九年级数学下册 28_2 用样本估计总体教案2 (新版)华东师大版
- 格式:doc
- 大小:149.00 KB
- 文档页数:5
⽤样本估计总体教案2.2.1⽤样本的频率分布估计总体分布⼀、教学⽬标分析1.知识与技能⽬标(1)通过实例体会分布的意义和作⽤。
(2)在表⽰样本数据的过程中,学会列频率分布表,画频率分布直⽅图。
(3)通过实例体会频率分布直⽅图的特征,能准确地做出总体估计。
2、过程与⽅法⽬标:通过对现实⽣活的探究,感知应⽤数学知识解决问题的⽅法,理解数形结合的数学思想和逻辑推理的数学⽅法。
3、情感态度与价值观⽬标:通过对样本分析和总体估计的过程,感受数学对实际⽣活的需要,认识到数学知识源于⽣活并指导⽣活的事实,体会数学知识与现实世界的联系。
⼆、教学的重点和难点重点:会列频率分布表,画频率分布直⽅图。
难点:能通过样本的频率分布估计总体的分布。
三、教法与学法分析1、教法:遵循观察、探究、发现、总结式的教学模式。
重点以引导学⽣为主,让他们能积极、主动的进⾏探索,获取知识。
由于内容较繁琐,所以要借助多媒体辅助教学。
2、学法:根据本节知识的特点,由于学⽣已具备⼀定的基础知识,可采取研究性学习的学习⽅法。
四、教学过程(⼀)情境引⼊1.随机抽样有哪⼏种基本的抽样⽅法?简单随机抽样、系统抽样、分层抽样.2.随机抽样是收集数据的⽅法,如何通过样本数据所包含的信息,估计总体的基本特征,即⽤样本估计总体,是我们需要进⼀步学习的内容.3.⾼⼆某班有50名学⽣,在数学必修②结业考试后随机抽取10名,其考试成绩如下:82,75,61,93,62,55,70,68,85,78.如果要求我们根据上述抽样数据,估计该班对数学模块②的总体学习⽔平,就需要有相应的数学⽅法作为理论指导,本节课我们将学习⽤样本的频率分布估计总体分布.(⼆)新课讲解知识探究(⼀):频率分布表【问题】我国是世界上严重缺⽔的国家之⼀,城市缺⽔问题较为突出,某市政府为了节约⽣活⽤⽔,计划在本市试⾏居民⽣活⽤⽔定额管理,即确定⼀个居民⽉⽤⽔量标准a,⽤⽔量不超过a的部分按平价收费,超出a的部分按议价收费.通过抽样调查,获得100位居民2007年的⽉均⽤⽔量如下表(单位:t):3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.20.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.21.7 1.3 3.6 1.7 0.6 4.1 3.22.9 2.4 2.3 1.8 1.43.5 1.9 0.84.3 3.02.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.60.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.61.0 1.0 1.7 0.82.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2思考1:上述100个数据中的最⼤值和最⼩值分别是什么?由此说明样本数据的变化范围是什么?0.2~4.3思考2:样本数据中的最⼤值和最⼩值的差称为极差.如果将上述100个数据按组距为0.5进⾏分组,那么这些数据共分为多少组?(4.3-0.2)÷0.5=8.2思考3:以组距为0.5进⾏分组,上述100个数据共分为9组,各组数据的取值范围可以如何设定?[0,0.5),[0.5,1),[1,1.5),…,[4,4.5].思考4:如何统计上述100个数据在各组中的频数?如何计算样本数据在各组中的频率?你能将这些数据⽤表格反映出来吗?分组频数累计频数频率[0,0.5) 4 0.04[0.5,1)8 0.08[1,1.5)正正正15 0.15[1.5,2)正正正正22 0.22[2,2.5)正正正正正25 0.25[2.5,3)正正14 0.14[3,3.5)正⼀ 6 0.06[3.5,4) 4 0.04[4,4.5] 2 0.02合计100 1.00思考5:上表称为样本数据的频率分布表,由此可以推测该市全体居民⽉均⽤⽔量分布的⼤致情况,给市政府确定居民⽉⽤⽔量标准提供参考依据,这⾥体现了⼀种什么统计思想?⽤样本的频率分布估计总体分布.思考6:如果市政府希望85%左右的居民每⽉的⽤⽔量不超过标准,根据上述频率分布表,你对制定居民⽉⽤⽔量标准(即a 的取值)有何建议?88%的居民⽉⽤⽔量在3t以下,可建议取a=3思考7:在实际中,取a=3t⼀定能保证85%以上的居民⽤⽔不超标吗?哪些环节可能会导致结论出现偏差?分组时,组距的⼤⼩可能会导致结论出现偏差,实践中,对统计结论是需要进⾏评价的.思考8:对样本数据进⾏分组,其组数是由哪些因素确定的?思考9:对样本数据进⾏分组,组距的确定没有固定的标准,组数太多或太少,都会影响我们了解数据的分布情况.数据分组的组数与样本容量有关,⼀般样本容量越⼤,所分组数越多.按统计原理,若样本的容量为n,分组数⼀般在(1+3.3lg n)附近选取.当样本容量不超过100时,按照数据的多少,常分成5~12组.若以0.1或1.5为组距对上述100个样本数据分组合适吗?思考10:⼀般地,列出⼀组样本数据的频率分布表可以分哪⼏个步骤进⾏?第⼀步,求极差.(极差=样本数据中最⼤值与最⼩值的差)第⼆步,决定组距与组数.(设k=极差÷组距,若k为整数,则组数=k,否则,组数=k+1)第三步,确定分点,将数据分组.第四步,统计频数,计算频率,制成表格.(频数=样本数据落在各⼩组内的个数,频率=频数÷样本容量)知识探究(⼆):频率分布直⽅图思考1:为了直观反映样本数据在各组中的分布情况,我们将上述频率分布表中的有关信息⽤下⾯的图形表⽰:上图称为频率分布直⽅图,其中横轴表⽰⽉均⽤⽔量,纵轴表⽰频率/组距. 频率分布直⽅图中各⼩长⽅形的和⾼度在数量上有何特点?思考2:频率分布直⽅图中各⼩长⽅形的⾯积表⽰什么?各⼩长⽅形的⾯积之和为多少?各⼩长⽅形的⾯积=频率各⼩长⽅形的⾯积之和=1思考3:频率分布直⽅图⾮常直观地表明了样本数据的分布情况,使我们能够看到频率分布表中看不太清楚的数据模式,但原始数据不能在图中表⽰出来.你能根据上述频率分布直⽅图指出居民⽉均⽤⽔量的⼀些数据特点吗?(1)居民⽉均⽤⽔量的分布是“⼭峰”状的,⽽且是“单峰”的;(2)⼤部分居民⽉均⽤⽔量集中在⼀个中间值附近,只有少数居民⽉均⽤⽔量很多或很少;(3)居民⽉均⽤⽔量的分布有⼀定的对称性等.思考4:样本数据的频率分布直⽅图是根据频率分布表画出来的,⼀般地,频率分布直⽅图的作图步骤如何?第⼀步,画平⾯直⾓坐标系.第⼆步,在横轴上均匀标出各组分点,在纵轴上标出单位长度.第三步,以组距为宽,各组的频率与组距的商为⾼,分别画出各组对应的⼩长⽅形.思考5:对⼀组给定的样本数据,频率分布直⽅图的外观形状与哪些因素有关?在居民⽉均⽤⽔量样本中,你能以1为组距画频率分布直⽅图吗?(三)例题讲解例1、某地区为了了解知识分⼦的年龄结构,随机抽样50名,其年龄分别如下:42,38,29,36,41,43,54,43,34,44,40,59,39,42,44,50,37,44,45,29,48,45,53,48,37,28,46,50,37,44,42,39,51,52,62,47,59,46,45,67,53,49,65,47,54,63,57,43,46,58.(1)列出样本频率分布表;(2)画出频率分布直⽅图;(3)估计年龄在32~52岁的知识分⼦所占的⽐例约是多少.(1)极差为67-28=39,取组距为5,分为8组.样本频率分布表:分组频数频率[27,32) 3 0.06[32,37) 3 0.06[37,42) 9 0.18[42,47) 16 0.32[47,52) 7 0.14[52,57) 5 0.10[57,62) 4 0.08[62,67) 3 0.06合计 50 1.00(2)样本频率分布直⽅图:频率(3)因为0.06+0.18+0.32+0.14=0.7,故年龄在32例 2、为了了解⼩学⽣的体能情况,抽取了某⼩学同年级部分学⽣进⾏跳绳测试,将所得的数据整理后画出频率分布直⽅图(如图),已知图中从左到右的前三个⼩组的频率分别是0.1,0.3,0.4。
第28章样本与总体章末小结教学目标1.通过讲评,让学生进一步了解普查和抽样调查,理解用样本估计总体的思想,学会如何去选取合适的样本.2.通过讲评,让学生进一步掌握总体、个体、样本、样本容量等概念,能够指出一个具体问题中的总体、个体、样本、样本容量.3.在讲评中,让学生深入理解简单随机抽样并会用其去抽取样本,体会用样本去估计总体的方法.4.在讲评中,进一步加强统计图在实际问题中的应用,能够对来自媒体的数据进行合理的分析,会对一些统计图表做出合理的解释.【重点难点】重点:对普查和抽样调查两个概念的区别;用样本估计总体以及对数据的整理和分析.难点:能够正确的判断选择的样本是否合理以及用样本估计总体思想的应用.教学过程一、知识专题复习专题一总体、个体、样本、样本容量【应对策略】首先理解总体、个体、样本、样本容量的意义,分清要研究的问题及其载体.注意样本容量是一个数,它是样本中个体的数量,不能带单位.【例1】为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2015年2月,400名调查者走人1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是( )【答案】 D专题二选择合理的调查方式【应对策略】1.熟记普查和抽样调查的概念;普查是对所有考察对象作的全面调查,抽样调查是对部分考察对象作的调查,判断所采用的调查方式关键是看调查的对象是全体还是部分;2.抽样调查中的简单随机抽样是可靠的,其特点是利用抽签的方式从总体中选取其中的个体进入样本的抽样方法,具有不能事先预测结果的特征.【例2】某地区有6所高中和22所初中,要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是 ( )【答案】B【点拨】A项样本容量太小,C项缺乏随机性,D项遗漏部分群体,只有B项所选取的样本具有代表性.【例3】下列调查中,适合采用全面调查(普查)方式的是( )【答案】 C【点拨】A、B、D若作全面调查工作量太大,有些情况也做不到,只有C中由于只有50人,所以做全面调查比较适合.专题三用样本估计总体【应对策略】1.细心计算,用好求平均数、方差的公式,以及对于统计中的众数、中位数的概念准确地把握,从而用样本的平均数、方差(标准差)、频率分布图等去估计总体的特征;2.在出现图表问题时,要注意条形图、扇形图、折线图的应用特征,准确地观察、从而获取正确的信息;有机地把各种统计图进行有效地结合,以偏概全,用样本估计总体,帮我们对事件做出正确的决策.【例4】王大伯几年前承包了甲、乙两片荒山,各栽了100棵杨梅树,成活率为98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分析计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?【答案】解:(1)由折线统计图知,甲山上4棵杨梅的产量分别为(单位:千克):50,36,40,34,乙山上4棵杨梅的产量分别为(单位:千克):36,40,48,36,所以所以估算甲、乙两山杨梅的总产量为40×100×98%×2=7840(千克).【点拨】(1)先以折线统计图提供的信息,写出样本产量,再计算出样本平均数,从而估算出总产量;(2)求出样本方差,以此去估计甲、乙两山产量的稳定性.专题四统计知识的综合应用【应对策略】1.明确各种统计图表所表示的意义.扇形统计图:能清楚地表示出各部分在总体中所占的百分比及各部分之间的大小关系,但不能清楚地表示出每个项目的具体数目及事物的变化情况.2.条形统计图:能够清楚地表示出每个项目的具体数目及大小关系,但不能清楚地表示出各部分在总体中所占的百分比及事物的变化情况.3.折线统计图:能够清楚地表示出每个项目的变化情况,但不能清楚地表示出各部分在总体中所占的百分比.4.频数分布直方图及频数分布折线图:能清晰地表示出收集或调查到的数据.另外,还要学会从统计图表估计出变化趋势.【例5】某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度. (1)在确定调查方式时,团委设计了以下三种方案:方案一:调查七年级部分女生;方案二:调查七年级部分男生;方案三:到七年级每个班去随机调查一定数量的学生.请问其中最具有代表性的一个方案是_________;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图1、图2所示)请你根据图中信息,将其补充完整;(3)请你估计该校七年级约有多少名学生比较了解“低碳”知识.【答案】解:(1)方案三(2)如答图所示.(3)500×30%=150(名).所以七年级约有150名学生比较了解“低碳”知识.【点拨】(1)比较三个方案,可知方案三具有普遍性和代表性,故应选方案三.(2)由条形统计图知不了解的人数为6人,再由扇形统计图可知其所占比例为10%,故调查的样本容量为6÷10%=60.再由条形统计图知比较了解的人数为18人,其所占比例为×100%=30%.故了解一点的人数为60-18-6=36(人),比例为×100%=60%.(3)用样本估计总体的知识解决,由样本知比较了解“低碳”的人数约占全体学生的30%,故可得500×30%=150(名).二、布置作业.完成相应的练习.。
《用样本估计总体》教案2一、教学目标:1.了解什么是样本,什么是总体。
2.掌握抽样方法和样本容量的选择。
3.掌握常见的点估计方法。
4.能够进行样本均值和总体均值的估计。
5.了解样本方差和总体方差的估计。
二、教学重难点:三、教学过程:1.简单随机抽样法:每个个体被选择的概率相等,抽样的每个组合都具有相同的概率。
2.分层抽样法:先将总体分成若干个层次,再在每个层次内随机抽取样本。
3.整群抽样法:把总体分为许多互不相交的群体,随机抽取一些群体,再抽取所选群体中的所有个体。
4.系统抽样法:按一定规律抽取个体。
5.多级抽样法:将总体分层,先从每层中选出一些子样本,再从子样本中抽取样本。
6.判断样本容量的大小。
(1)总体的大小。
(2)总体的变异程度。
(3)研究问题的性质。
(4)经济可行性。
1.最大似然估计(MLE)。
2.矩估计。
3.贝叶斯估计。
1.样本均值:$\overline{X}=\frac {\sum_{i=1}^{n}{X_i}} {n}$。
2.总体均值的估计:利用样本的均值$\overline{X}$来估计总体的均值μ,$\hat{\mu}=\overline{X}$。
六.实例练习。
1.已知样本的均值为X,样本的标准差为s,请估计总体的均值。
解:$\hat{\mu}=\overline{X}$,由中心极限定理可得,$\overline{X}$的样本分布有一个平均数为$\mu$,标准差为$\frac{s}{\sqrt{n}}$的正态分布,样本大于30,所以使用正态分布来近似。
因此,总体均值μ的95%置信区间为$\overline{X}\pmz_{\frac{\alpha}{2}}\frac{s}{\sqrt{n}}$。
解:由样本方差的定义可得$s^2=\frac{\sum_{i=1}^{n}{(X_i-\overline{X})^2}} {n-1}$,由于$(n-1)\frac{s^2}{\sigma^2}\backsim{\chi}^2(n-1)$,所以$\sigma^2=\frac{(n-1)\times s^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}$。
华东师大版九年级数学下册第28章样本与总体难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列调查中,调查方式选择合理的是()A.为了了解澧水河流域饮用水矿物质含量的情况,采用抽样调查方式B.为了保证长征运载火箭的成功发射,对其所有的零部件采用抽样调查方式C.为了了解天门山景区的每天的游客客流量,选择全面调查方式D.为了调查湖南卫视《快乐大本营》节目的收视率,采用全面调查方式2、为了解某校八年级900名学生的体重情况,从中随机抽取了100名学生的体重进行统计分析.在这个问题中,样本是指()A.100 B.被抽取的100名学生C.900名学生的体重D.被抽取的100名学生的体重3、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为()A.anbB.bnaC.banD.abn4、下列说法错误的是()A.必然事件发生的概率为1B.平均数和方差都不易受极端值的影响C.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度D.可以通过大量重复试验,用一个随机事件发生的频率去估计它的概率5、某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的期中数学成绩进行了统计,下面判断中不正确的有()A.这种调查的方式是抽样调查B.800名学生是总体C.每名学生的期中数学成绩是个体D.100名学生的期中数学成绩是总体的一个样本6、为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是()A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°;7、为了解我校九年级1500名学生一阶段测试数学考试的成绩情况,从中抽取了120名学生的数学成绩,下列说法正确的是()A.1500名学生是总体B.120名学生是样本C.九年级每个学生的数学考试成绩是个体D.120名学生的数学考试成绩是样本容量8、下列调查中最适合采用全面调查的是()A.调查甘肃人民春节期间的出行方式B.调查市场上纯净水的质量C.调查我市中小学生垃圾分类的意识D.调查某航班上的乘客是否都持有“绿色健康码”9、下列事件中,调查方式选择合理的是()A.为了解某批次汽车的抗撞击能力,选择全面调查B.为了解某市中学生每天阅读时间的情况,选择全面调查C.为了解某班学生的视力情况,选择全面调查D.为选出某校短跑最快的学生参加全市比赛,选择抽样调查10、下列适合于抽样调查的是()A.某班学生男女比例B.铅笔使用寿命C.飞机乘客安全检查D.载人航天飞船零部件检查第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、要想了解九年级1500名学生的心理健康评估报告,从中抽取了300名学生的心理健康评估报告进行统计分析,以下说法:①1500名学生是总体;②每名学生的心理健康评估报告是个体;③3被抽取的300名学生是总体的一个样本;④300是样本容量.其中正确的是 __________________.2、为了估计池塘里有多少条鱼,先从湖里捞100条鱼做上标记,然后放回池塘,过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞100条,发现有5条有标记,那么你估计池塘里有__________条鱼.3、为了了解某校七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析.在这个过程中,样本容量是________.4、某校有600名七年级学生共同参加每分钟跳绳次数测试,并随机抽取若干名学生成绩统计成频数分布直方图(如图).若每分钟跳绳次数达到100次以上(包括100次)的学生成绩为“合格”,则参加测试的学生成绩为“合格”的人数约为.5、第七次全国人口普查属于__________(填“全面”或“抽样”)调查.6、检查一箱装有2500件包装食品的质量,按2%的抽查率抽查其中一部分的质量,在这个问题中,总体是________,样本是________.7、食品卫生部门从某区域3200户商家中随机抽选160家进行专项检查,发现2户存在过期食品仍然在售的情况,相关部门按要求处罚相应商家,并销毁过期商品.请你估计该区域有_____户商家需要下架销毁过期商品.8、一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:如果鞋店要购进90双这种女鞋,那么购进22cm,24cm和24.5cm三种尺码女鞋数量最合适的分别是__________.9、某校有2400名九年级学生,随机调查了其中的400名学生,结果有150名学生会游泳,估计该校会游泳的九年级学生人数约为 _______.10、只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫做_______.抽样调查的几个组成部分:要考察的全体对象称为_______.组成总体的每一个考察对象称为_______.被抽取的那些个体组成一个_______.样本中个体的数目称为_______.三、解答题(5小题,每小题8分,共计40分)1、为了引导青少年学党史,某中学举行了“献礼建党百年”党史知识竞赛活动,将成绩划分为四个等级:A(优秀)、B(优良)、C(合格)、D(不合格).小李随机调查了部分同学的竞赛成绩,绘制成了如下统计图(部分信息未给出):(1)小李共抽取了名学生的成绩进行统计分析,扇形统计图中“优秀”等级对应的扇形圆心角度数为,请补全条形统计图;(2)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数;(3)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率.2、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题:(1)本次调查共抽取了多少名学生?(2)①请补全条形统计图;②求出扇形统计图中表示“及格”的扇形的圆心角度数.(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?3、2021年3月教育部发布了《关于进一步加强中小学生睡眠管理工作的通知》,明确初中生每天睡眠时间要达到9小时.为了解某校七年级学生的睡眠情况,小明等5名同学组成学习小组随机抽查了该校七年级40名学生一周(7天)平均每天的睡眠时间(单位:小时)如下:8;6.8;6.5;7.2;7.1;7.5;7.7;9 ;8.3;88.3;9 ;8.5; 8; 8.4 ;8 ;7.3 ;7.5; 7.3 ;98.3 ;6 ;7.5; 7.5 ;9 ;6.5; 6.6; 8.4 ;8.2 ;8.17 ;7.8; 8 ;9 ;7 ;9; 8 ;6.6; 7; 8.5该小组将上面收集到的数据进行了整理,绘制成频数分布表和频数分布直方图.平均每天睡眠时间频数分布表x<6 6.56.57x<x<77.5x<7.58x<88.5x<8.59x<99.5根据以上信息,解答下列问题:(1)表中m=,n=;(2)请补全频数分布直方图;(3)若该校七年级共有360名学生,请你估算其中睡眠时间不少于9小时的学生约有多少人.4、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?(2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?5、随着经济的发展,我们身边的环境受到很大的影响,为了保护环境加强环保教育,某市实验中学组织500名学生参加义务收集废旧电池的活动,下面随机抽取50名学生对收集的废旧电池数量进行统计:(1)这50名学生平均每人收集废旧电池多少节?(2)这组废旧电池节数的中位数,众数分别是多少?(3)根据统计发现,本次收集的各种废旧电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,根据资料显示,各种电池1节能污染水的量之比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,那么通过本次活动可减少受浸染的水多少吨?-参考答案-一、单选题1、A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查所费人力、物力和时间较少,但只能得出近似的结果判断即可.【详解】A. 为了了解澧水河流域饮用水矿物质含量的情况,适合采用抽样调查方式,符合题意;B. 为了保证长征运载火箭的成功发射,对其所有的零部件适合采用全面调查方式,该选项不符合题意;C. 为了了解天门山景区的每天的游客客流量,适合选择抽样调查方式,该选项不符合题意;D. 为了调查湖南卫视《快乐大本营》节目的收视率,适合选择抽样调查方式,该选项不符合题意.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、D【解析】【分析】根据样本的定义进行判断即可.【详解】样本是观测或调查的一部分个体,所以样本是指被抽取的100名学生的体重.故选:D.【点睛】本题考查了样本的定义,掌握样本的定义进行判断是解题的关键.3、A【解析】【分析】首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】解:∵打捞a条鱼,发现其中带标记的鱼有b条,∴有标记的鱼占ba,∵共有n条鱼做上标记,∴鱼塘中估计有n÷ba=anb(条).故选:A.【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.4、B【解析】【分析】利用概率的意义、算术平均数及方差的知识分别判断后即可确定正确的选项.【详解】解:A、必然事件发生的概率为1,正确,不符合题意;B、平均数和方差都受极端值的影响,故原命题错误,符合题意;C、抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,正确,不符合题意;D、可以通过大量重复试验,用一个随机事件发生的频率去估计它的概率,正确,不符合题意,故选:B.【点睛】本题考查了概率的意义、算术平均数及方差的知识,解题的关键是了解有关统计的知识.5、B【解析】【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体.本题考查的对象是七年级800名学生期中数学考试情,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【详解】解:A、题中的调查方式为抽样调查,选项正确,不符合题意;B、总体为800名学生的期中数学成绩,而不是学生,选项错误,符合题意;C、每名学生的期中数学成绩是个体,选项正确,不符合题意;D、100名学生的期中数学成绩是总体的一个样本,选项正确,不符合题意;故选B【点睛】本题主要考查了总体、个体与样本,解题要分清具体问题中的总体、个体与样本.关键是明确考查的对象,总体、个体与样本的考察对象是相同的,所不同的是范围的大小.6、D【解析】【分析】由80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A 选项;通过总人数减去其他各组人数,得到60~80分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:360 乘以该组人数所占抽查总人数得比例即可判断D选项.【详解】解:80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,∴抽查总人数为:74017.5%=,A选项正确;60~80分钟的人数为:40451678----=人,先对数据排序后可得:最中间的数在第20,21之间,459+=,91625+=,∴中位数落在60~80分钟这一组,故B选项正确;从图中可得,每天超过1小时的人数为:7815+=人,估算全校人数中每天超过1小时的人数为:1580030040⨯=人,故C选项正确;0~20分钟这一组有4人,扇形统计图中这一组的圆心角为:43603640︒⨯=︒,故D选项错误;故选:D.【点睛】题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键.7、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,根据概念逐一分析即可.【详解】解:1500名学生的数学成绩是总体,故A不符合题意;120名学生的数学成绩是样本,故B不符合题意;九年级每个学生的数学考试成绩是个体,故C符合题意;样本的容量是120,故D不符合题意;故选:C【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8、D【解析】【分析】根据抽样调查和全面调查的定义逐一判断即可.【详解】解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、C【解析】【分析】全面调查是指对总体中每个个体都进行的调查,一般适用于总体中个体数量不太多的情况;抽样调查是指不必要或不可能对总体进行全面调查时,就从总体中抽取一部分个体进行调查,然后根据调查数据来推断总体的情况;根据全面调查与抽样调查的含义即可确定正确答案.【详解】了解汽车的抗撞击能力具有破坏性,用抽样调查,∴A选项不合题意,某市中学生人数较多,适合抽样调查,∴B选项不合题意,一个班的学生人数较少,适合选择全面调查,∴C选项符合题意,选出短跑最快的学生,每个学生都有可能,应选择全面调查,∴D选项不符合题意,故选:C.【点睛】本题考查了全面调查与抽样调查,掌握两者的含义是本题的关键.10、B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可.【详解】解:A.某班学生男女比例工作量比较小,适合采用全面调查方式,故本选项不合题意;B.铅笔使用寿命,调查具有破坏性,适合采用抽样调查,故本选项符合题意;C.飞机乘客安全检查非常重要,适合采用全面调查方式,故本选项不合题意;D.载人航天飞船零部件检查非常重要,适合采用全面调查方式,故本选项不合题意.故选:B.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题1、②④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:①1500名学生的心理健康评估报告是总体,故①不符合题意;②每名学生的心理健康评估报告是个体,故②符合题意;③被抽取的300名学生的心理健康评估报告是总体的一个样本,故③不符合题意;④300是样本容量,故④符合题意;故答案为:②④.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2、2000【解析】【分析】在样本中捕捞100条鱼,发现其中5条有标记,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【详解】解:设湖中有x条鱼,则100:5=x:100,解得x=2000.故答案为:2000条.【点睛】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.3、50【解析】【分析】根据样本容量:一个样本包括的个体数量叫做样本容量即可得.【详解】解:为了了解某校七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析,这个问题中的样本容量是50,故答案为:50.【点睛】本题主要考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4、400【解析】【分析】根据跳绳次数分组的中间值,确定分组的临界值,进而得出每分钟跳绳次数达到100次以上人数即可.【详解】解:根据频数分布直方图中每分钟跳绳次数的中间值,可得各组的临界值及其频数分布如下:所以样本中,每分钟跳绳次数达到100次以上(包括100次)的学生占调查人数的1262 281262++++++=23,因此全校600名七年级学生中每分钟跳绳次数达到100次以上(包括100次)的学生有600×23=400(人),故答案为:400.【点睛】本题考查频数分布表,频数分布直方图,以及用样本估计总体,样本估计总体是统计中常用的方法.5、全面【解析】根据全面调查的含义即可求解.【详解】第七次全国人口普查属于全面调查故答案为:全面.【点睛】此题主要考查统计调查的方式,解题的关键是熟知全面调查的含义.6、 2500件包装食品的质量所抽取的50件包装食品的质量【解析】【分析】根据总体是指考查的对象的全体,样本是总体中所抽取的一部分个体即可解答.【详解】解:检查一箱装有2500件包装食品的质量,按2%的抽查率抽查其中一部分的质量,在这个问题中,%=50件包装食品的质量,总体是2500件包装食品的质量,样本是抽取的25002故答案为:2500件包装食品的质量;所抽取的50件包装食品的质量.【点睛】本题考查了总体、样本的概念,解题要分清具体问题中的总体与样本,关键是明确考查的对象.总体与样本的考查对象是相同的,所不同的是范围的大小.掌握总体、样本的概念是解题关键.7、40【解析】【分析】设该区域有x户商家需要下架销毁过期商品,根据样本中存在销售过期食品商户的数量所占比例=总体中存在销售过期食品商户的数量所占比例列出方程求解即可.解:设该区域有x 户商家需要下架销毁过期商品,根据题意,得:23200160x =, 解得:x =40,所以该区域有40户商家需要下架销毁过期商品,故答案为:40.【点睛】本题考查用样本估计总体,解答本题的关键是明确题意,利用概率的知识解答.8、3,18,9【解析】【分析】分别求得这三种鞋销售数量的占比,然后×90即可算出.【详解】解:根据题意可得:销售的某种女鞋30双,24厘米、24.5厘米和25厘米三种女鞋数量各为1、6、3;则要购进90双这种女鞋,购进这三种女鞋数量各应是:190=330⨯(双)、690=1830⨯(双)、390=930⨯(双), 故填:3,18,9.【点睛】考查了综合运用统计知识解决问题的能力,属于基础题型.9、900名【解析】【分析】用总人数乘以样本中会游泳的学生人数所占比例即可.【详解】解:估计该校会游泳的九年级学生人数约为2400×150400=900(名),故答案为:900名.【点睛】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.10、抽样调查总体个体样本样本容量【解析】略三、解答题1、(1)100,126°,条形统计图见解析;(2)700;(3)3 5【解析】【分析】(1)根据C等级的人数和所占比可求出抽取的总人数,用A等级的人数除以抽取的总人数乘以360°可得A等级对应扇形圆心角的度数,用抽取的总人数乘以B等级所占的百分比得B等级的人数,用抽取的总人数减去A、B、C等级的人数得出D等级人数,即可补全条形统计图;(2)用2000乘以A等级所占的百分比即可估计出成绩“优秀”的学生人数;(3)由(1)得不合格有5人,故由3男2女,用列表法即可求回访到一男一女的概率.【详解】(1)C等级的人数和所占比可得抽取的总人数为:2525100÷=%(名),∴“优秀”等级对应的扇形圆心角度数为:35360126 100⨯︒=︒,B等级的人数为:1003535⨯=%(名),D等级的人数为:1003535255---=(名),∴补全条形统计图如下所示:(2)352000700100⨯=(名),∴该校竞赛成绩“优秀”的学生人数为700名;(3)∵抽取不及格的人数有5名,其中有2名女生,∴有3名男生,设3名男生分别为1b,2b,3b,2名女生分别为1g,2g,列表格如下所示:∴总的结果有20种,一男一女的有12种,∴回访到一男一女的概率为123 205=.【点睛】本题考查统计与概率,其中涉及到条形统计图与扇形统计图相关联问题,用样本估计总体以及用列举法求概率,读懂条形统计图和扇形统计图所给出的条件是解题的关键.2、 (1)100名(2)①见解析;②108︒(3)1440名【解析】【分析】(1)用不及格的人数除以不及格的人数占比即可得到总人数;(2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案;(3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可.(1)解:由题意得抽取的学生人数为:1010100÷%=(名);(2)解:①由题意得:良好的人数为:1004040⨯=%(名),。
用样本估计总体
三维目标
1理解样本数据标准差的意义和作用,会计算数据标准差,对样本数据中提取基本的数字作合理的解释
2会用样本的基本数字特征估计总体的基本数字特征。
问题提出
1. 对一个未知总体,我们常用样本的频率分布估计总体的分布,其中表示样本数据的频率分布的基本方法有哪些?
频率分布直方图、频率分布表、频率分布折线图、茎叶图
2. 美国NBA 在2006——2007年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:
甲运动员得分:12,15,20,25,31,30, 36,36,37,39,44,49. 乙运动员得分:8,13,14,16,23,26, 28,38,39,51,31,39.
如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就得有相应的数据作为比较依据,即通过样本数据对总体的数字特征进行研究,用样本的数字特征估计总体的数字特征.
知识探究(一):众数、中位数和平均数
思考1:以上两组样本数据如何求它们的众数、中位数和平均数?
思考2:在城市居民月均用水量样本数据的频率分布直方图中,你认为众数应在哪个小矩形内?由此估计总体的众数是什么?
思考3:中位数左右两侧的直方图的面积应有什么关系? 思考:在城市居民月均用水量样本数据的频率分布直方图中,从左至右各个小矩形的面积
0.5
频率
组距0.40.30.2取最高矩形下端 中点的横坐标
2.25作为众数.
分别是0.04,0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02.由此估计总体的中位数是什么?
0.5-0.04-0.08-0.15-0.22=0.01,0.5×0.01÷0.25=0.02,中位数是2.02.
思考5:平均数是频率分布直方图的“重心”,从直方图估计总体在各组数据内的平均数分别为多少?
0.25,0.75,1.25,1.75,2.25, 2.75,3.25,3.75,4.25.
思考6:将频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数. 由此估计总体的平均数是什么?
0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×06+3.7 5×0.04+4.25×0.02=2.02(t).
平均数是2.02.
思考7:从居民月均用水量样本数据可知,该样本的众数是2.3,中位数是2.0,平均数是1.973,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?
频率分布直方图损失了一些样本数据,得到的是一个估计值,且所得估值与数据分组有关.注: 在只有样本频率分布直方图的情况下,我们可以按上述方法估计众数、中位数和平均数,并由此估计总体特征.
思考8 (1)一组数据的中位数一般不受少数几个极端值的影响,这在某些情况下是一个优点,但它对极端值的不敏感有时也会成为缺点,你能举例说明吗?
如:样本数据收集有个别差错不影响中位数;大学毕业生凭工资中位数找单位可能收入较低.
(2)样本数据的平均数大于(或小于)中位数说明什么问题?
平均数大于(或小于)中位数,说明样本数据中存在许多较大(或较小)的极端值.
(3)你怎样理解“我们单位的收入水平比别的单位高”这句话的含义?
这句话具有模糊性甚至蒙骗性,其中收入水平是员工工资的某个中心点,它可以是众数、中位数或平均数样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息. 平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.
当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数据的离散程度.
知识探究(二):标准差
思考1:在一次射击选拔赛中,甲、乙两名运动员各射击10次,每次命中的环数如下: 甲:7 8 7 9 5 4 9 10 7 4 乙:9 5 7 8 7 6 8 6 7 7 甲、乙两人本次射击的平均成绩分别为多少环?
思考2:甲、乙两人射击的平均成绩相等,观察两人成绩的频率分布条形图,你能说明其水平差异在那里吗?
甲的成绩比较分散,极差较大,乙的成绩相对集中,比较稳定.
77x x ==乙甲, 频率
0.40.30.20.1
4 5 6 7 8 9 10 (甲)
0.4频率0.30.20.1 4 5 6 7 8 9 10
(乙)
思考3:对于样本数据x 1,x 2,…,x n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?
思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s 表示.假设样本数据x 1,x 2,…,x n 的平均数为x ,则标准差的计算公式是:
那么标准差的取值范围是什么?标准差为0的样本数据有何特点?
s ≥0,标准差为0的样本数据都相等.
思考5:对于一个容量为2的样本:x 1,x 2(x 1<x 2),则2
21
221x x s x x x -=+=
,在数轴上,这两个统计数据有什么几何意义?由此说明标准差的大小对数据的离散程度有何影响? 标准差越大离散程度越大,数据较分散;
标准差越小离散程度越小,数据较集中在平均数周围. 知识迁移
计算甲、乙两名运动员的射击成绩的标准差,比较其射击水平的稳定性. 甲:7 8 7 9 5 4 9 10 7 4 乙:9 5 7 8 7 6 8 6 7 7
12
||||||
n
x x x x x x n
22
2
12()()()n x x x x x x s
n
课堂小结
1.用样本的众数、中位数、平均数和标准差等统计数据,估计总体相应的统计数据.
2. 平均数对数据有“取齐”的作用,代表一组数据的平均水平.
3. 标准差描述一组数据围绕平均数波动的幅度.在实际应用中,我们常综合样本的多个统计数据,对总体进行估计,为解决问题作出决策.
作业:。