必修三2.2.用样本估计总体(教案)
- 格式:docx
- 大小:118.92 KB
- 文档页数:18
[教材习题研讨]P62探究方法点拨答案:(1)能.如:众数、中位数、平均数等,但它们各有特点,具体问题时应综合考虑.(2)可以.如:标准差、方差.P 63思考1正确理解每个数字特征的意义.答案:2.03这个中位数的估计值是由频率分布直方图中得来的,是在假设数据取值连续或均匀的基础上估计出的,但实际问题中数据的取值往往是不均匀的,出现偏差就不难理解.思考2体会“近似”“估计”答案:的确是这样.如:一个班级学生数学考试成绩的中位数不能反映班内“问题学生”与其他学生的具体差距.P64探究答案:我们必须问清所谓收入的平均水平具体指的是什么,若是中位数时,实际情况大体与我们从字面上的理解相符,若是平均数,则需要进一步了解企业各类岗位收入的离散情况,再作判断.P 64练习中位数对极端值不敏感.答案:(1)因为有的公路建设投资2200万元,属极端情况,大多数在20和100之间,此时平均数难以正确客观反映各项目投资的实际分布状况,不宜选用.而众数20万只说明投资20万的项目最多,不能反映其他项目的投资数额.中位数对极端值不敏感,能回避极端数额的影响,25万也较客观,故选中位数.(2)它的缺点是不能提供各项目投资金额的分布和离散情况.P 70练习深入问题,细致分析.1.答案:用科学计算器可得x甲=900,x乙=900,s甲=23.80<s乙=41.63,所以甲种水稻的产量稳定.2.答案:(1)用科学计算器可得x=496.86g,s=6.55g;(2)有14袋,所占百分比为66.7%.3.答案:(1)在上述数据中,最大值是50.1,最小值是1.5,极差是50.1-1.5=48.6.如果将组距定为7,那么由48.6÷7=6.94,组数为7,这个组数是适合的.于是组距为7,组数为7.根据本题中数据的特点,第1小组的起点可取为1.5,第1小组的终点可取为8.5,为了避免一个数据既是起点,又是终点从而造成重复计算,我们规定分组的区间是“左闭右开”的.这样,所得到的分组是[1.5,8.5),[8.5,15.5),…,[43.5,50.5).平均数、方差、标准差都可用科学计算器直接得出,但必须掌握笔算方法,因为有时科学计算器不许使用.列频率分布表如下表.(1)求最大值与最小值的差;(2)确定组距与组数;(3)决定分点;(4)列频率分布表;(5)绘制频率分布直方图.频率组距1.5,8.5)8.5,15.5)15.5,22.5)22.5,29.5)29.5,36.5)36.5,43.5)43.5,50.5)死亡率图2-2-13(2)x=19.25,s=12.50,如上图“1”位置即平均数是频率直方图的“重心”.死亡率在[6.75,31.75]内的国家有19个,所占比例63%,这说明该疾病死亡率地域性差异较大.P72习题2.2A组最后一行的合计不要遗忘,它可以及时检测你的过程有无错误.1.答案:(1)茎叶图如下.汞含量汞含量0.01.140096710482851.21.31.41.51.61.71.81.92.00.10.20.30.40.50.60.70.80.91.02.17494121522824881图2-2-14(2)分布比较分散,大多在0.8到1.6之间.(3)比1.00 ppm大.(4)x=1.08 ppm,s=0.45.(5)28条.2.答案:在数据中,最大值是385,最小值是25,极差是385-25=360.如果将组距定为40,那么由360÷40=9,组数为9,这个组数是适合的.于是组距为40,组数为9.根据本题中数据的特点,第1小组的起点可取为25,第1小组的终点可取为65,分组是[25,65),[65,105),…,[345,385].作茎叶图先确定中间数取数据的哪几位,填写数据时边读边填,无需按大小排列.列频率分布表如下表. 绘制频率分布直方图的一般步骤:(1)求最大值与最小值的差;(2)确定组距与组数;(3)决定分点;(4)列频率分布表;(5)绘制频率分布直方图.频率 分组[25,65)[65,105)[105,145)[145,185)[185,225)[225,265)[265,305)[305,345)[345,385]图2-2-15利用科学计算器得x=238,s=113.94.中位数、众数、平均数如上图所示.平均数是直方图的重心,众数在最高小矩形的中点处,中位数的左右矩形的面积应相等,它们虽都是常用统计量,但数学意义不同,各具特色.3.答案:可以查阅一下这所大学招生的其他信息,中位数是550分,只能说明有50%的学生高于此分数,仍有50%的录取学生的分数低于550分,该生分数520分仍有可能.该例反映了中位数对极端值不敏感这一特点.中位数对极端值不敏感.4.答案:四种说法都正确,一队的平均失球数少于二队,故第一句正确;二队标准差较小,说明技术水平稳定;一队平均失球数是1.5,而其标准差却是1.1,离散程度较大,由此可判断一队表现不稳定;平均失球数是2.1,标准差只有0.4,每场得失球数相差不多,可见二队的确很少不失球.5.答案:(1)难度较大.平均数是3.5万,共50人,所以他们的总收入是165万,而最高收入者一人收入100万,可推知其他人的收入不高.(2)不能.极差只能反映数据变化的最大范围,却不能体现数据的具体分布情况.(3)可以根据自身的情况作出选择,初聘人员的收入一般在较低档.(4)1.5万.均值受极端值影响很大.正确理解平均数、中位数、众数、方差、标准差等各统计量的意义.6.答案:利用科学计算器得x甲=1.5,s甲=1.28,x乙=1.2,s乙=0.87.因x甲=1.5>x乙=1.2,s甲=1.28<s乙=0.87,可知,机床乙先比较平均数,了解平均水平的差距情况,差距显著则可以结合实际情况做出判断选择.若差距不明显则需进一步比较方差或平均数.样本数的性能较好.7.答案:(1)x=199.75,s=95.26.(2)抽取一样本后得x=169.17,s=56.30.(3)再抽取一样本后得x=166.29,s=59.65.(4)获取一容量是10的样本得x=218.30,s=118.97.同一个总体,抽取的样本不同,平均数、标准差等都会发生改变,这会影响对总体的估计,对总体估计的偏差取决于样本的质量.实际应用时在许可的前提下,适当增加样本容量来提高样本代表性,减少估计偏差.B组据的选取应运用正确的样本抽取方法,如用抽签法,切忌挑选数据,使样本缺乏代表性,使所取样本失去研究价值.1.答案:(1)第一次好;(2)第一次;(3)G最强,E最弱;(4)运动员F、H最不一致,C、G、L、I看起来最一致.2.答案:略.了解总体的情况是检查样本的目的,因此要求样本应具有很好的代表性,选择恰当的抽样方法获取高质量的样本.样本的良好客观代表性,完全依赖于恰当的抽样方法.。
用样本估计总体面对数据,能正确的分析、处理数据,面对现实问题,能主动尝试用数学的思维和方法去寻求解决问题的策略,提高分析问题和解决问题的能力,提高数学素养,提高应用数学的意识,让学生在合作中学会交流.引导学生自主探究,培养学生勤于思考的习惯.用数学的思维和方法解决实际问题.以学生合作探索活动为主.多媒体,计算器.(一)师:生活中处处有数据,当一串数据呈现在我们面前时,我们用统计知识学会了分析数据和处理数据.一些同学在处理教材第122页活动2的数据时遇到这样几个问题,请分组讨论一下,然后全班交流.问题 1 一个年级有几百名学生,可是计算器一次只能计算几十个数据的平均数,怎么办?(用多媒体展示)生1:用计算机计算.生2:可以先分班计算每个班男学生的平均身高,再计算全年级男同学的平均身高.28402930283235285.164400.166294.163302.163285.162321.164356.165++++++⨯+⨯+⨯+⨯+⨯+⨯+⨯.师:前面两位同学回答很好,还有什么方法?生3:将数据分组,全年级222名男生,分成10组,先分组计算平均数,再算全年级的男生的平均身高.师:非常好,请继续.生4:可以先统计各个数据出现的次数,再作计算.生5:可以采取随机抽样的方法,用计算器产生几十个不同的随机数,相应编号的学生作为样本,先计算这几十名男生的平均身高,再估计全年级男生的平均身高.师:同学们的讨论和回答非常好,继续思考下面两个问题.(用多媒体展示)问题2 在计算20名男同学平均身高时,小华将所有数据按由小到大的顺序排列,得下表.然后,这样计算20202167416521632160415721551143⨯+⨯+⨯+⨯+⨯+⨯+⨯.小华这样计算可以吗?为什么?问题3 某校九年级共有四个班,各班的男同学人数和平均身高如表.小强47.1608.1603.1622.161+++.小强这样计算平均数可以吗?为什么?生:小华这样算可以,小强这样算不可以,因为小强没有考虑到各班男生人数不等.师:小华这样算可以简化计算.解决小强遇到的问题,一般不能采取“相加除以4”的平均化策略,那么,只有在什么情况下可以采取这种策略呢?生:如果四个班的人数相同,才可以采取这种方法.(二)1.重庆市是一座美丽的城市,为增强市民的环保意识,某校家住缙云花园小区的30名九年级学生调查了某一天各自家庭丢弃废塑料袋的情况,统计结果如根据以上数据,若缙云花园小区有500户居民,则该小区所有家庭每天丢弃的废塑料袋总数约为__________万个.2.某动物园对5个旅游景点的门票价格进行了调整,据统计,调价前后各景(1)该动物园称调整前后这5个景点门票的平均收费不变,平均日总收入持平,问动物园是怎样计算的?(2)另一方面,游客认为调整收费后动物园的平均日总收入相对调价前,实际上增加了约9.4%,问游客是怎样计算的?(3)你认为动物园和游客哪一个的说法较能反映整体实际?师:对这两个实际问题请先独立思考,再与你的同伴交流,得到实际问题的结果.(三)通过这节课的学习,你有什么体会和收获?(引导学生小结)(四)作业1.教材第123页第1题.2.举出用样本估计总体的实例.(分组活动)。
用样本估计总体教案一、课程名称:(适用大部分课程教案)二、授课对象初中二年级学生三、授课时间每课时45分钟四、授课教师张某某五、教学目标1、知识与技能目标(1)掌握用样本估计总体的基本概念和方法;(2)能够运用样本数据对总体进行估计,并计算估计的误差;(3)能够运用统计学软件进行样本估计总体的操作。
2、过程与方法目标(1)通过小组合作探究,培养学生运用统计学方法解决问题的能力;(2)通过实际案例的分析,培养学生将理论知识与实际应用相结合的能力;(3)通过课堂讲解和练习,培养学生自主学习、思考总结的能力。
3、情感态度价值观目标(1)培养学生对统计学产生兴趣,认识到统计学在生活中的重要性;(2)培养学生具备客观、严谨的科学态度;(3)培养学生团结协作、共同探究的精神。
六、教学重占和难点1、教学重点(1)用样本估计总体的基本方法和步骤;(2)样本估计总体的误差分析;(3)统计学软件在样本估计总体中的应用。
2、教学难点(1)样本估计总体误差的计算;(2)统计学软件的操作使用;(3)将理论知识与实际案例相结合,解决实际问题。
七、教学过程1、导入新课(5分钟)授课教师通过展示与学生生活密切相关的总体数据问题,例如:“假设我们要了解全校学生的平均身高,我们是否需要测量每一个学生?有没有更高效的方法?”引发学生对用样本估计总体概念的思考,从而导入新课。
2、新知讲授(20分钟)(1)介绍用样本估计总体的基本概念,包括总体、样本、参数、统计量等;(2)讲解如何从样本数据推断总体数据,包括点估计和区间估计;(3)详细解释样本估计的误差来源及如何计算误差;(4)展示统计学软件(如SPSS、Excel等)在样本估计总体中的应用实例。
3、合作探究(15分钟)将学生分成小组,每组给予一个实际案例,如调查班级学生的平均成绩,要求小组讨论并设计出合理的样本调查方案,包括样本的大小、选择方法等,并尝试使用统计学软件进行数据处理和分析。
高二数学必修三《用样本估计总体》优秀教案高二数学必修三《用样本估计总体》优秀教案高中数学必修三《用样本估计总体》教案教学目标:[知识与技能](1)了解通过抽样调查收集数据的方法;会设计简单的方案收集数据。
(2)通过抽样调查,初步感受抽样的必要性,体会用样本估计总体的思想。
(3)了解实验也是获得数据的有效方法。
[过程与方法](1)通过生活实例的引入,使学生学会以数学的角度提出和理解问题,应用统计思想解决实际问题。
(2)让学生通过动手实验来体验一种在生产和科研中经常用到的“捉——放——捉”的方法。
[情感〃态度〃价值观](1)通过简单的方案设计和师生双边的教学活动,让学生在运用统计的知识解决实际问题时,体验互动交流精神。
(2)通过实际参与收集整理.描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计观念,培养重视调查研究的良好习惯和科学态度。
教学重难点:让学生通过动手实验来体验一种在生产和科研中经常用到的“捉--放--捉”的方法。
教学过程:(一)创设情境导入新课导语:在我们熟知的一些科学家、历史人物中有很多在像和你们一样年轻的时候就显现出了他们在数学上的天赋,如“曹冲称象”就利用他所掌握的数学知识解决了实际问题。
今天我也想请大家帮我解决一个问题,我这瓶子中装有一些豆子,你能用几种方法估计出这个瓶子中豆子的数目?(二)合作交流解读探究[问题1]瓶子中有多少豆子?先让学生初步探讨问题,交流方案;[学生实验参考方案](一)(全面调查)直接数瓶子中的豆子;(二)(抽样调查)先将豆子若干等份,数出其中一份豆子的数量,以此估计总量。
用称重的方法,先称出所有豆子的重量m,再称出一杯豆子的重量n,并数清这杯豆子的粒数p,则这一杯豆子平均每粒重m/p,以此就可以估计出瓶子中豆子的粒数q:q≈p/n×m采用“捉--放--捉”的方法;(本节课的主要实验方法)[课堂实验]实验步骤:(1)从瓶子中取出一些豆子,记录这些豆子的粒数m;(2)给这些豆子做上记号;(3)把这些豆子放回瓶子中,充分摇匀;(4)从瓶子中再取出一些豆子,记录这些豆子的粒数p和其中带有记号的豆子的粒数n;(5)利用得到的数据m,p,n,估计原来瓶子中豆子的粒数q,q≈p/n×m(6)数出瓶子中豆子的总数,验证你的估计。
2.2.1用样本的频率分布估计总体分布一、教学目标分析1.知识与技能目标(1)通过实例体会分布的意义和作用。
(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图。
(3)通过实例体会频率分布直方图的特征,能准确地做出总体估计。
2、过程与方法目标:通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。
3、情感态度与价值观目标:通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。
二、教学的重点和难点重点:会列频率分布表,画频率分布直方图。
难点:能通过样本的频率分布估计总体的分布。
三、教法与学法分析1、教法:遵循观察、探究、发现、总结式的教学模式。
重点以引导学生为主,让他们能积极、主动的进行探索,获取知识。
由于内容较繁琐,所以要借助多媒体辅助教学。
2、学法:根据本节知识的特点,由于学生已具备一定的基础知识,可采取研究性学习的学习方法。
四、教学过程(一)情境引入1.随机抽样有哪几种基本的抽样方法?简单随机抽样、系统抽样、分层抽样.2.随机抽样是收集数据的方法,如何通过样本数据所包含的信息,估计总体的基本特征,即用样本估计总体,是我们需要进一步学习的内容.3.高二某班有50名学生,在数学必修②结业考试后随机抽取10名,其考试成绩如下:82,75,61,93,62,55,70,68,85,78.如果要求我们根据上述抽样数据,估计该班对数学模块②的总体学习水平,就需要有相应的数学方法作为理论指导,本节课我们将学习用样本的频率分布估计总体分布.(二)新课讲解知识探究(一):频率分布表【问题】我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.通过抽样调查,获得100位居民2007年的月均用水量如下表(单位:t):3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.20.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.21.7 1.3 3.6 1.7 0.6 4.1 3.22.9 2.4 2.3 1.8 1.43.5 1.9 0.84.3 3.02.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.60.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.61.0 1.0 1.7 0.82.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2思考1:上述100个数据中的最大值和最小值分别是什么?由此说明样本数据的变化范围是什么?0.2~4.3思考2:样本数据中的最大值和最小值的差称为极差.如果将上述100个数据按组距为0.5进行分组,那么这些数据共分为多少组?(4.3-0.2)÷0.5=8.2思考3:以组距为0.5进行分组,上述100个数据共分为9组,各组数据的取值范围可以如何设定?[0,0.5),[0.5,1),[1,1.5),…,[4,4.5].思考4:如何统计上述100个数据在各组中的频数?如何计算样本数据在各组中的频率?你能将这些数据用表格反映出来吗?分组频数累计频数频率[0,0.5) 4 0.04[0.5,1)8 0.08[1,1.5)正正正15 0.15[1.5,2)正正正正22 0.22[2,2.5)正正正正正25 0.25[2.5,3)正正14 0.14[3,3.5)正一 6 0.06[3.5,4) 4 0.04[4,4.5] 2 0.02合计100 1.00思考5:上表称为样本数据的频率分布表,由此可以推测该市全体居民月均用水量分布的大致情况,给市政府确定居民月用水量标准提供参考依据,这里体现了一种什么统计思想?用样本的频率分布估计总体分布.思考6:如果市政府希望85%左右的居民每月的用水量不超过标准,根据上述频率分布表,你对制定居民月用水量标准(即a的取值)有何建议?88%的居民月用水量在3t以下,可建议取a=3思考7:在实际中,取a=3t一定能保证85%以上的居民用水不超标吗?哪些环节可能会导致结论出现偏差?分组时,组距的大小可能会导致结论出现偏差,实践中,对统计结论是需要进行评价的.思考8:对样本数据进行分组,其组数是由哪些因素确定的?思考9:对样本数据进行分组,组距的确定没有固定的标准,组数太多或太少,都会影响我们了解数据的分布情况.数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多.按统计原理,若样本的容量为n,分组数一般在(1+3.3lg n)附近选取.当样本容量不超过100时,按照数据的多少,常分成5~12组.若以0.1或1.5为组距对上述100个样本数据分组合适吗?思考10:一般地,列出一组样本数据的频率分布表可以分哪几个步骤进行?第一步,求极差.(极差=样本数据中最大值与最小值的差)第二步,决定组距与组数.(设k=极差÷组距,若k为整数,则组数=k,否则,组数=k+1)第三步,确定分点,将数据分组.第四步,统计频数,计算频率,制成表格.(频数=样本数据落在各小组内的个数,频率=频数÷样本容量)知识探究(二):频率分布直方图思考1:为了直观反映样本数据在各组中的分布情况,我们将上述频率分布表中的有关信息用下面的图形表示:上图称为频率分布直方图,其中横轴表示月均用水量,纵轴表示频率/组距. 频率分布直方图中各小长方形的和高度在数量上有何特点?思考2:频率分布直方图中各小长方形的面积表示什么?各小长方形的面积之和为多少?各小长方形的面积=频率各小长方形的面积之和=1思考3:频率分布直方图非常直观地表明了样本数据的分布情况,使我们能够看到频率分布表中看不太清楚的数据模式,但原始数据不能在图中表示出来.你能根据上述频率分布直方图指出居民月均用水量的一些数据特点吗?(1)居民月均用水量的分布是“山峰”状的,而且是“单峰”的;(2)大部分居民月均用水量集中在一个中间值附近,只有少数居民月均用水量很多或很少;(3)居民月均用水量的分布有一定的对称性等.思考4:样本数据的频率分布直方图是根据频率分布表画出来的,一般地,频率分布直方图的作图步骤如何?第一步,画平面直角坐标系.第二步,在横轴上均匀标出各组分点,在纵轴上标出单位长度.第三步,以组距为宽,各组的频率与组距的商为高,分别画出各组对应的小长方形.思考5:对一组给定的样本数据,频率分布直方图的外观形状与哪些因素有关?在居民月均用水量样本中,你能以1为组距画频率分布直方图吗?(三)例题讲解例1、 某地区为了了解知识分子的年龄结构,随机抽样50名,其年龄分别如下:42,38,29,36,41,43,54,43,34,44,40,59,39,42,44,50,37,44,45,29, 48,45,53,48,37,28,46,50,37,44,42,39,51,52,62,47,59,46,45,67, 53,49,65,47,54,63,57,43,46,58.(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计年龄在32~52岁的知识分子所占的比例约是多少.(1)极差为67-28=39,取组距为5,分为8组.样本频率分布表:分 组 频数 频率[27,32) 3 0.06[32,37) 3 0.06[37,42) 9 0.18[42,47) 16 0.32[47,52) 7 0.14[52,57) 5 0.10[57,62) 4 0.08[62,67) 3 0.06合 计 50 1.00(2)样本频率分布直方图:频率(3)因为0.06+0.18+0.32+0.14=0.7, 故年龄在32例 2、为了了解小学生的体能情况,抽取了某小 学同年级部分学生进行跳绳测试,将所得的数据 整理后画出频率分布直方图(如图),已知图中从 左到右的前三个小组的频率分别是0.1,0.3,0.4。
必修三2.2.用样本估计总体(教案)必修三2.2.用样本估计总体(教案)导语:本文为必修三2.2.用样本估计总体(教案)的教学指南,旨在引导学生了解和应用样本估计总体的方法。
通过学习本课,学生将能够理解抽样和样本的基本概念,并能够运用点估计和区间估计的方法进行总体参数的估计。
为了达到良好的教学效果,本教案采用了多样的教学方法,例如引导讨论、示例演示和小组合作等。
一、教学目标:1. 理解样本与总体的概念和关系;2. 掌握点估计的方法;3. 了解区间估计的原理和应用;4. 能够进行样本估计总体的实际问题分析。
二、教学过程:1. 导入(5分钟)引导学生思考以下问题:什么是样本?什么是总体?样本和总体之间有什么关系?为什么需要用样本来估计总体?2. 点估计的方法(15分钟)a. 讲解点估计的基本原理,即通过样本数据来估计总体参数的值。
b. 示例演示:设计一个问题,如某班级数学考试成绩的平均分。
用班级中的五位同学的成绩作为样本,通过计算样本的平均分来估计全班的平均分。
c. 引导学生讨论点估计的优点和缺点。
3. 区间估计的方法(15分钟)a. 讲解区间估计的概念和原理,即通过样本数据构造一个置信区间来估计总体参数的范围。
b. 示例演示:使用同样的例子,构造一个置信水平为95%的置信区间,来估计全班的平均分。
c. 引导学生讨论区间估计的优点和缺点。
4. 实际问题分析(25分钟)a. 设计一个实际问题,例如某个城市的人均收入。
要求学生提出估计该城市人均收入的方法和步骤,并结合点估计和区间估计的方法进行分析。
b. 小组合作:分组讨论,每个小组根据实际问题设计一个解决方案,并准备向全班汇报。
c. 汇报与讨论:每个小组轮流汇报他们的解决方案,并进行讨论。
5. 总结与延伸(10分钟)a. 概括本课内容,强调样本估计总体的方法和应用。
b. 提出延伸问题,鼓励学生进一步探索样本估计总体的其他应用领域。
三、教学反思:本节课通过引导讨论、示例演示和小组合作等多种教学方法,促使学生自主思考和应用样本估计总体的方法。
2.2 用样本估计总体教案 A第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1. 通过实例体会分布的意义和作用.2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.二、探究新知探究1:我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,第 1 页为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1.计算一组数据中最大值及最小值的差,即求极差;2.决定组距及组数;3.将数据分组;4.列频率分布表;5.画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)频率分布直方图的特征:1.从频率分布直方图可以清楚的看出数据分布的总体趋势.2.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.探究2:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图的不同看法进行交流……)接下来请同学们思考下面这个问题:思考:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,(见教材P67)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)(二)频率分布折线图、总体密度曲线1.频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.思考:1.对于任何一个总体,它的密度曲线是不是一定存在?为什么?2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把第 3 页这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.三、例题精析例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm 的人数占总人数的19%.cm )例2 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:40.0824171593=+++++, 又因为频率=.第二小组频数样本容量所以,12150.0.08===第二小组频数样本容量第二小组频率 (2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、课堂小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、评价设计1.P81习题2.2 A组1、2.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征(板出课题).二、探究新知(一)众数、中位数、平均数探究(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供第 5 页关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t (最高的矩形的中点)(图见教材第72页)它告诉我们,该市的月均用水量为2. 25t 的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等.由此可以估计出中位数的值为2.02.(图略见教材73页图2.2-6)思考:2.02这个中位数的估计值,及样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)图2.2-6显示,大部分居民的月均用水量在中部(2.02t 左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.思考:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)(二)标准差、方差1.标准差平均数为我们提供了样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断.某地区的统计显示,该地区的中学生的平均身高为176cm ,给我们的印象是该地区的中学生生长发育好,身高较高.但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质.因此,只有平均数难以概括样本数据的实际状态.例如,在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛? 我们知道,77x x ==乙甲,.两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?(观察P74图2.2-7)直观上看,还是有差异的.很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据.考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示.样本数据1,2,,n x x x 的标准差的算法:第 7 页(1) 算出样本数据的平均数x .(2) 算出每个样本数据及样本数据平均数的差:(1,2,)i x x i n -= (3) 算出(2)中(1,2,)i x x i n -=的平方.(4) 算出(3)中n 个平方数的平均数,即为样本方差.(5) 算出(4)中平均数的算术平方根,即为样本标准差.其计算公式为:显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小.提问:标准差的取值范围是什么?标准差为0的样本数据有什么特点?从标准差的定义和计算公式都可以得出:s ≥0.当0s =时,意味着所有的样本数据都等于样本平均数.2.方差从数学的角度考虑,人们有时用标准差的平方2s (即方差)来代替标准差,作为测量样本数据分散程度的工具:在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.三、例题精析例1 画出下列四组样本数据的直方图,说明他们的异同点.(1)5,5,5,5,5,5,5,5,5(2)4,4,4,5,5,5,6,6,6(3)3,3,4,4,5,6,6,7,7(4)2,2,2,2,5,8,8,8,8分析:先画出数据的直方图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差.解:(图见教材P76)四组数据的平均数都是5.0,标准差分别为:0.00,0.82,1.49,2.83.他们有相同的平均数,但他们有不同的标准差,说明数据的分散程度是不一样的.例2 甲乙两人同时生产内径为25.40mm 的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm ):甲 25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.3825.42 25.39 25.43 25.39 25.40 25.44 25.40 25.4225.45 25.35 25.41 25.39乙 25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.3625.34 25.49 25.33 25.43 25.43 25.32 25.47 25.3125.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?分析:比较两个人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数及标准差的大小即可,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本数据的平均数、标准差,以此作为两个总体之间的差异的估计值.解:四、课堂小结1. 用样本的数字特征估计总体的数字特征分两类:(1)用样本平均数估计总体平均数.(2)用样本标准差估计总体标准差.样本容量越大,估计就越精确.2. 平均数对数据有“取齐”的作用,代表一组数据的平均水平.3. 标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.五、评价设计P81 习题 2.2 A组 3、4.教案 B第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1.通过实例体会分布的意义和作用.2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点教学重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.教学难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境,导入新课我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.二、新课探知(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1. 计算一组数据中最大值及最小值的差,即求极差;2. 决定组距及组数;第 9 页cm ) 3. 将数据分组;4. 列频率分布表;5. 画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)一画出频率分布直方图;(3)估计身高小于134C m的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图:(3134cm 的男孩出现的,所以我们估计身高小 (1趋势. (2把数据抹掉了.曲线 1.频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.(见教材P69)(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.例2某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.用茎叶图表示,你能通过该图说明哪个运动员的发挥更稳定吗?解:“茎”指的是中间的一列数,表示得分的十位数;“叶”指的是从茎的旁边生长出来的数,分别表示两人得分的个位数.画这组数据的茎叶图的步骤如下第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;第二步,茎是中间的一列数,按从小到大的顺序排列;第三步,将各个数据的叶按大小次序写在茎右(左)侧.甲乙8 04 6 3 1 2 53 6 8 2 5 43 8 9 3 1 6 1 6 7 94 4 91 5 0从图中可以看出,乙运动员的得分基本上是对称的,页的分布是“单峰”的,有的叶集中在茎2,3,4上,中位数为36;甲运动员的得分除一个特殊得分(51分)外,也大致对称,叶的分布也是“单峰”的,有的叶主要集中在茎1,2,3上,中位数是26.由此可以看出,乙运动员的成绩更好. 另外i,从叶在茎上的分布情况看,乙运动员的得分更集中于峰值附近,这说明乙运动员的发挥更稳定.练习:在NBA的2010赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33学生画出茎叶图(略)三、巩固练习为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(见下页图示),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.第 11 页(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.08 24171593=+++++,又因为频率=第二小组频数样本容量,所以,121500.08===第二小组频数样本容量第二小组频率.(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、布置作业P71练习1、2、3.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境导入新课在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征.二、新课探究(一)众数、中位数、平均数初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见教材第72页)它告诉我们,该市的月均用水量为2. 25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,第 13 页。
阅读与思考:生产过程中的质量控制图》教学设计阅读与思考:生产过程中的质量控制图——正态分布[ 教材分析]本节课选自人教A 版必修3第二章“统计”第2.2节“用样本估计总体”课后的“阅读与思考”部分。
在第2.1节通过抽样收集数据之后,第2.2节给出了两种用样本估计总体的方式,一种是用样本的频率分布估计总体的分布,另一种是用样本的数字特征(如平均数、标准差等)估计总体的数字特征。
本节课是在这基础上,结合前面所学的总体密度曲线、平均数和标准差的概念,通过生产过程中的产品质量控制图引出正态分布,利用具体的生活应用介绍正态分布密度曲线的特点以及期望、标准差对整个正态分布的影响。
正态分布无论是在理论上还是应用上都是极其重要的一个分布,将正态分布的这些特点应用到质量控制中,可使学生进一步加强对标准差的认识。
由于正态分布的随机变量是连续型随机变量,这也让学生对随机变量由离散型到连续型有一个初步的认识。
从教材编排上来看,“阅读与思考”内容是对频率分布直方图、标准差认识的深化,是统计知识体系的一种承接和完善,也是后续选修2-3 中第2.4“正态分布”一课的铺垫。
[学情分析]学生在之前章节的学习中,已经掌握如何通过抽样来收集数据,能够画出所收集数据的频率分布直方图、折线图,会根据图表初步分析数据的分布规律,会计算平均数与标准差,这为本节课的探究学习打下了坚实的基础。
但学生仍存在一些知识短板和理解缺口。
其一,本节课学习的正态分布的随机变量是连续型随机变量的分布问题,学生一直以来接触的都是离散型随机变量,这在概念接受与理解上会有一定困难,可以通过信息技术辅助理解;其二,由于学生在此之前还未学习过定积分、随机事件的概率以及二项分布,只在初中接触过简单的概率定义,因而对本节课正态分布的本质理解会显得生涩;其三,正态分布的密度曲线函数较为复杂,学生对抽象且陌生的公式会存在惧怕心理,需要通过一些函数模型及实际应用帮助学生体会其参数的作用。
初中数学用样本估计总体优秀教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、发言致辞、自我鉴定、合同协议、条据文书、规章制度、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as work plans, work summaries, speeches, self-evaluation, contract agreements, documents, rules and regulations, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!初中数学用样本估计总体优秀教案初中数学用样本估计总体优秀教案(通用5篇)在教学工作者开展教学活动前,常常要写一份优秀的教案,教案有助于学生理解并掌握系统的知识。
《用样本估计总体》教案2一、教学目标:1.了解什么是样本,什么是总体。
2.掌握抽样方法和样本容量的选择。
3.掌握常见的点估计方法。
4.能够进行样本均值和总体均值的估计。
5.了解样本方差和总体方差的估计。
二、教学重难点:三、教学过程:1.简单随机抽样法:每个个体被选择的概率相等,抽样的每个组合都具有相同的概率。
2.分层抽样法:先将总体分成若干个层次,再在每个层次内随机抽取样本。
3.整群抽样法:把总体分为许多互不相交的群体,随机抽取一些群体,再抽取所选群体中的所有个体。
4.系统抽样法:按一定规律抽取个体。
5.多级抽样法:将总体分层,先从每层中选出一些子样本,再从子样本中抽取样本。
6.判断样本容量的大小。
(1)总体的大小。
(2)总体的变异程度。
(3)研究问题的性质。
(4)经济可行性。
1.最大似然估计(MLE)。
2.矩估计。
3.贝叶斯估计。
1.样本均值:$\overline{X}=\frac {\sum_{i=1}^{n}{X_i}} {n}$。
2.总体均值的估计:利用样本的均值$\overline{X}$来估计总体的均值μ,$\hat{\mu}=\overline{X}$。
六.实例练习。
1.已知样本的均值为X,样本的标准差为s,请估计总体的均值。
解:$\hat{\mu}=\overline{X}$,由中心极限定理可得,$\overline{X}$的样本分布有一个平均数为$\mu$,标准差为$\frac{s}{\sqrt{n}}$的正态分布,样本大于30,所以使用正态分布来近似。
因此,总体均值μ的95%置信区间为$\overline{X}\pmz_{\frac{\alpha}{2}}\frac{s}{\sqrt{n}}$。
解:由样本方差的定义可得$s^2=\frac{\sum_{i=1}^{n}{(X_i-\overline{X})^2}} {n-1}$,由于$(n-1)\frac{s^2}{\sigma^2}\backsim{\chi}^2(n-1)$,所以$\sigma^2=\frac{(n-1)\times s^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}$。
人教版新课标普通高中◎数学③必修2. 2 用样本估计总体教案 A第1课时教学内容§2. 2. 1 用样本的频率分布估计总体分布教学目标一、知识与技能1.通过实例体会分布的意义和作用.2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图 .3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程与方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法 .三、情感、态度与价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.教学重点、难点重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境在NBA的 2004 赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕ 12, 15,20, 25, 31, 31, 36, 36, 37, 39, 44, 49,50 乙运动员得分﹕ 8, 13, 14, 16,23, 26,28, 38,39, 51,31, 29,33 请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.二、探究新知探究 1:我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过 a 的部分按平价收费,超出 a 的部分按议价收费 . 如果希望大部分居民的日常生活不受影响,那么标准a 定为多少比较合理呢?你认为,为了较为合理地确1教师备课系统──多媒体教案定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等. 因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息. 表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律. 可以让我们更清楚的看到整个样本数据的频率分布情况 .(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小. 一般用频率分布直方图反映样本的频率分布. 其一般步骤为:1. 计算一组数据中最大值与最小值的差,即求极差;2. 决定组距与组数;3. 将数据分组;4. 列频率分布表;5. 画频率分布直方图.以教材 P65 制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)频率分布直方图的特征:1. 从频率分布直方图可以清楚的看出数据分布的总体趋势.2.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了 .探究 2:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同 . 不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0. 1 和 1 为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图的不同看法进行交流⋯⋯)接下来请同学们思考下面这个问题:思考:如果当地政府希望使 85%以上的居民每月的用水量不超出标准,根据频率分布表2- 2 和频率分布直方图 2. 2- 1(,见教材 P67)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)(二)频率分布折线图、总体密度曲线1.频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.2人教版新课标普通高中◎数学③必修思考: 1.对于任何一个总体,它的密度曲线是不是一定存在?为什么?2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图. (见教材P70 例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.三、例题精析例 1 下表给出了某校500 名 12 岁男孩中用随机抽样得出的120人的身高(单位 cm):区间界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)人数5810223320区间界限 [146,150)[150,154)[154,158)人数1165( 1)列出样本频率分布表;( 2)画出频率分布直方图;( 3)估计身高小于 134cm的人数占总人数的百分比 .分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158)50.04合计12013教师备课系统──多媒体教案(2)其频率分布直方图如下:频率 /组距0.070.060.050.040.030.020.01o身高( cm)122126 130 134 138 142 146 150 154 158( 3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0. 04+ 0. 07+0. 08= 0. 19,所以我们估计身高小于134cm 的人数占总人数的19%.例 2 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为 2:4: 17: 15: 9: 3,第二小组频数为12.频率 /组距0.0360.0320.0280.0240.0200.0160.0120.0080.004o90100110120130140150次数4人教版新课标普通高中◎数学③必修(1)第二小组的频率是多少?样本容量是多少?(2)若次数在 110 以上(含 110 次)为达标,试估计该学校全体高一学生的达标率是多少?( 3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于 1.解:( 1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.08,24171593第二小组频数.又因为频率=样本容量所以,样本容量第二小组频数12150.第二小组频率0.08( 2)由图可估计该学校高一学生的达标率约为171593100%88%.24171593( 3)由已知可得各小组的频数依次为6, 12, 51, 45, 27, 9,所以前三组的频数之和为 69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、课堂小结1.总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2.总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、评价设计1.P81 习题 2. 2 A 组1、2.第 2课时教学内容§2. 2. 2 用样本的数字特征估计总体的数字特征教学目标一、知识与技能1.正确理解样本数据标准差的意义和作用,学会计算数据的标准差.5教师备课系统──多媒体教案2.能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释 .3.会用样本的基本数字特征估计总体的基本数字特征.4.形成对数据处理过程进行初步评价的意识.二、过程与方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法 .三、情感、态度与价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识与现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数与标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境在一次射击比赛中,甲、乙两名运动员各射击10 次,命中环数如下﹕甲运动员﹕ 7,8, 6, 8,6, 5, 8, 10, 7, 4;乙运动员﹕ 9,5, 7, 8,7, 6, 8, 6, 7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征(板出课题).二、探究新知(一)众数、中位数、平均数探究(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息. 例如前面一节在调查 100 位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是 2.25t(最高的矩形的中点)(图见教材第72 页)它告诉我们,该市的月均用水量为2.25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66 页看看原来抽样的数据,有没有 2. 25 这个数值呢?根据众数的定义, 2. 25 怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2. 25 是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有 50%的个体小于或等于中位数,也有 50%的个体大于或等于中位数 . 因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位6人教版新课标普通高中◎数学③必修数左边和右边的直方图的面积应该相等. 由此可以估计出中位数的值为 2.02.(图略见教材 73页图 2.2- 6)思考: 2.02 这个中位数的估计值,与样本的中位数值 2. 0 不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)图 2.2-6显示,大部分居民的月均用水量在中部(2. 02t左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.思考:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)(二)标准差、方差1.标准差平均数为我们提供了样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断 . 某地区的统计显示,该地区的中学生的平均身高为176cm,给我们的印象是该地区的中学生生长发育好,身高较高. 但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质 . 因此,只有平均数难以概括样本数据的实际状态.例如,在一次射击选拔比赛中,甲、乙两名运动员各射击10 次,命中环数如下﹕甲运动员﹕ 7,8, 6, 8,6, 5, 8, 10, 7, 4;乙运动员﹕ 9,5, 7, 8,7, 6, 8, 6, 7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?我们知道, x甲7, x乙7 .两个人射击的平均成绩是一样的. 那么,是否两个人就没有水平差距呢?(观察P74 图 2. 2- 7)直观上看,还是有差异的. 很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据.考察样本数据的分散程度的大小,最常用的统计量是标准差. 标准差是样本数据到平均数的一种平均距离,一般用s 表示 .样本数据 x1, x2,, x n的标准差的算法:(1)算出样本数据的平均数 x .(2)算出每个样本数据与样本数据平均数的差:i(i 1,2,n)x x (3)算出(2)中 x i x(i1,2,n) 的平方.(4)算出(3)中 n 个平方数的平均数,即为样本方差.(5)算出(4)中平均数的算术平方根,即为样本标准差.其计算公式为:s 1[( x1x) 2(x2x)2( x n x) 2 ].n7教师备课系统──多媒体教案显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小.提问:标准差的取值范围是什么?标准差为0的样本数据有什么特点?从标准差的定义和计算公式都可以得出:s≥0. 当s0 时,意味着所有的样本数据都等于样本平均数 .2.方差从数学的角度考虑,人们有时用标准差的平方s2(即方差)来代替标准差,作为测量样本数据分散程度的工具:21x )22( xn 2s[( x 1( x 2x )x ) ].n在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差 .三、例题精析例 1画出下列四组样本数据的直方图,说明他们的异同点.(1)5,5,5,5,5,5,5,5,5(2)4,4,4,5,5,5,6,6,6(3)3,3,4,4,5,6,6,7,7(4)2,2,2,2,5,8,8,8,8分析:先画出数据的直方图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差.解:(图见教材P76)四组数据的平均数都是5. 0,标准差分别为:0. 00,0 . 82,1 . 49,2 .83 .他们有相同的平均数,但他们有不同的标准差,说明数据的分散程度是不一样的.例 2甲乙两人同时生产内径为25. 40mm 的一种零件 . 为了对两人的生产质量进行评比,从他们生产的零件中各抽出20 件,量得其内径尺寸如下(单位:mm):甲25. 4625. 3225. 4525. 3925. 3625. 3425. 4225.3825. 4225. 3925. 4325. 3925. 4025. 4425. 4025.4225. 4525. 3525. 4125. 39乙25. 4025. 4325. 4425. 4825. 4825. 4725. 4925.3625. 3425. 4925. 3325. 4325. 4325. 3225. 4725.3125. 3225. 3225. 3225. 48从生产的零件内径的尺寸看,谁生产的质量较高?分析:比较两个人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数与标准差的大小即可,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本数据的平均数、标准差,以此作为两个总8人教版新课标普通高中◎数学③必修体之间的差异的估计值.解:x甲25.401,x乙25.406;s甲0.037,s乙0.068.四、课堂小结1.用样本的数字特征估计总体的数字特征分两类:( 1)用样本平均数估计总体平均数 .( 2)用样本标准差估计总体标准差. 样本容量越大,估计就越精确 .2.平均数对数据有“取齐”的作用,代表一组数据的平均水平.3.标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.五、评价设计P81 习题 2. 2 A 组 3、4.9教师备课系统──多媒体教案教案 B第 1课时教学内容§2. 2. 1 用样本的频率分布估计总体分布教学目标一、知识与技能1.通过实例体会分布的意义和作用.2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图 .3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程与方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法 .三、情感、态度与价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.教学重点、难点教学重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.教学难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境,导入新课我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准 a,用水量不超过 a 的部分按平价收费,超出 a 的部分按议价收费 . 如果希望大部分居民的日常生活不受影响,那么标准 a 定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等. 因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息. 表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律. 可以让我们更清楚的看到整个样本数据的频率分布情况 .10人教版新课标普通高中◎数学③必修二、新课探知(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小 . 一般用频率分布直方图反映样本的频率分布 . 其一般步骤为:1.计算一组数据中最大值与最小值的差,即求极差;2.决定组距与组数;3.将数据分组;4.列频率分布表;5.画频率分布直方图 .以教材P65 制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)例 1 下表给出了某校500 名 12 岁男孩中用随机抽样得出的120 人的身高(单位 cm):区间界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)人数5810223320区间界限[146,150)[150,154)[154,158)人数1165(1)列出样本频率分布表;(2)一画出频率分布直方图;(3)估计身高小于 134Cm的人数占总人数的百分比 .分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158)50.04合计120111教师备课系统──多媒体教案(2)其频率分布直方图:频率 /组距0.070.060.050.040.030.020.01o122126 130 134138142 146150 154158身高( cm)( 3)由样本频率分布表可知身高小于134cm的男孩出现的频率为0. 04+ 0. 07+0. 08= 0. 19,所以我们估计身高小于134cm 的人数占总人数的19%.总结:频率分布直方图的特征:( 1)从频率分布直方图可以清楚的看出数据分布的总体趋势.(2)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了 .(二)频率分布折线图、总体密度曲线1.频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息. (见教材 P69)(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图. (见教材P70 例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示 .(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,12人教版新课标普通高中◎数学③必修两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.例2 某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲运动员得分: 13, 51,23, 8,26, 38,16, 33,14, 28,39;乙运动员得分: 49, 24,12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39.用茎叶图表示,你能通过该图说明哪个运动员的发挥更稳定吗?解:“茎”指的是中间的一列数,表示得分的十位数;“叶”指的是从茎的旁边生长出来的数,分别表示两人得分的个位数.画这组数据的茎叶图的步骤如下第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;第二步,茎是中间的一列数,按从小到大的顺序排列;第三步,将各个数据的叶按大小次序写在茎右(左)侧.甲乙804631253682543893161679449150从图中可以看出,乙运动员的得分基本上是对称的,页的分布是“单峰”的,有的叶集中在茎2, 3, 4 上,中位数为36;甲运动员的得分除一个特殊得分(51 分)外,也大致对称,叶的分布也是“单峰”的,有的叶主要集中在茎1,2,3 上,中位数是26.由此可以看出,乙运动员的成绩更好.另外i,从叶在茎上的分布情况看,乙运动员的得分更集中于峰值附近,这说明乙运动员的发挥更稳定.练习:在NBA的2010 赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12, 15,20, 25, 31, 31, 36, 36, 37, 39, 44, 49, 50乙运动员得分﹕8, 13, 14, 16,23, 26,28, 38,39, 51,31, 29, 33学生画出茎叶图(略)三、巩固练习为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(见下页图示),图中从左到右各小长方形面积之比为 2:4: 17: 15: 9: 3,第二小组频数为 12.13教师备课系统──多媒体教案频率 /组距0.0360.0320.0280.0240.0200.0160.0120.0080.004o100110120130140150次数90(1)第二小组的频率是多少?样本容量是多少?(2)若次数在 110 以上(含 110 次)为达标,试估计该学校全体高一学生的达标率是多少?( 3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于 1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.08,41715923第二小组频数又因为频率=,样本容量所以,样本容量第二小组频数12第二小组频率150 .0.08( 2)由图可估计该学校高一学生的达标率约为17 15 93100% 88%.2 4 17 15 93( 3)由已知可得各小组的频数依次为6, 12, 51, 45, 27, 9,所以前三组的频数之和为 69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、小结14。