用样本估计总体教学案含解析理
- 格式:doc
- 大小:528.50 KB
- 文档页数:10
用样本估计总体》课时教学设计本课主要介绍了用样本的频率分布来估计总体分布的方法。
首先通过讨论抽样方法和收集数据的目的来引出估计总体的两种手段:用样本的频率分布估计总体的分布和用样本的数字特征估计总体的数字特征。
然后介绍了频率分布直方图的作法,通过一个例子来说明如何采用抽样调查的方式得到本市的居民月均用水量,并用频率分布直方图来分析数据。
最后讨论了频率分布直方图的纵坐标为何取频率/组距的问题,得出结论:用矩形面积表示频率,总面积为1.本课的重点是会列频率分布表和画频率分布直方图,难点是能通过样本的频率分布估计总体的分布。
2.回顾:上节课我们研究了什么?样本数据分布的可视化方法有哪些?二、新知讲解:1.样本的数字特征1)众数:出现次数最多的数,可能有多个.2)中位数:将数据从小到大排列,位于中间的数.3)平均数:所有数据的总和除以数据的个数.2.样本数字特征的意义1)众数:反映数据的集中趋势,但容易受极端值影响.2)中位数:反映数据的集中趋势,不受极端值影响.3)平均数:反映数据的平均水平,但容易受极端值影响.3.样本数字特征对总体数字特征的估计1)众数:样本众数可以用来估计总体众数.2)中位数:样本中位数可以用来估计总体中位数.3)平均数:样本平均数可以用来估计总体平均数.4.样本数字特征的计算1)众数:出现次数最多的数.2)中位数:将数据从小到大排列,位于中间的数.3)平均数:所有数据的总和除以数据的个数.5.样本数字特征的比较1)众数、中位数、平均数的大小关系与数据的分布有关.2)当数据分布呈正态分布时,三者相等.3)当数据分布不对称时,三者大小关系为:众数<中位数<平均数.三、巩固练:1.练:计算以下数据的众数、中位数、平均数:12,15,18,20,20,25,28.2.作业:P72 3、4题,只计算数字特征.讨论:如何利用样本的频率分布直方图分析规律?下面给出一个图,试着分析。
(封面)高二数学必修三《用样本估计总体》优秀教案授课学科:授课年级:授课教师:授课时间:XX学校高中数学必修三《用样本估计总体》教案教学目标:【知识与技能】(1)了解通过抽样调查收集数据的方法;会设计简单的方案收集数据。
(2)通过抽样调查,初步感受抽样的必要性,体会用样本估计总体的思想。
(3)了解实验也是获得数据的有效方法。
【过程与方法】(1)通过生活实例的引入,使学生学会以数学的角度提出和理解问题,应用统计思想解决实际问题。
(2)让学生通过动手实验来体验一种在生产和科研中经常用到的“捉——放——捉”的方法。
【情感〃态度〃价值观】(1)通过简单的方案设计和师生双边的教学活动,让学生在运用统计的知识解决实际问题时,体验互动交流精神。
(2)通过实际参与收集整理.描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计观念,培养重视调查研究的良好习惯和科学态度。
教学重难点:让学生通过动手实验来体验一种在生产和科研中经常用到的“捉--放--捉”的方法。
教学过程:(一)创设情境导入新课【问题1】瓶子中有多少豆子?先让学生初步探讨问题,交流方案;【学生实验参考方案】(一)(全面调查) 直接数瓶子中的豆子;(二)(抽样调查)先将豆子若干等份,数出其中一份豆子的数量,以此估计总量。
用称重的方法,先称出所有豆子的重量m,再称出一杯豆子的重量n,并数清这杯豆子的粒数p,则这一杯豆子平均每粒重m/p,以此就可以估计出瓶子中豆子的粒数q:q ≈p/n ×m采用“捉--放--捉”的方法;(本节课的主要实验方法)【课堂实验】实验步骤:(1)从瓶子中取出一些豆子,记录这些豆子的粒数m;(2)给这些豆子做上记号;(3)把这些豆子放回瓶子中,充分摇匀;(4)从瓶子中再取出一些豆子,记录这些豆子的粒数p和其中带有记号的豆子的粒数n;(5)利用得到的数据m,p,n,估计原来瓶子中豆子的粒数q,q ≈p/n ×m(6)数出瓶子中豆子的总数,验证你的估计。
9.2 用样本估计总体(精讲)考法一总体取值规律的估计【例1】(2021·全国高一课时练习)某市2020年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,空间质量为良;在101~150之间时,空间质量为轻微污染;在151~200之间时,空间质量为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.【答案】(1)频率分布表见解析;(2)频率分布直方图见解析;(3)该市空气质量有待进一步改善.【解析】(1)频率分布表(2)频率分布直方图(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的1 15;有26天处于良的水平,占当月天数的13 15;处于优或良的天数共有28天,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115.污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%.说明该市空气质量有待进一步改善.【一隅三反】1.(2020·全国高一单元测试)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:用户用水量频数直方图用户用水量扇形统计图(1)此次抽样调查的样本容量是________;(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格.【答案】(1)答案见解析;(2)答案见解析,79.2°;(3)4.08万户.【解析】(1)1010%100÷=;(2)用水15~20吨的户数为100-10-36-24-8=22(户),“15~20吨”部分的圆心角的度数为22 36079.2100︒⨯=︒(3)1022366 4.08100++⨯=(万户)所以该地区6万用户中约有4.08万户的用水全部享受基本价格.2.(2020·全国高一单元测试)对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)内的人数. 【答案】(1)M =40,0.075p =,0.125a =;(2)90人. 【解析】(1)由[10,15)内的频数是10,频率是0.25知,100.25M=,所以M =40. 因为频数之和为40,所以10+25+m +2=40,m =3.330.07540p M ===. 因为a 是对应分组[15,20)的频率与组距的商,所以250.125405a ==⨯. (2)因为该校高一学生有360人,分组[10,15)内的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为3600.25⨯=90人.3.(2021·北京丰台区)为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50kW ·h 至350kW ·h 之间,进行适当分组后,画出频率分布直方图如图所示.(I )求a 的值;(Ⅱ)求被调查用户中,用电量大于250kW ·h 的户数;(III )为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW ·h )的建议,并简要说明理由. 【答案】(I )0.006;(Ⅱ)18;(III )245.5 kW ·h.【解析】(1)因为()0.00240.00360.00440.00240.0012501a +++++⨯=,所以0.006a =; (2)根据频率分布直方图可知:“用电量大于250kW ·h ”的频率为()0.00240.0012500.18+⨯=, 所以用电量大于250kW ·h 的户数为:1000.1818⨯=, 故用电量大于250kW ·h 有18户;(3)因为前三组的频率和为:()0.00240.00360.006500.60.8++⨯=<,前四组的频率之和为()0.00240.00360.0060.0044500.820.8+++⨯=>, 所以频率为0.8时对应的数据在第四组, 所以第一档用电标准为:0.80.620050245.50.22-+⨯≈kW ·h.故第一档用电标准为245.5 kW ·h.4.(2021·陕西咸阳市)某微商对某种产品每天的销售量(单位:件)进行为期一个月(按30天计算)的数据统计分析,并得出了这种产品该月销售量的频率分布直方图(如图).假设用直方图中所得的频率来估计相应事件发生的概率.(Ⅰ)求频率分布直方图中a 的值;(Ⅱ)若微商在一天的销售量不低于25件,则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.【答案】(Ⅰ)0.02;(Ⅱ)10800元. 【解析】(Ⅰ)由题意可得1[1(0.010.060.070.04)5]0.025a =-+++⨯=. (Ⅱ)根据频率分布直方图知,日销售量不低于25件的天数为: ()0.040.025309+⨯⨯=(天), 一个月可获得的礼金数为9100900⨯=(元),依此可以估计该微商一年内获得的礼金数为9001210800⨯=元. 【点睛】本题考查频率的求法,考查频率分布直方图的性质等基础知识,考查样本估计总体以及运算求解能力、数形结合思想的应用,是基础题.考法二 总体百分数的估计【例2】(2020·天津和平区)已知一组数据为4,5,67,8,8,,第40百分位数是( ) A .8 B .7C .6D .5【答案】C【解析】因为有6位数,所以640 2.4⨯=%,所以第40百分位数是第三个数6.故选:C 【一隅三反】1.(2020·山东菏泽市·高一期末)数据1,2,3,4,5,6的60%分位数为( ) A .3 B .3.5C .3.6D .4【答案】D【解析】由6⨯60%=3.6,所以数据1,2,3,4,5,6的60%分位数是第四个数,故选:D2.(2021·山东高一期末)已知从某中学高一年级随机抽取20名女生,测量她们的身高(单位:cm ),把这20名同学的身高数据从小到大排序:148.0 149.0 150.0 152.0 154.0 154.0 155.0 155.5 157.0 157.0 158.0 159.0 161.0 162.0 163.0 164.0 165.0 170.0 171.0 172.0 则这组数据的第75百分位数是( ) A .163.0 B .164.0C .163.5D .164.5【答案】A【解析】因为这组数据从小到大已排序,所以这组数据的第75百分位数为第200.7515⨯=个数,即为163.0故选:A3.(2020·山东滨州市·高一期末)“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[]0,10内的一个数来表示,该数越接近10表示满意程度越高,现随机抽取6位小区居号,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是( ) A .7 B .7.5C .8D .9【答案】C【解析】该组数据从小到大排列为:5,5,6,7,8,9,且680% 4.8⨯=,故选:C.考法三 总体集中趋势的估计【例3】(2021·湖北荆州市)因受新冠疫情的影响,某企业的产品销售面临困难.为了改变现状,该企业欲借助电商和“网红”直播带货扩大销售.受网红效应的影响,产品销售取得了较好的效果.现将该企业一段时间内网上销售的日销售额统计整理后绘制成如下图所示的频率分布直方图:请根据图中所给数据,求: (1)实数a 的值;(2)该企业网上销售日销售额的众数和中位数; (3)该企业在统计时间段内网上销售日销售额的平均数. 【答案】(1)0.012;(2)55万元,57万元;(3)57.4万元. 【解析】(1)由频率分布直方图知:(0.0080.0160.0200.0180.0100.0042)101a ++++++⨯=,解得:0.012a =;(2)用频率分布直方图中最高矩形所在区间的中点值作为众数的近似值,得众数为55万元;因为第一个小矩形的面积为0.08,第二个小矩形的面积为0.12, 第三个小矩形的面积为0.16,0.080.120.160.36++=,设第四个小矩形中底边的一部分长为x ,则0.0200.50.36x ⨯=-,解得7x =, 所以中位数为50757+=万元; (3)依题意,日销售额的平均值为:250.08350.12450.16550.20650.18750.12850.10950.0457.4⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=所以该企业在统计时间段内网上销售日销售额的平均数为57.4万元. 【一隅三反】1.(2020·定边县第四中学高一期末)如图,从参加数学竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图,观察图形,回答下列问题:(Ⅰ)79.5-89.5这一组的频数、频率分别是多少? (Ⅱ)估计这次数学竞赛的平均成绩是多少?(Ⅲ)估计这次数学竞赛的及格率(60分及以上为及格). 【答案】(Ⅰ)15;0.25;(Ⅱ)70.5;(Ⅲ)75%. 【解析】(Ⅰ)79.589.5这一组的频率为0.025100.25⨯=,79.589.5这一组的频数为600.2515⨯=;(Ⅱ)估计这次数学竞赛的平均成绩是:44.50.154.50.1564.50.1574.50.384.50.2594.50.0570.5⨯+⨯+⨯+⨯+⨯+⨯=.故估计这次数学竞赛的平均成绩是70.5.(Ⅲ)估计这次环保知识竞赛的及格率(60分及以上为及格)()10.010.0151075%P =-+⨯=. 2.(2021·河北唐山市·开滦第一中学高一期末)某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[)[)[]40,50,50,60,,90,100⋯后画出如下频率分布直方图.观察图形的信息,回答下列问题:(1)估计这次考试的众数m 与中位数n (结果保留一位小数); (2)估计这次考试的优秀率(80分及以上为及格)和平均分. 【答案】(1)75m =,73.3n =;(2)优秀率30%,平均分71分. 【解析】(1)众数是最高小矩形中点的横坐标,所以众数为75m =(分)前三个小矩形面积为0.01100.015100.015100.4⨯+⨯+⨯=, ∵中位数要平分直方图的面积, ∴0.50.47073.30.03n -=+=.(2)依题意,80及以上的分数所在的第五、六组, 频率和为 ()0.0250.005100.3+⨯=, 所以,抽样学生成绩的合格率是30%, 利用组中值估算抽样学生的平均分:450.1550.15650.15750.3850.25950.0571⨯+⨯+⨯+⨯+⨯+⨯=,估计这次考试的平均分是71分.3.(2021·吉林市)某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x 的值;并估计出月平均用水量的众数. (2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?【答案】(1) x =0.075,7;(2) 6.4,5.36;(3) 2;(4)23. 【解析】(1)根据频率和为1,得2×(0.02+0.095+0.11+0.125+x +0.05+0.025)=1, 解得x =0.075;由图可知,最高矩形的数据组为[6,8),所以众数为()16872+=; (2) [2,6)内的频率之和为(0.02+0.095+0.11)×2=0.45;设中位数为y ,则0.45+(y −6)×0.125=0.5,解得y =6.4,∴中位数为6.4;平均数为()210.0230.09550.1170.12590.075110.025 5.36⨯+⨯+⨯+⨯+⨯+⨯=(3)月平均用电量为[10,12)的用户在四组用户中所占的比例为0.0520.1250.0750.050.02511=+++, ∴月平均用电量在[10,12)的用户中应抽取11×211=2(户). (4)月平均用电量在[12,14)的用户中应抽取11×111=1(户), 月平均用电量在[10,12)的用户设为A 、B , 月平均用电量在[12,14)的用户设为C ,从[10,12),[12,14)这两组中随机抽取2户共有 ,,AB AC BC ,3种情况,其中,抽取的两户不是来自同一个组的有,,AC BC ,2种情况, 所以,抽取的两户不是来自同一个组的概率为23. 考点四 总体离散程度的估计【例4】(2021·山东威海市·高一期末)如图所示的四组数据,标准差最小的是( )A .B .C .D .【答案】A【解析】对A ,()12106206302402516x =⨯+⨯+⨯+⨯=,s == 对B ,()16102202306402516x =⨯+⨯+⨯+⨯=,s == 对C ,()13105205303402516x =⨯+⨯+⨯+⨯=,10s ==, 对D ,()15103203305402516x =⨯+⨯+⨯+⨯=,s == 所以标准差最小的是A.故选:A.【一隅三反】1.(2020·全国高一)已知数据12,,,n x x x 的平均数为x ,方差为2s ,则123x +,223x +,…,23n x +的平均数和方差分别为( )A .x 和2sB .23x +和24sC .23x +和2sD .23x +和24129s s ++ 【答案】B【解析】因为数据12,,,n x x x 的平均数为x ,方差为2s ,所以123x +,223x +,…,23n x +的平均数和方差分别为23x +和24s故选:B2.(2020·安徽蚌埠市·蚌埠二中高一月考)一组数据中的每一个数据都乘以3,再减去50,得到一组新数据,若求得新的数据的平均数是1.6,方差是3.6,则原来数据的平均数和方差分别是( )A .17.2,3.6B .54.8,3.6C .17.2,0.4D .54.8,0.4 【答案】C【解析】设一组数据为i x (1,2,3,,)i n =,平均数为x ,方差为21s ,所得一组新数据为i y (1,2,3,,)i n =,平均数为y ,方差为22s ,则350i i y x =-(1,2,3,,)i n =,12 1.6n y y y y n +++==, 所以123503503501.6n x x x n -+-++-=, 所以350 1.6x -=,所以51.617.23x ==, 由题意得22222121()()() 3.6n s y y y y y y n ⎡⎤=-+-++-=⎣⎦, 所以222121(350 1.6)(350 1.6)(350 1.6) 3.6n x x x n⎡⎤--+--++--=⎣⎦, 所以2221219(17.2)(17.2)(17.2) 3.6n x x x n ⎡⎤⨯-+-++-=⎣⎦ 所以2221219()()() 3.6n x x x x x x n⎡⎤⨯-+-++-=⎣⎦, 所以219 3.6s =,所以210.4s =.故选:C.3.(2020·唐山市第十一中学)已知样本数据由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且样本的中位数为10.5,若使该样本的方差最小,则a ,b 的值分别为( ).A .10,11B .10.5,9.5C .10.4,10.6D .10.5,10.5 【答案】D【解析】由于样本共有10个值,且中间两个数为a ,b ,依题意,得10.52a b +=,即21b a =-. 因为平均数为23371213.718.320101()0a b +++++++++÷=,所以要使该样本的方差最小,只需()()221010a b -+-最小.又()()()()222221010102110242221a b a a a a -+-=-+--=-+, 所以当4210.522a -=-=⨯时,()()221010a b -+-最小,此时10.5b =. 故选:D4.(2021·合肥市第六中学=)为了测试小班教学的实践效果,刘老师对A 、B 两班的学生进行了阶段测试,并将所得成绩统计如图所示;记本次测试中,A 、B 两班学生的平均成绩分别为A x ,B x ,A 、B 两班学生成绩的方差分别为2A s ,2B s ,则观察茎叶图可知( )A .AB x x <,22A B s s < B .A B x x >,22A B s s <C .A B x x <,22A B s s >D .A B x x >,22A B s s >【答案】B【解析】根据茎叶图中数据的分布可得,A 班学生的分数多集中在[]70,80之间, B 班学生的分数集中在[]50,70 之间,所以A B x x >.相对两个班级的成绩分布来说,A 班学生的分数更加集中,B 班学生的分数更加离散,所以22A B s s <.故选:B。
用样本估计总体【第一课时】【教学目标】1.会画一组数据的频率分布表、频率分布直方图.2.会用频率分布表、频率分布直方图、条形图、扇形图、折线图等对总体进行估计.3.掌握求n个数据的第p百分位数的方法.【教学重难点】1.频率分布表、频率分布直方图.2.用样本估计总体.3.总体百分位数的估计.【教学过程】一、问题导入预习教材内容,思考以下问题:1.绘制频率分布表和频率分布直方图有哪些步骤?2.频率分布直方图有哪些特征?3.如何求n个数据的第p百分位数?二、基础知识1.频率分布表、频率分布直方图的制作步骤及意义2.百分位数(1)定义:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.(2)计算步骤:计算一组n个数据的第p百分位数的步骤:第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.三、合作探究1.频率分布表、频率分布直方图、频率分布折线图的绘制角度一:频率分布表、频率分布直方图的绘制为考查某校高二男生的体重,随机抽取44名高二男生,实测体重数据(单位:kg)如下:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,48将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图.【解】以4频率累计频率分布直方图和频率分布折线图如图所示.(1)在列频率分布表时,极差、组距、组数有如下关系: ①若极差组距为整数,则极差组距=组数;②若极差组距不为整数,则极差组距的整数部分+1=组数.(2)组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,纵使数据的分布规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本量越大,所分组数越多.角度二:频率分布直方图的应用为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少? (3)样本中不达标的学生人数是多少? (4)第三组的频数是多少?【解】(1)频率分布直方图以面积的形式反映数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校高一年级学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.(3)由(1)(2)知达标率为88%,样本量为150,不达标的学生频率为1-0.88=0.12. 所以样本中不达标的学生人数为150×0.12=18(人).(4)第三小组的频率为172+4+17+15+9+3=0.34.又因为样本量为150,所以第三组的频数为150×0.34=51.频率分布直方图的应用中的计算问题 (1)小长方形的面积=组距×频率组距=频率;(2)各小长方形的面积之和等于1;(3)频数样本量=频率,此关系式的变形为频数频率=样本量,样本量×频率=频数.2.条形统计图为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容.为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如图所示.请根据统计图提供的信息回答以下问题: (1)求抽取的学生数;(2)若该校有3 000名学生,估计喜欢收听易中天《品三国》的学生人数;(3)估计该校喜欢收听刘心武评《红楼梦》的女学生人数约占全校学生人数的百分比. 【解】(1)从统计图上可以看出,喜欢收听于丹析《庄子》的男生有20人,女生有10人; 喜欢收听《故宫博物院》的男生有30人,女生有15人; 喜欢收听于丹析《论语》的男生有30人,女生有38人; 喜欢收听易中天《品三国》的男生有64人,女生有42人;喜欢收听刘心武评《红楼梦》的男生有6人,女生有45人.所以抽取的学生数为20+10+30+15+30+38+64+42+6+45=300(人).(2)喜欢收听易中天《品三国》的男生有64人,女生有42人,共有106人,占所抽取总人数的比例为106 300,由于该校有3 000名学生,因此可以估计喜欢收听易中天《品三国》的学生有106300×3 000=1 060(人).(3)该校喜欢收听刘心武评《红楼梦》的女学生人数约占全校学生人数的比例为45300×100%=15%.(1)绘制条形统计图时,第一步确定坐标系中横轴和纵轴上坐标的意义,第二步确定横轴上各部分的间距及位置,第三步根据统计结果绘制条形图.实际问题中,我们需根据需要进行分组,横轴上的分组越细,对数据的刻画(描述)就越精确.(2)在条形统计图中,各个矩形图的宽度没有严格要求,但高度必须以数据为准,它直观反映了各部分在总体中所占比重的大小.3.折线统计图小明同学因发热而住院,下图是根据护士为他测量的体温所绘制的体温折线图.根据图中的信息,回答以下问题:(1)护士每隔几小时给小明测量一次体温?(2)近三天来,小明的最高体温、最低体温分别是多少?(3)从体温看,小明的病情是在恶化还是在好转?(4)如果连续36小时体温不超过37.2摄氏度的话,可认为基本康复,那么小明最快什么出院?【解】(1)根据横轴表示的意义,可知护士每隔6小时给小明测量一次体温.(2)从折线统计图中的最高点和最低点对应的纵轴意义,可知最高体温是39.5摄氏度,最低体温是36.8摄氏度.(3)从图中可知小明的体温已经下降,并趋于稳定,因此病情在好转.(4)9月8日18时小明的体温是37摄氏度.其后的体温未超过37.2摄氏度,自9月8日18时起计算,连续36小时后对应的时间为9月10日凌晨6时.因此小明最快可以在9月10凌晨6时出院.(1)绘制折线统计图时,第一步,确定直角坐标系中横、纵坐标表示的意义;第二步,确定一个单位长度表示一定的数量,根据数量的多少描出各点;第三步,用直线段顺次连接即可.(2)在折线统计图中,从折线的上升、下降可分析统计数量的增减变化情况,从陡峭程度上,可分析数据间相对增长、下降的幅度.4.扇形统计图下图是A ,B 两所学校艺术节期间收到的各类艺术作品的情况的统计图: (1)从图中能否看出哪所学校收到的水粉画作品数量多?为什么?(2)已知A 学校收到的剪纸作品比B 学校的多20件,收到的书法作品比B 学校的少100件,请问这两所学校收到艺术作品的总数分别是多少件?【解】(1)不能.因为两所学校收到艺术作品的总数不知道.(2)设A 学校收到艺术作品的总数为x 件,B 学校收到艺术作品的总数为y 件,则⎩⎨⎧10%x -5%y =20,50%y -40%x =100,解得⎩⎨⎧x =500,y =600,即A 学校收到艺术作品的总数为500件,B 学校收到艺术作品的总数为600件.(1)绘制扇形统计图时,第一步计算各部分所占百分比以及对应圆心角的度数;第二步在圆中按照上述圆心角画出各个扇形并恰当标注.(2)扇形统计图表示总体的各部分之间的百分比关系,但不同总量下的扇形统计图,其不同的百分比不可以作为比较的依据.5.百分位数的计算试求甲、乙两组数的25%分位数与75%分位数.【解】因为数据个数为20,而且20×25%=5,20×75%=15.因此,甲组数的25%分位数为x5+x62=2+32=2.5;甲组数的75%分位数为x15+x162=9+102=9.5.乙组数的25%分位数为x5+x62=1+12=1,乙组的75%分位数为x15+x162=10+142=12.求百分位数时,一定要将数据按照从小到大的顺序排列.【课堂检测】1.下列四个图中,用来表示不同品种的奶牛的平均产奶量最为合适的是()解析:选D.用统计图表示不同品种的奶牛的平均产奶量,即从图中可以比较各种数量的多少,因此“最为合适”的统计图是条形统计图.注意B选项中的图不能称为统计图.2.观察新生儿的体重,其频率分布直方图如图所示,则新生儿体重在[2 700,3 000)g的频率为()A.0.1B.0.2C.0.3 D.0.4解析:选C.由题图可得,新生儿体重在[2 700,3 000)g的频率为0.001×300=0.3,故选C.3.观察下图所示的统计图,下列结论正确的是()A.甲校女生比乙校女生多B.乙校男生比甲校男生少C.乙校女生比甲校男生少D.甲、乙两校女生人数无法比较解析:选D.图中数据只是百分比,甲、乙两个学校的学生总数不知道,因此男生与女生的具体人数也无法得知.【第二课时】 【教学目标】1.理解样本数据标众数、中位数、平均数的意义和作用,学会计算数据的众数、中位数、平均数.2.理解样本数据方差、标准差的意义和作用,学会计算数据的方差、标准差.【教学重难点】会用样本的基本数字特征来估计总体的基本数字特征.【教学过程】一、基础知识1.众数、中位数、平均数 众数、中位数、平均数定义(1)众数:一组数据中出现次数最多的数.(2)中位数:把一组数据按从小到大(或从大到小)的顺序排列,处在中间位置的数(或中间两个数的平均数)叫做这组数据的中位数.(3)平均数:如果n 个数x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )叫做这n 个数的平均数.思考:平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点? 答案:平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但是平均数受数据中极端值的影响较大.2.方差、标准差标准差、方差的概念及计算公式(1)标准差是样本数据到平均数的一种平均距离,一般用s 表示.s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2].(2)标准差的平方s 2叫做方差.s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x 是样本平均数).(3)标准差(或方差)越小,数据越稳定在平均数附近.s =0时,每一组样本数据均为x .二、合作探究1.众数、中位数、平均数的计算(1)某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为()A.85,85,85B.87,85,86C.87,85,85D.87,85,90(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为() A.2,5B.5,5C.5,8D.8,8答案(1)C(2)C解析(1)平均数为100+95+90×2+85×4+80+7510=87,众数为85,中位数为85.(2)结合茎叶图上的原始数据,根据中位数和平均数的概念列出方程进行求解.由于甲组数据的中位数为15=10+x,所以x=5.又乙组数据的平均数为9+15+10+y+18+245=16.8,所以y=8,所以x,y的值分别为5,8.【教师小结】平均数、众数、中位数的计算方法:平均数一般是根据公式来计算的;计算众数、中位数时,可先将这组数据按从小到大或从大到小的顺序排列,再根据各自的定义计算.2.标准差、方差的计算及应用甲、乙两名战士在相同条件下各打靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数;(2)分别求出两组数据的方差;(3)根据计算结果,估计两名战士的射击情况.若要从这两人中选一人参加射击比赛,选谁去合适?解(1)x甲=110×(8+6+7+8+6+5+9+10+4+7)=7(环),x 乙=110×(6+7+7+8+6+7+8+7+9+5)=7(环).(2)由方差公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],得s 2甲=3,s 2乙=1.2.(3)x 甲=x 乙,说明甲、乙两战士的平均水平相当.又s 2甲>s 2乙说明甲战士射击情况波动比乙大.因此,乙战士比甲战士射击情况稳定,从成绩的稳定性考虑,应选择乙参加比赛.【教师小结】(1)方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.(2)样本标准差反映了各样本数据围绕样本平均数波动的大小,标准差越小,表明各样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散.(3)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数据分布情况,而样本数据的离散程度是由标准差来衡量的.三、课堂总结1.标准差的平方s 2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性,用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.【课堂检测】1.某市2017年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是( )A .19B .20C .21.5D .23答案 B解析 由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.故选B .2.下列关于平均数、中位数、众数的说法中正确的一个是( )A .中位数可以准确地反映出总体的情况B .平均数可以准确地反映出总体的情况C .众数可以准确地反映出总体的情况D .平均数、中位数、众数都有局限性,都不能准确地反映出总体的情况答案 D3.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得的数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差答案 D4.某校开展“爱我母校,爱我家乡”摄影比赛,七位评委为甲,乙两名选手的作品打出的分数的茎叶图如图所示(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲,乙两名选手得分的平均数分别为a 1,a 2,则一定有( )A .a 1>a 2B .a 2>a 1C .a 1=a 2D .a 1,a 2的大小与m 的值有关答案 B解析 由茎叶图知,a 1=80+1+5+5+4+55=84, a 2=80+4+4+6+4+75=85,故选B . 5.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________.答案 16解析 设样本数据x 1,x 2,…,x 10的标准差为s ,则s =8,可知数据2x1-1,2x2-1,…,2x10-1的标准差为2s=16.。
用样本估计总体教案一、课程名称:(适用大部分课程教案)二、授课对象初中二年级学生三、授课时间每课时45分钟四、授课教师张某某五、教学目标1、知识与技能目标(1)掌握用样本估计总体的基本概念和方法;(2)能够运用样本数据对总体进行估计,并计算估计的误差;(3)能够运用统计学软件进行样本估计总体的操作。
2、过程与方法目标(1)通过小组合作探究,培养学生运用统计学方法解决问题的能力;(2)通过实际案例的分析,培养学生将理论知识与实际应用相结合的能力;(3)通过课堂讲解和练习,培养学生自主学习、思考总结的能力。
3、情感态度价值观目标(1)培养学生对统计学产生兴趣,认识到统计学在生活中的重要性;(2)培养学生具备客观、严谨的科学态度;(3)培养学生团结协作、共同探究的精神。
六、教学重占和难点1、教学重点(1)用样本估计总体的基本方法和步骤;(2)样本估计总体的误差分析;(3)统计学软件在样本估计总体中的应用。
2、教学难点(1)样本估计总体误差的计算;(2)统计学软件的操作使用;(3)将理论知识与实际案例相结合,解决实际问题。
七、教学过程1、导入新课(5分钟)授课教师通过展示与学生生活密切相关的总体数据问题,例如:“假设我们要了解全校学生的平均身高,我们是否需要测量每一个学生?有没有更高效的方法?”引发学生对用样本估计总体概念的思考,从而导入新课。
2、新知讲授(20分钟)(1)介绍用样本估计总体的基本概念,包括总体、样本、参数、统计量等;(2)讲解如何从样本数据推断总体数据,包括点估计和区间估计;(3)详细解释样本估计的误差来源及如何计算误差;(4)展示统计学软件(如SPSS、Excel等)在样本估计总体中的应用实例。
3、合作探究(15分钟)将学生分成小组,每组给予一个实际案例,如调查班级学生的平均成绩,要求小组讨论并设计出合理的样本调查方案,包括样本的大小、选择方法等,并尝试使用统计学软件进行数据处理和分析。
用样本估计总体 教学设计一、课程名称:(适用大部分课程教案)二、授课对象高中二年级学生,具备基础的统计学知识和一定的数据分析能力。
三、授课时间2课时,每课时45分钟。
四、授课教师张XX,高中数学教师,具备多年统计学教学经验。
五、教学目标1、知识与技能目标(1)掌握用样本估计总体的基本原理和方法;(2)能够运用不同的估计方法对总体参数进行估计;(3)学会分析估计结果的可靠性和准确性。
2、过程与方法目标(1)通过实例分析,培养学生运用统计学方法解决实际问题的能力;(2)培养学生合作探究、交流讨论的学习习惯;(3)提高学生运用计算工具进行数据分析的能力。
3、情感态度价值观目标(1)培养学生对统计学的好奇心和兴趣,激发学生学习积极性;(2)使学生认识到统计学在现实生活中的重要作用,增强学生的应用意识;(3)培养学生严谨、客观的科学态度,提高学生的数据分析素养。
六、教学重占和难点1、教学重点(1)用样本估计总体的基本方法;(2)估计结果的可靠性和准确性的分析;(3)实际问题的解决方法。
2、教学难点(1)样本估计总体原理的理解;(2)不同估计方法的适用条件和优缺点;(3)估计结果的分析和评价。
七、教学过程1、导入新课(5分钟)授课开始时,通过向学生展示一个与日常生活密切相关的统计数据问题,例如:“根据班级学生的身高数据,估计全年级学生的平均身高”,引发学生对用样本估计总体问题的思考。
通过这个实例,引导学生回顾已学的统计学知识,为新课的学习做好铺垫。
2、新知讲授(20分钟)(1)介绍用样本估计总体的基本概念和原理,如:样本均值、样本方差、置信区间等;(2)讲解不同估计方法,如:点估计、区间估计,并分析各自的优缺点;(3)通过具体例题,展示如何运用这些方法进行总体参数的估计;(4)强调估计结果的可靠性和准确性的判断标准,以及如何在实际问题中进行应用。
3、合作探究(15分钟)将学生分成小组,每组针对一个实际问题进行探究,如:“根据某地区部分家庭的年收入数据,估计该地区所有家庭的平均年收入”。
高中必修二数学教案《用样本估计总体》教材分析义务教育阶段,学生学习了统计内容,对数据统计全过程有所体验。
高中阶段要求进一步培养学生的随机思想,发展学生的统计观念。
其中包括:统计意识、统计方法及对统计结果的正确认识。
本节课《用样本估计总体》是抽样方法及数据的数字特征内容后的又一重要内容,通过本节课的学习,学生进一步掌握了对样本数据处理的重要方法之一——画频率分布直方图,以及用样本估计总体的思想,同时为学生在后续学习统计案例和应用统计知识解决实际问题打下良好的基础。
学情分析学生在初中就知道了分布的初步概念,在前面也刚学习过概率及抽样的相关知识,对用样本估计总体有一定的认识,对用表和图来反映知识有很强的意识,具有一定的作图能力和较为周全的分析问题能力,而学生的理解能力不足,发现问题能力上可能很难满足本节课的要求。
但学生对新知识兴趣高,肯下功夫,思维活跃,会为本节课的顺利推进提供一定的保障。
教学目标1、通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。
2、进一步体会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。
教学重点用样本的数字特征估计总体的数字特征、通过频率分布或频率分布直方图对数据作出总体估计。
教学难点通过频率分布或频率分布直方图,对数据作出总体估计。
教学方法讲授法、讨论法、练习法教学过程一、情境导学以下是某学校高一年级98位学生的身高(单位:cm);已知这组数的总体平均数为163.5,总体方差为56.3。
用简单随机抽样的方法,从总体中抽取容量为10的样本3次,分别计算样本平均数与样本方差,并与总体对应的值进行比较。
二、学习新知1、用样本的数字特征估计总体的数字特征一般情况下,如果样本的容量恰当,抽样方法又合理的话,样本的特征能够反映总体的特征。
特别地,样本平均值(也称为样本均值)、方差(也称为样本方差)与总体对应的值相差不会太大。
必修三2.2.用样本估计总体(教案)必修三2.2.用样本估计总体(教案)导语:本文为必修三2.2.用样本估计总体(教案)的教学指南,旨在引导学生了解和应用样本估计总体的方法。
通过学习本课,学生将能够理解抽样和样本的基本概念,并能够运用点估计和区间估计的方法进行总体参数的估计。
为了达到良好的教学效果,本教案采用了多样的教学方法,例如引导讨论、示例演示和小组合作等。
一、教学目标:1. 理解样本与总体的概念和关系;2. 掌握点估计的方法;3. 了解区间估计的原理和应用;4. 能够进行样本估计总体的实际问题分析。
二、教学过程:1. 导入(5分钟)引导学生思考以下问题:什么是样本?什么是总体?样本和总体之间有什么关系?为什么需要用样本来估计总体?2. 点估计的方法(15分钟)a. 讲解点估计的基本原理,即通过样本数据来估计总体参数的值。
b. 示例演示:设计一个问题,如某班级数学考试成绩的平均分。
用班级中的五位同学的成绩作为样本,通过计算样本的平均分来估计全班的平均分。
c. 引导学生讨论点估计的优点和缺点。
3. 区间估计的方法(15分钟)a. 讲解区间估计的概念和原理,即通过样本数据构造一个置信区间来估计总体参数的范围。
b. 示例演示:使用同样的例子,构造一个置信水平为95%的置信区间,来估计全班的平均分。
c. 引导学生讨论区间估计的优点和缺点。
4. 实际问题分析(25分钟)a. 设计一个实际问题,例如某个城市的人均收入。
要求学生提出估计该城市人均收入的方法和步骤,并结合点估计和区间估计的方法进行分析。
b. 小组合作:分组讨论,每个小组根据实际问题设计一个解决方案,并准备向全班汇报。
c. 汇报与讨论:每个小组轮流汇报他们的解决方案,并进行讨论。
5. 总结与延伸(10分钟)a. 概括本课内容,强调样本估计总体的方法和应用。
b. 提出延伸问题,鼓励学生进一步探索样本估计总体的其他应用领域。
三、教学反思:本节课通过引导讨论、示例演示和小组合作等多种教学方法,促使学生自主思考和应用样本估计总体的方法。
一、知识梳理:1.作频率分布直方图的步骤:(1)求极差(即一组数据中最大值与最小值的差);(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图频率=频率注:频率分布直方图中小正方形的面积=组距×组距2.频率分布折线图和总体密度曲线折线图:连接频率分布直方图中小长方形上端中点,就得到频率分布折线图总体密度曲线:当样本容量足够大,分组越多,折线越接近于一条光滑的曲线,此光滑曲线为总体密度曲线。
3.用茎叶图刻画数据的两个优点,1所有数据都可以从数据中得到;2茎叶图便于记录和表示,能够展示数据的分布情况,但当样本数据较多或数据较大时,茎叶图的效果就不是很好了4平均数、众数、中位数、标准差和方差(1)平均数:平均数是用来表示数据的平均水平。
一般用x̅来表示,计算公式:(2)众数:一组数据中出现次数最多的数。
(3)中位数:将数据从小到大的顺序排列,若有奇数个数,则最中间的数是中位数。
若有偶数个数,则中间两个数的平均数是中位数。
(4)标准差:是样本数据到平均数的一种平均距离,用来刻画数据的分散程度,一般用s来表示,计算公式:,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小。
(5)方差:方差是标准差的平方,它也可以用来刻画数据的分散程度,计算公式:。
5.有样本频率分布估计总体分布通常分为两种情况:(1)当总体中的个体取不同值很少时,其频率分布表由所取样本的不同值及其相应频率表示,就是相应的条形图;(2)当总体中的个体不同值很多时,就用频率分布直方图来表示相应的样本的频率分布。
6、利用频率分布直方图来估计众数、中位数、平均数在频率分布直方图中,众数的估计值......是其中最高矩形底边中点的横坐标;中位数...的估计值等于频率分...的左边和右边的直方图面积相等;平均数布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和。
二、题型探究[探究一]图形信息题例1:为了解某小学五年级女生身高(单位:cm)情况,对五年级一部分女生的身高进行了测量,所得数据整理后,列出频率分布表(如下表)(1)、求表中m,n,M,N所表示的两个数分别是多少(2)、画出频率分布直方图,并利用它估计五年级全体女生身高的众数、中位数、和平均数;[探究二]用样分布估计总体分布例2:为估计一次性木质筷子的用量,1999年从某县共600家高、中、低档饭店抽取10家作样本,这些饭店每天消耗的一次性筷子盒数分别为:1通过对样本的计算,估计该县1999年消耗了多少盒一次性筷子(每年按350个营业日计算);22022年又对该县一次性木质筷子的用量以同样的方式作了抽样调查,调查的结果是10个样本饭店,每个饭店平均每天使用一次性筷子盒.求该县2000年、2022年这两年一次性木质筷子用量平均每年增长的百分率(2022年该县饭店数、全年营业天数均与1999年相同);3在2的条件下,若生产一套学生桌椅需木材0.07m 3,求该县2022年使用一次性筷子的木材可以生产多少套学生桌椅。
获取更多免费资料以及真题演练请关注公众号:安博志愿规划 第二节 用样本估计总体 [考纲传真] 1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.
1.作频率分布直方图的步骤 (1)求极差(即一组数据中最大值与最小值的差); (2)决定组距与组数; (3)将数据分组; (4)列频率分布表; (5)画频率分布直方图. 2.频率分布折线图和总体密度曲线 (1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. (2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 3.茎叶图的优点 茎叶图的优点是不但可以记录所有信息,而且可以随时记录,这对数据的记录和表示都能带来方便. 注意:茎叶图中茎是指中间的一列数,叶是从茎的旁边生长出来的数. 4.样本的数字特征 (1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数. (2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
(3)平均数:把a1+a2+…+ann称为a1,a2,…,an这n个数的平均数.
(4)标准差与方差:设一组数据x1,x2,x3,…,xn的平均数为–x,则这组数据的标准差和方差分别是 获取更多免费资料以及真题演练请关注公众号:安博志愿规划 s=1nx1-–x2+x2-–x2+…+xn-–x2
s2=1nx1-–x2+x2-–x2+…+xn-–x2
[常用结论] 1.频率分布直方图的3个结论
(1)小长方形的面积=组距×频率组距=频率. (2)各小长方形的面积之和等于1. (3)小长方形的高=频率组距,所有小长方形高的和为1组距. 2.平均数、方差的公式推广
(1)若数据x1,x2,…,xn的平均数为–x,那么mx1+a,mx2+a,mx3+a,…,mxn+a的平均数是m–x+a. (2)数据x1,x2,…,xn的方差为s2. ①数据x1+a,x2+a,…,xn+a的方差也为s2; ②数据ax1,ax2,…,axn的方差为a2s2. [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势. ( ) (2)一组数据的方差越大,说明这组数据越集中. ( ) (3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高. ( ) (4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次. ( ) [答案] (1)√ (2)× (3)√ (4)× 2.(教材改编)一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为( ) A.4 B.8 C.12 D.16
B [设频数为n,则n32=0.25,∴n=32×14=8.] 3.(教材改编)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( ) 获取更多免费资料以及真题演练请关注公众号:安博志愿规划 A.91.5和91.5 B.91.5和92 C.91和91.5 D.92和92 A [∵这组数据由小到大排列为87,89,90,91,92,93,94,96,
∴中位数是91+922=91.5,平均数–x=87+89+90+91+92+93+94+968=91.5.] 4.某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.
48 [由频率分布直方图可知45岁以下的教师的频率为5×(0.040+0.080)=0.6,所以共有80×0.6=48(人).] 5.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.
0.1 [5个数的平均数–x=4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.]
茎叶图的应用 1.(2019·成都检测)某学生在一门功课的22次考试中,所得分数茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为 ( )
A.117 B.118 C.118.5 D.119.5 B [22次考试中,所得分数最高的为98,最低的为56,所以极差为98-56=42, 将分数从小到大排列,中间两数为76,76,所以中位数为76, 所以此学生该门功课考试分数的极差与中位数之和为42+76=118.] 获取更多免费资料以及真题演练请关注公众号:安博志愿规划 2.(2019·泉州质检)某中学奥数培训班共有14人,分为两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则n-m的值是 ( )
A.5 B.6 C.7 D.8 B [由甲组学生成绩的平均数是88,可得70+80×3+90×3+8+4+6+8+2+m+57
=88,解得m=3.由乙组学生成绩的中位数是89,可得n=9,所以n-m=6,故选B.] [规律方法] 茎叶图中的三个关注点 1“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一. 2重复出现的数据要重复记录,不能遗漏. 3给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移者平均数较大,数据集中者方差较小.
样本的数字特征及应用 1.(2019·济南一中质检)2018年2月20日,摩拜单车在济南推出“做文明骑士,周一摩拜单车免费骑”活动.为了解单车使用情况,记者随机抽取了五个投放区域,统计了半小时内被骑走的单车数量,绘制了如图所示的茎叶图,则该组数据的方差为 ( )
A.9 B.4 C.3 D.2 B [由茎叶图得该组数据的平均数–x=15(87+89+90+91+93)=90. ∴方差为15[(87-90)2+(89-90)2+(90-90)2+(91-90)2+(93-90)2]=4.] 2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则 ( )
甲 乙 A.甲的成绩的平均数小于乙的成绩的平均数 获取更多免费资料以及真题演练请关注公众号:安博志愿规划 B.甲的成绩的中位数等于乙的成绩的中位数 C.甲的成绩的方差小于乙的成绩的方差 D.甲的成绩的极差小于乙的成绩的极差
C [甲的平均数是4+5+6+7+85=6,中位数是6,极差是4,方差是-22+-12+02+12+225=2;乙的平均数是5+5+5+6+95=6,中位数是5,极差是4,
方差是-12+-12+-12+02+325=125,故选C.] 3.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环): 甲 10 8 9 9 9 乙 10 10 7 9 9 如果甲、乙两人中只有1人入选,则入选的最佳人选应是________.
甲 [–x甲=–x乙=9,s2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25, s2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s2甲,故甲更稳定.]
[规律方法] 1众数、中位数、平均数及方差的意义,①平均数与方差都是重要的数字特征,是对总体的一种简明地描述;②平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小. 2在计算平均数、方差时可利用平均数、方差的有关结论.
频率分布直方图及应用 ►考法1 求样本的频率、频数 【例1】 (2019·石家庄检测)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )
A.56 B.60 C.120 D.140 获取更多免费资料以及真题演练请关注公众号:安博志愿规划 D [由直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140.故选D.] ►考法2 频率分布直方图与样本的数字特征的综合 【例2】 我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中a的值; (2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数. [解] (1)由频率分布直方图可知:月均用水量在[0,0.5)内的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02. 由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a, 解得a=0.30. (2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (3)设中位数为x吨. 因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5, 又前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5, 所以2≤x<2.5. 由0.50×(x-2)=0.5-0.48,解得x=2.04. 故可估计居民月均用水量的中位数为2.04吨. [规律方法] 1.频率、频数、样本容量的计算方法