红外线发射率对照表1
- 格式:xls
- 大小:19.50 KB
- 文档页数:4
38KHz红外发射和接收常识红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。
1.红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。
由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。
红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。
红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。
电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。
2.红外线发射和接收人们见到的红外遥控系统分为发射和接收两部分。
发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。
常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5 mm发光二极管相同,只是颜色不同。
一般有透明、黑色和深蓝色等三种。
判断红外发光二极管的好坏与判断普通二极管一样的方法。
单只红外发光二极管的发射功率约100mW。
红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。
接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。
红外接收二极管一般有圆形和方形两种。
由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。
然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。
红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。
所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。
图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。
接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。
便携式红外线测温仪测试标准
便携式红外线测温仪的测试标准主要包括以下参数:
1. 测温范围:通常红外线测温仪的测温范围在-50℃~300℃之间,也有一
些高端的仪器可以达到更宽的范围,如-100℃~500℃。
2. 测量精度:一般来说,红外线测温仪的测量精度应该在±1℃左右,高端
仪器的精度更高,可以达到±℃。
3. 响应时间:红外线测温仪的响应时间应该在毫秒级别,以便快速地获取温度信息。
4. 测量距离系数:红外线测温仪的测量距离系数通常在30:1到100:1之间,也有一些高端仪器可以达到更高的距离系数。
5. 瞄准方式:红外线测温仪应该具有高精度的瞄准器,以便准确地指向目标区域。
6. 发射率调整:红外线测温仪应该能够根据不同的目标材料自动或手动调整发射率,以获得更准确的温度测量结果。
7. 环境温度范围:红外线测温仪应该能够在一定的环境温度范围内正常工作,以确保测量的准确性和稳定性。
总的来说,便携式红外线测温仪的测试标准主要包括测温范围、测量精度、响应时间、测量距离系数、瞄准方式、发射率调整和环境温度范围等方面。
红外线测温的发射率参数及工作原理红外线测温的发射率参数及工作原理如何设置红外线测温的发射率参数利用红外线测温仪进行温度测量时,必需保证测温仪发射率设置正确,否则会得到不精准的测温结果。
由此可见,对于红外线测温来说,发射率是一个特别紧要的指标。
如何正确设置红外线测温的发射率参数?什么是发射率?发射率是目标表面辐射出的能量与相同温度黑体辐射能量的比值;它是由物体本身的材质决议的,例如,塑料的发射率为0.95,冰的发射率为0.98,玄武岩的发射率为0.7等等。
既然如此,为了获得正确的测量温结果,我们在用红外线测温仪测量温度前;应依据被测目标的材质,来设置正确的发射率参数,如何设置红外线测温仪的发射率参数呢?紧要有三种方法。
1、涂色法。
此种方法紧要是将被目标表面涂成黑色,并将测温仪发射率设置为黑色涂料(或黑色胶布)的发射率0.97(0.93),然后用红外线测温仪测量黑色部位的温度T1;再用红外线测温仪测量与黑色部位靠近部位的表面温度T2,调整红外线测温仪的发射率值,使T2*接近于T1,此时得到的发射率值即为被测目标的发射率。
2、比对法。
找一接触式测温探头,测量被测目标表面的温度,待温度达到稳定后,调整红外线测温仪的发射率;使得红外线测温仪测得的温度值与接触式测温探头测得的温度显示一致,此时的发射率即为被测目标的发射率。
3、查表法。
依据操作手册或相关文档供应的发射率表,依据被测目标的材质,查找相对应的发射率值进行设置。
大家可以依据实际情况,来对红外线测温仪的发射率进行设置,以获得精准的测量结果。
红外测温仪的工作原理红外测温仪技术的进展,其具有使用便利、测量精度高且测量距离远等优点为用户供应了各种功能及用途的仪器。
红外测温仪从原理上来说有便携式测温仪和固定式测温仪两种,因此,在选择合适的红外测温仪用于不同的测量点时;以下的特征将是紧要的:1、瞄准器瞄准器有此作用,测温仪所指的测量块或测量点可以看到,大面积的被测物可以常常不要瞄准器。
一、产品简介303A/306A是一种专业手持式非接触红外线测温仪,使用简单,设计严紧,测量准确度高,测温量程范围宽等特点。
它具有激光瞄准,带背光源LCD显示器,超温报警,发射率可调及自动关机功能。
使用时,只须将探测窗口对准物体,就能快速准确的测得物体温度。
二、基本工作原理一切温度高于绝对零度物体均会依据其本身温度和高低发射一定比例的红外辐射能量。
辐射能量的大小及其按波长的分布与它的表面温度有着十分密关系。
依据此原理便能通过准确的测定物体红外发射能量,便得出准确的温度。
三、产品特点◆采用HEIMANN红外测温探头,测量精度高,性能更稳定;◆具有温度高(阀值可设置)时的声音提示功能;◆背光型液晶(LED)数字显示;◆华氏、摄氏两种模式选择;◆最大值、最小值、相对值、平均值、锁存功能。
◆发射率0.1~1.00可调;◆内置激光瞄准器;◆自动关机功能(节省电池耗费);◆体积小巧、结构合理、操作方便。
四、主要技术指标(一)、正常工作条件:环境温度: 0℃~50℃;相对温度:10%~85%;电源:DC3V(2节AAA电池)。
(二)、基本尺寸: 92mm×50mm×168mm(长×宽×高)。
(三)、重量(净重):125g(不含电池)。
(四)、LCD显示分辨力(精确度):0.1℃/℉。
(五)、测量范围:303A:-20℃~350℃(-4.0℉~662℉)。
306A:-20℃~550℃(-4.0℉~1022℉)。
(六)、消耗功率:≤50mw。
(七)、测量误差:±2.0℃或±2%(取大值)。
(八)、测量时间:≤0.5秒。
(九)、测量距离:D:S=12:1(测量距离与物体目标比)。
(十)、自动关机时间:60秒。
(十一)、安全设计标准:符合欧洲CE安全规范。
(十二)面板说明测量仪镜头激光束背景照明灯LCD显示区功能键选择EMC/RFI在强度3伏特/米的射频电磁场中,可能影响读数,但是仪器性能不会受到永久影响。
引用红外线测温仪的使用方法lao wu tong 的红外线测温仪的使用方法红外线测温仪的理论原理和应用摘要:测量温度的方法有很多种,温度计大致可以分为接触式测温仪表和非接触式测温仪表两类。
其中接触式的有我们熟悉的液体式温度计,热电偶式温度计和热电阻式温度计等等。
关键词:红外线测温辐射光纤众所周知,温度是供热,供燃气,通风及空调系统中最重要的参数之一。
尤其在热工测量过程中,温度的精准程度往往是决定实验成败的关键。
因此,一个精确度高的测温仪器在工程中是必不可少的。
因此本文就温度测量工具中的红外线测温仪的原理及应用进行一些介绍。
一,红外测温的理论原理在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中就包含了波段位于0.75µm~100µm的红外线。
他最大的特点是在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质称为黑体,并设定他的反射系数为1,其他的物质反射系数小于1,称为灰体,由于黑体的光谱辐射功率P(λT)与绝对温度T之间满足普朗克定。
说明在绝对温度T下,波长λ处单位面积上黑体的辐射功率为P(λT)。
根据这个关系可以得到图1的关系曲线,从图中可以看出:(1)随着温度的升高,物体的辐射能量越强。
这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。
(2)随着温度升高,辐射峰值向短波方向移动(向左),并且满足维恩位移定理,峰值处的波长与绝对温度T成反比,虚线为处峰值连线。
这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。
(3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。
二,红外线测温仪的原理红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。
红外探测技术红外检测技术基本原理红外技术的原理是基于自然界中一切温度高于绝对零度的物体,每时每刻都辐射出红外线,同时,这种红外线辐射都载有物体的特征信息,这就为利用红外技术探测和判别各种被测目标的温度高低与热分布场提供了客观的基础。
红外线是波长在0・76〜1000 U m之间的一种电磁波,按波长范围可分为近红外、中红外、远红外、极远红外四类,它在磁波连续频谱中的位置是处于无线电波与可见光之间的区域。
红外线辐射在真空中的传播速度C二299792458m/s« 3x IO lu cm/s红外辐射的波长A 二—式中:C:速度2:波长3 :频率红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停的辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。
温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。
其中黑体频谱辐射能流密度对红外辐射波长的关系,根据普郎克定律:Q-GxL (瓦•厘米””微米”)式中:P —波长%,热力rATC-光速度C —第一辐射常数二3.7415X10° (瓦厘米〜微米2 )之一波长(微米),T 热力学温度(K )温度辐射的能量密度峰值对应的 波长,随物体温度的升高波长变短。
根据维思定律:人理(urn )T式中:A —峰值波长,单位:umT 一物体的绝对温度单位K物体的红外辐射功率与物体表面绝对温度的四次方成正比,与物体表面的发 射率成正比。
物体红外辐射的总功率对温度的关系,根据斯蒂芬一波尔兹曼定 律:学温度为T(ax i omcm/s)P 二的〃(W/ 〃Q式中:T一物体的绝对温度P—物体红外辐射功率(辐射能量)£ 一物长表面红外发射率(辐射系数)R—斯蒂芬-波尔兹曼常数(1.380662x10"23 J/K)物体表而绝对温度的变化,使的物体发热功率的变化更快。
红外线测温仪-发射率表
设计和生产这样的黑体物校准器。
光学透镜
两种红外辐射的光学原理是:反射原理和折射原理。
就象他们的名称一样,反射原理的作用是反射射入的放射线。
折射原理的作用是折射并传输射入的放射线。
我们不同类型的产品都具有两种光学原理。
透镜-ST68x锗系列
用来生产红外辐射系统中的折射光学的最常见的物质是锗和硅。
锗是一种类似银的金属,是一种折射指数(n-4)非常高的一种固体。
可以利用最少量的锗透镜来设计高分辨率的光学系统。
另外,根据它的高折射指数,对于任何传输光学系统的锗来说都必须具有辐射涂层。
锗具有低散射,所以它不太可能需要变色,除非是在被应用于ST68x系列产品中的高分辨率系统中。
塑料菲(涅耳)透镜—ST65x系列
大部分色红外温度计只是简单的探测目标物的温度,而没有更高的光学性能,象长距离探测。
我们已经设计了塑料菲(涅耳)透镜,而且在大部分应用中为用户设计了较低的成本。
需要注意的是普通的玻璃不能够传送超过2.5 μm的辐射,装有保险丝的硅具有热量膨胀系数的特点。
使光学系统在改变环境条件中显的特别有用。
它的传送范围是从大约0.
3 μm 到3 μm。
该如何设置红外线测温的发射率参数红外线测温是一种无接触且快速的测量方法,广泛应用于工业、医疗、冶金等领域。
其中,红外线测温仪根据目标物体表面的辐射能量来测量温度,并且需要设置目标物体的发射率参数。
本文将介绍红外线测温的发射率参数设置方法。
什么是发射率发射率是指物体表面对光的反射与吸收能力的度量值,通常用ε 表示。
发射率在 0 到 1 之间取值,其中 0 表示光被完全反射,1 表示光被完全吸收。
发射率值的不同会导致测温的误差。
在红外线测温仪中,需要设置目标物体表面的发射率值,以保证测得的温度值尽量准确。
因此,正确设置目标物体的发射率参数非常重要。
如何设置发射率设置发射率需要根据具体的目标物体进行,因为不同的物体表面发射率存在差异。
下面介绍两种常用的发射率设置方法。
目测法通过对目标物体进行目视观察和比较,根据经验或者外观判断进行发射率的估值。
目测法配合使用恒温箱,将目标物体和恒温箱内的热源保持同样的温度,用红外线测温仪对目标物体和恒温箱内的热源进行测量,再分析两者的温度差异,进行发射率的估值。
参考表法通过查阅相关的发射率参考表,根据目标物体的材质、表面质量等参数选择对应的发射率数值进行设定。
发射率参考表是一个表格,基于实验数据和经验公式计算而来。
不同品牌的红外线测温仪提供的参考表可能存在差异,需要注意选择合适的参考表进行设置。
注意事项•必须与目标物体表面距离一致•目标物体表面需要清洁干燥、光洁度高•参考表法差异较大,需要注意选择正确的参考表和根据实际情况进行微调结论目标物体的发射率是红外线测温的重要参数,正确设置发射率可以保证测量结果的准确性。
发射率的设置需要基于目标物体的实际情况选择对应方法进行,具体操作建议参考红外线测温仪的说明书。