a ln 11--> b ka b a ln 11--≥)(11b a b a --->0=,即1k a b +>成立.。
2008年全国各地高考数学试题及解答分类汇编大全(19选修4:几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换)一、几何证明选讲:1. (2008广东文、理)已知PA 是圆O 的切线,切点为A ,PA=2. AC 是圆O 的直径, PC 与圆O 交于点B,PB=1, 则圆O 的半径R=___3____.1.解: 如图,因为PA 是圆O 的切线,PBC 是圆O 的割线,PA=2, PB=1.由切割线定理,知PC PB PA ⋅=2,所以PC=4. 在Rt △PAC 中,由购股定理AC 2=16-4=12,所以AC=23.所以, 圆O 的半径R=3.2、(2008海南、宁夏文、理)如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线AP垂直直线OM ,垂足为P 。
(1)证明:O M ·OP = OA 2;(2)N 为线段AP 上一点,直线NB 垂直直线ON ,且交圆O 于B 点。
过B 点的切线交直线ON 于K 。
证明:∠OKM = 90°。
2.解:(Ⅰ)证明:因为MA 是圆O 的切线,所以OA AM ⊥.又因为AP OM ⊥.在Rt OAM △中,由射影定理知,2OA OM OP =g .(Ⅱ)证明:因为BK 是圆O 的切线,BN OK ⊥.同(Ⅰ),有2OB ON OK =g,又OB OA =, 所以OP OM ON OK =g g ,即ON OMOP OK=. 又NOP MOK =∠∠,所以ONP OMK △∽△,故90OKM OPN ==o∠∠.3.(2008江苏) 如图,设△ABC 的外接圆的切线AE 与BC 的延长线交于点E ,∠BAC 的平分线与BC 交于点D .求证:2ED EB EC =g . 证明:如图,因为AE 是圆的切线, 所以,ABC CAE ∠=∠,又因为AD 是BAC ∠的平分线, 所以 BAD CAD ∠=∠从而 ABC BAD CAE CAD ∠+∠=∠+∠ 因为 ADE ABC BAD ∠=∠+∠, DAE CAD CAE ∠=∠+∠ 所以 ADE DAE ∠=∠,故EA ED =.因为 EA 是圆的切线,所以由切割线定理知, 2EA EC EB =⋅,而EA ED =,所以2ED EC EB =gK BPA OMNB C ED A二、坐标系与参数方程:1.(2008重庆文)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为 (C )(A)(x -1)2+(y +1)2=1 (B) (x +1)2+(y +1)2=1(C) (x -1)2+(y -1)2=1(D) (x -1)2+(y -1)2=12.. (2008湖北文)圆34cos ,()24sin x C y θθθ=+⎧⎨=-+⎩为参数的圆心坐标为 (3,-2),和圆C 关于直线0x y -=对称的圆C ′的普通方程是 (x +2)2+(y -3)2=16 .3.(2008福建理)若直线3x+4y+m=0与圆⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是 (,0)(10,)-∞⋃+∞ .4.(2008广东文、理)已知曲线21,C C 的极坐标方程分别为θρθρcos 4,3cos ==(20,0πθρ<≤≥),则曲线1C 与2C 交点的极坐标为__⎪⎭⎫⎝⎛6,32π___. 4.解: 曲线21,C C 的直角坐标方程分别为4)2(,322=+-=y x x ,且0≥y ,两曲线交点的 直角坐标为(3,3). 所以,交点的极坐标为⎪⎭⎫⎝⎛6,32π.5.(2008江苏)在平面直角坐标系xOy 中,点()P x y ,是椭圆2213x y +=上的一个动点,求S x y =+的最大值.5.解: 因椭圆2213x y +=的参数方程为 (sin x y φφφ⎧=⎪⎨=⎪⎩为参数) 故可设动点P的坐标为,sin φφ),其中02φπ≤<.因此1sin sin )2sin()23S x y πφφφφφ=+=+=+=+ 所以。
2008年江西省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(2008•江西)在复平面内,复数z=sin2+icos2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(2008•江西)定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.63.(2008•江西)若函数y=f(x)的值域是,则函数的值域是()A. B.C.D.4.(2008•江西)=()A.B.0 C.D.不存在5.(2008•江西)在数列{an}中,a1=2,,则an=().A.2+lnn B.2+(n﹣1)lnn C.2+nlnn D.1+n+lnn6.(2008•江西)函数y=tanx+sinx﹣|tanx﹣sinx|在区间内的图象是()A.B.C.D.7.(2008•江西)已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,] C.(0,)D.[,1)8.(2008•江西)展开式中的常数项为()A.1 B.46 C.4245 D.42469.(2008•江西)若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中值最大的是()A.a1b1+a2b2 B.a1a2+b1b2 C.a1b2+a2b1 D.10.(2008•江西)连接球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于、,M、N分别为AB、CD的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB、CD可能相交于点M;②弦AB、CD可能相交于点N;③MN的最大值为5;④MN的最小值为1其中真命题的个数为()A.1个B.2个C.3个D.4个11.(2008•江西)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.B.C.D.12.(2008•江西)已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2) B.(0,8)C.(2,8)D.(﹣∞,0)二、填空题(共4小题,每小题4分,满分16分)13.(2008•江西)直角坐标平面上三点A(1,2)、B(3,﹣2)、C(9,7),若E、F为线段BC的三等分点,则=_________.14.(2008•江西)不等式的解集为_________.15.(2008•江西)过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则=_________.16.(2008•江西)如图(1),一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a升水时,水面恰好经过正四棱锥的顶点P.如果将容器倒置,水面也恰好过点P(图(2))有下列四个命题:A.正四棱锥的高等于正四棱柱高的一半B.将容器侧面水平放置时,水面也恰好过点PC.任意摆放该容器,当水面静止时,水面都恰好经过点PD.若往容器内再注入a升水,则容器恰好能装满.其中真命题的代号是:_________(写出所有真命题的代号).三、解答题(共6小题,满分74分)17.(2008•江西)在△ABC中,角A,B,C所对应的边分别为a,b,c,,,2sinBcosC=sinA,求A,B及b,c18.(2008•江西)某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令ξi(i=1,2)表示方案实施两年后柑桔产量达到灾前产量的倍数.(1).写出ξ1、ξ2的分布列;(2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?19.(2008•江西)数列{an}为等差数列,an为正整数,其前n项和为Sn,数列{bn}为等比数列,且a1=3,b1=1,数列是公比为64的等比数列,b2S2=64.(1)求an,bn;(2)求证.20.(2008•江西)如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知.(1)求证:B1C1⊥平面OAH;(2)求二面角O﹣A1B1﹣C1的大小.21.(2008•江西)设点P(x0,y0)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2﹣y2=1的两条切线PA、PB,切点为A、B,定点.(1)求证:三点A、M、B共线.(2)过点A作直线x﹣y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程.22.(2008•江西)已知函数,x∈(0,+∞).(1)当a=8时,求f(x)的单调区间;(2)对任意正数a,证明:1<f(x)<2.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(2008•江西)在复平面内,复数z=sin2+icos2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义。
绝密★启用前2008年普通高等学校招生全国统一考试江西卷数学试题(理科)全解全析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A+B )=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A在一次试验中发生的概率是P,那么 V=34πR 3n 次独立重复试验中恰好发生k次的概率 其中R 表示球的半径P n (k )=C k n Pk(1一P )kn -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =s in 2+i cos 2对应的点位于A.第一象限 B .第二象限 C .第三象限 D .第四象限【标准答案】D ﻫ【试题解析】易知sin2>0 ,cos 2<0。
根据复数的几何意义可知z 所对应的点位于第四象限。
ﻫ【高考考点】三角函数的定义和复数的几何意义【易错提醒】实数值与三角函数角的大小的对应。
ﻫ【学科网备考提示】注意复数的几何意义。
2.定义集合运算:A*B={z |z =x y,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为A.0B.2 C.3 D.6 【标准答案】D 【试题解析】A,B两个集合中的元素的乘积:1⨯0=0,1⨯2=2,2⨯0=0,2⨯2=4.故集合A *B有三个元素0,2,4,它们的和为6。
2008年全国各地高考数学试题及解答分类汇编大全一、选择题: 1. (2008安徽文)A . (1,1) (10平面向量)T T T若 AB =(2,4) , AC =(1,3),则 BC 二(B B . (- 1, - 1) C . (3, 7) D . (-3,-7) 2. (2008安徽理)在平行四边形 ABCD 中,AC 为一条对角线,若 (B )A . (- 2,- 4)B . (- 3,- 5)C . (3, 5) )二(2,4) , 7C 二(1,3),则 BD = D . (2, 4)3. (2008广东文)已知平面向量 a =(1,2),b =(-2,m),且 a // b ,则 2a 3b = (C ) A . (-2 , -4 ) B. (-3 , -6 ) C. (-4 , -8 ) D. (-5 , -10 )4. (2008广东理)在平行四边形 ABCD 中, AC 与BD 交于点 于点 F.若 AC =a , BD =b ,则 AF =( B ) A 1 1 2 1 1 1 A . a b B. a b C. a b D. 4 2 3 3 2 4 ---- 1 1 l 1 14.解法 1: AO a , AD = AO OD a b , 2 2 2一 11 1 1 - 1 - 1 r 1 r AE (AO AD)aba a b , 2 2 12 22 丿 24 由A E 、F 三点共线,知AF 二怎AE,, 1 而满足此条件的选择支只有 B ,故选B. EF JEG 」AE , 所以AF = —AE , 由解法1 知, 3 3 3 ■ 4 - 4 (1 • 1「2 -1 -AF =AE a + b i = a 十 b , 故选B.3 3 、4丿 3 34.解法2:如图,分别过点 D 、O 作直线AOAD 的平行 线,两平行线相交于 G 点,显然F 是厶DOG 勺重心, O, E 是线段OD 的中点,AE 的延长线与 CD 交 5、(2008海南、宁夏文)已知平面向量 ■ a - b 与a 垂直,则■是(A A. - 1 B. 1 C. — 2a = (1,一 3),b = (4,- 2), ) D. 2 6. (2008湖北文、 A.(-15,12) 理)设 a=(1,-2), b=(-3,4), c=(3,2),则(a+2b) • c= (C ) B.0 C.-3 D.-11 7. (2008 湖南理)设D 、E 、F 分别是△ ABC 的三边BC 、CA 、AB 上的点,且 DC = 2BD, CE = 2EA, AF =2FB,则 AD BE CF 与 BC ( A.) A.反向平行 B.同向平行 C 互相垂直 AC 亠2AB 1 【解析】由定比分点的向量式得 :AD 二 =》AC AB, .1+2 3 3 匸 =1 B C 2BA , CF = ^CA 2CB,以上三式相加得 一 一 3 3 =_1訝所以选A. 3 , D.既不平行也不垂直 AD - BE CF& (2008辽宁文)已知四边形ABCD 的三个顶点A (0,2) , B (-1, -2) , C (3,,且= 2AD ,则顶 点D 的坐标为(A )(2008 海南、宁夏理)已知向量 a=(0,—1,1), b = (4,1,0), |ha + b|=J39 且九 >0,则九=___32又 AB AD ^1 2 cos 1=(AF),. D 对3•••真命题的代号是代B,Df 7 ) D (1A . i 2,—B. 2, —— I 2丿 I 2c . (3,2)D . (1,3)9. (2008辽宁理)已知O, A, B 是平面上的三个点, 直线AB 上有一点 (A )C ,满足 2AC • CB=O ,则 OC =A . 2OA-OBB . -OA 2OB10 . (2008全国I 卷文、2. 1 A . b c理)在△ ABC 中,AB 5 2uB . — c b3 3T I T T=c , AC = b .若点 D 满足 BD = 2DC ,则 AD = ( A )2 1 C . 一 b —-c3 3 11. (2008 四川文)设平面向量 a =:i 3,5,b - -2,1,则 a -2b =( A )(A)7,3(B) 7,7(C)1,7(D)1,312 .( 2008浙江理)C)已知a ,b 是平面内两个互相垂直的单位向量,若向量 C ) c 满足(a - c) (b - c) = 0 ,(A) 1(B) 2(C )V2 (D)2、填空题: (2008北京文)已知向量a 与b 的夹角为120°,且丨 a | =|b|=4,那么-b 的值为 -8(2008北京理)已知向量a 与b 的夹角为 120,且 a =b=4,那么 bl(2a b )的值为_ 0(2008江西文)如图,,正六边形 ABCDEF 中,有下列四个命题:AC AF [2BC ) AD 二 2AB 2AFAC fAD 『AD AB| _t (AD AF)EF =AD(AF EF)A 、B 、D (写出所有真命题的代号)D .其中真命题的代号是T T T T T TAC AF 二 AC Cp 二 AD 「2匹,二A 对4. 取AD 的中点O 则AD 二2AO =2AB AF , . B 对T T 厂 JI T T=1,则 AC AD = .3 2 cos 3,而 AD AF =2 1 6设AB 31cos 1 C 错35. (2008江苏)a , b的夹角为120 ,5 •【解析】本小题考查向量的线性运算.(2008天津理)如图,在平行四边形则AD AC 二 3 .13 .解析:令AB = a , AD = b,则ABCD 中,AC 二1,2 ,BD - -3,2 ,D辰]a;b j(1,2)二 a=(2,0), b=(_1,2) -a b =(-3,2)1 4=1 , b =3 则5a -b= 71 J呻片2 彳i2斗2”弓2 5a-b =(5a-b)=25a -10a Lb+b二7—►__ ——►—&(2008 湖南文)已知向量a = (1^3) , b = (―2,0),则a +b= ______ 2(2008江西理)直角坐标平面内三点A 1,2、B 3,-2、C 9,7 ,若E、F为线段BC的三等分点, 则AE • AF = 22 •(2008全国n卷文、理)设向量a = (1,2), b=(2,3),若向量则,- 2 •a - b与向量c = (-4, -7)共线,9.(2008陕西文、理)关于平面向量a, b, c .有下列三个命题:①若a b= a c,贝U b=c .②若a -(1, k), b -(—2,6), a //③非零向量a和b满足|a |=| b |=| a -b|,则a与a b的夹角为其中真命题的序号为②•(写出所有真命题的序号)b,贝U k = -3 •60 •10 •(2008上海文、理)若向量a , b满足a =1, b =2且a与b的夹角为二,则a+b311 .(2008浙江文)已知a是平面内的单位向量,若向量b满足-b)=0,则|b |的取值范围是[0,1] 。
2008年普通高等学校招生全国统一考试(江西卷)数 学(理科)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数sin 2cos 2z i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 解:因sin 20,cos 20><所以sin 2cos 2z i =+对应的点在第四象限。
2.定义集合运算:{},,.A B z z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为A .0B .2C .3D .6 解:因*{0,2,4}A B =3.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是 A .1[,3]2B .10[2,]3C .510[,]23D .10[3,]3 解:.令()t f x =,则1[,3]2t ∈,110()[2,]3F x t t =+∈4.1x →=A .12 B .0 C .12- D .不存在解:11x x →→=112x →== 5.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 解: 211ln(1)1a a =++,321ln(1)2a a =++,…,11ln(1)1n n a a n -=++- 1234ln()()()()2ln 1231n na a n n ⇒=+=+-6.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是解:函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x <⎧=+--=⎨≥⎩当时当时,选D7.已知1F 、2F是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C . D . 解:由题知,垂足的轨迹为以焦距为直径的圆,则2222212c b c b a c e <⇒<=-⇒< 又(0,1)e ∈,所以1(0,)2e ∈ 8. 610(1(1展开式中的常数项为 A .1 B .46 C .4245 D .4246解:常数项为346861061014246C C C C ++=9若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是 A .1122a b a b + B .1212a a bb + C .1221a b a b + D .12解:取12120.1,0.9,0.2,0.8a a b b ====,则11220.74a b a b +=,12120.25a a bb +=,12210.26a b a b +=,所以选A直接解:22121212121()()222a ab b a a b b +++≤+= 112212************()()()()()0a b a b a b a b a a b a a b a a b b +-+=-+-=--≥ 11221221()a b a b a b a b ⇒+≥+12121122112112221()()2()a a b b a b a b a b a b a b a b =++=+++≤+112212a b a b ⇒+≥AB-C D-10.连结球面上两点的线段称为球的弦。
G 文科数学试题 第1页(共4页) 1
绝密★启用前 2008年普通高等学校招生全国统一考试(江西卷)
文科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。
第Ⅰ卷
考生注意: 1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2. 第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。第Ⅱ卷用黑色墨水签字笔在答题卡上作答。若在试题卷上作答,答案无效。 3. 考试结束,监考员将试题卷、答题卡一并收回。 参考公式
如果事件,AB互斥,那么 球的表面积公式 ()()()PABPAPB 24SR
如果事件,AB,相互独立,那么 其中R表示球的半径 ()()()PABPAPB 球的体积公式
如果事件A在一次试验中发生的概率是p,那么 343VR n次独立重复试验中恰好发生k次的概率 其中R表示球的半径
()(1)kknknnPkCpp
一.选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的.
1.“xy”是“xy”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.定义集合运算:,,ABzzxyxAyB.设1,2A,0,2B,则集合AB 的所有元素之和为 A.0 B.2 C.3 D.6
3.若函数()yfx的定义域是[0,2],则函数(2)()1fxgxx的定义域是
A.[0,1] B.[0,1) C. [0,1)(1,4] D.(0,1) 4.若01xy,则 A.33yx B.log3log3xy C.44loglogxy D.11()()44xy G 文科数学试题 第2页(共4页) 2
5.在数列{}na中,12a, 11ln(1)nnaan,则na A.2lnn B.2(1)lnnn C.2lnnn D.1lnnn 6.函数sin()sin2sin2xfxxx是
A.以4为周期的偶函数 B.以2为周期的奇函数 C.以2为周期的偶函数 D.以4为周期的奇函数
7.已知1F、2F是椭圆的两个焦点,满足120MFMF的点M总在椭圆内部,则椭圆离心率的取值范围是
A.(0,1) B.1(0,]2 C.2(0,)2 D.2[,1)2 8.10101(1)(1)xx展开式中的常数项为 A.1 B.1210()C C.120C D.1020C 9.设直线m与平面相交但不.垂直,则下列说法中正确的是 A.在平面内有且只有一条直线与直线m垂直 B.过直线m有且只有一个平面与平面垂直 C.与直线m垂直的直线不.可能与平面平行
D.与直线m平行的平面不.可能与平面垂直
10.函数tansintansinyxxxx在区间3(,)22内的图象是
11.电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为
A.1180 B.1288 C.1360 D.1480 12.已知函数2()2(4)4fxxmxm,()gxmx,若对于任一实数x,()fx与()gx的值至少有一个为正数,则实数m的取值范围是 A. [4,4] B.(4,4) C. (,4) D.(,4)
xo
3
2
2
y
A2-
x
Bo322y2-2xo322yC-xo322yD
2- G 文科数学试题 第3页(共4页) 3
绝密★启用前 2008年普通高等学校招生全国统一考试(江西卷)
文科数学 第Ⅱ卷
注意事项: 第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答,若在试题上作答,答案无效。
二.填空题:本大题共4小题,每小题4分,共16分。请把答案填在答题卡上 13.不等式224122xx的解集为 .
14.已知双曲线22221(0,0)xyabab的两条渐近线方程为33yx,若顶点到渐近线的距离为1,则双曲线方程为 . 15.连结球面上两点的线段称为球的弦.半径为4的球的两条弦ABCD、的长度分别等于27、43,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为 . 16.如图,正六边形ABCDEF中,有下列四个命题:
A.2ACAFBC B.22ADABAF C.ACADADAB D.()()ADAFEFADAFEF 其中真命题的代号是 (写出所有真命题的代号).
三.解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤 17.已知1tan3,5cos,5,(0,) (1)求tan()的值; (2)求函数()2sin()cos()fxxx的最大值. 18.因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立.该方案预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑桔产量为第一年产量的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4.
(1)求两年后柑桔产量恰好达到灾前产量的概率; (2)求两年后柑桔产量超过灾前产量的概率.
AB
DE
CF G 文科数学试题 第4页(共4页) 4
19.等差数列{}na的各项均为正数,13a,前n项和为nS,{}nb为等比数列, 11b,且2264,bS 33960bS.
(1)求na与nb;
(2)求和:12111nSSS. 20.如图,正三棱锥OABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF的平面与侧棱OA、OB、OC或
其延长线分别相交于1A、1B、1C,已知132OA.
(1)求证:11BC⊥面OAH; (2)求二面角111OABC的大小. 21.已知函数4322411()(0)43fxxaxaxaa (1)求函数()yfx的单调区间; (2)若函数()yfx的图像与直线1y恰有两个交点,求a的取值范围.
22.已知抛物线2yx和三个点00000(,)(0,)(,)MxyPyNxy、、2000(,0)yxy,过点M的一条直线交抛物线于A、B两点,APBP、的延长线分别交曲线C于EF、.
(1)证明EFN、、三点共线;
(2)如果A、B、M、N四点共线,问:是否存在0y,使以线段AB为直径的圆与抛物线有异于A、B的交点?如果存在,求出0y的取值范围,并求出该交点到直线AB的距离;若不存在,请说明理由.
B1
C1
A1
HF
E
C
BA
O
yxPNOM
A
EBF G 文科数学试题 第5页(共4页) 5
绝密★启用前 秘密★启用后 2008年普通高等学校招生全国统一考试(江西卷)
文科数学参考答案 一、选择题:本大题共12小题,每小题5分,共60分。 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B D B C A A C D B D C C
1.B.因xy¿xy但xyxy。
2.D.因*{0,2,4}AB, 3.B. 因为()fx的定义域为[0,2],所以对()gx,022x但1x故[0,1)x。 4.C 函数4()logfxx为增函数 5.A 211ln(1)1aa,321ln(1)2aa,„,11ln(1)1nnaan 1234ln()()()()2ln1231nnaann
6.A sin()()()sin()2sin2xfxfxxx (4)()(2fxfxfx
7. C.由题知,垂足的轨迹为以焦距为直径的圆,则2222212cbcbace 又(0,1)e,所以1(0,)2e
8. D 201010101(1)(1)(1)xxxx 9. C. 10.D..函数2tan,tansintansintansin2sin,tansinxxxyxxxxxxx当时当时
11.C.一天显示的时间总共有24601440种,和为23总共有4种,故所求概率为1360. 12.C.当2160m时,显然成立 当4,(0)(0)0mfg时,显然不成立;当24,()2(2),()4mfxxgxx显然成立; 当4m时12120,0xxxx,则()0fx两根为负,结论成立 故4m
二、填空题:本大题共4小题,每小题4分,共16分。