为什么要进行注塑成型模拟分析
- 格式:doc
- 大小:40.50 KB
- 文档页数:11
一. 压力條件对产品的影响1.高保压压力能夠降低產品收縮的機會补充入模穴的塑料越多,越可避免產品的收縮高保压压力通常會造成产品不均勻收縮,而导致產品的翹曲变形对薄殼產品而言,由於壓力降更明顯,上述之情況更加嚴重2.Over packing 過保壓保壓壓力高,澆口附近體積收縮量少遠離澆口處保壓壓力低且體積收縮量較大導致產品翹曲變形,產品中央向四周推擠形成半球形(Dome Shape)3. Under packing 保壓不足澆口附近壓力低遠離澆口處壓力更低導致產品翹曲變形,產品中央向四周拉扯形成馬鞍形Twisted shape保壓時間如果夠長,足夠使澆口凝固,則可降低體積收縮的機會澆口凝固後,保壓效果就無效果一、澆口位置的要求:1.外观要求(浇口痕跡, 熔接线)2.產品功能要求3.模具加工要求4.產品的翹曲变形5.澆口容不容易去除二、对生产和功能的影响:1.流長(Flow Length)決定射出壓力,鎖模力,以及產品填不填的滿流長縮短可降低射出壓力及鎖模力2.澆口位置會影響保壓壓力保壓壓力大小保壓壓力是否平衡將澆口遠離產品未來受力位置(如軸承處)以避免殘留應力澆口位置必須考慮排氣,以避免積風發生不要將澆口放在產品較弱处或嵌入处,以避免偏位(Core Shaft)三、选择浇口位置的技巧1.將澆口放置於產品最厚處,從最厚處進澆可提供較佳的充填及保壓效果。
如果保壓不足,較薄的區域會比較厚的區域更快凝固避免將澆口放在厚度突然變化處,以避免遲滯現象或是短射的發生2.可能的話,從產品中央進澆將澆口放置於產品中央可提供等長的流長流長的大小會影響所需的射出壓力中央進澆使得各個方向的保壓壓力均勻,可避免不均勻的體積收縮射出量/切换点的影响射出量可由螺杆行程距离的設定決定射出量包括了填滿模穴需要的塑胶量以及保压時須填入模穴的塑膠量切換點是射出機由速度控制切換成壓力控制的點螺桿前进行程過短(切換點過早)會導致保壓壓力不足假如保压压力比所需射出壓力還低,產品可能发生短射PVT特性p –压力; v –比容; T –溫度描述塑胶如何随着压力及溫度的变化而发生体积上的变化。
注塑模设计开题报告注塑模设计开题报告一、选题背景和意义注塑模是注塑成型工艺中的核心设备,其设计的好坏直接影响到产品的质量和生产效率。
随着现代工业的发展,注塑模设计也面临着越来越多的挑战和需求,因此,对注塑模设计进行深入研究和优化是十分必要和重要的。
二、研究目标和内容本次研究的目标是通过对注塑模设计的分析和优化,提高注塑成型工艺的效率和产品的质量。
具体研究内容包括注塑模的结构设计、材料选择、热流分析、模具流道设计等方面。
三、研究方法和步骤1. 文献调研:通过查阅相关文献,了解注塑模设计的基本原理和现有研究成果,为后续研究提供理论基础。
2. 注塑模结构设计:根据注塑成型工艺的要求和产品的特点,设计合理的注塑模结构,包括模腔、模芯、顶出机构等。
3. 材料选择:根据注塑模的使用环境和工艺要求,选择合适的材料,以保证模具的强度、硬度和耐磨性。
4. 热流分析:通过热流分析软件对注塑模进行模拟,分析注塑过程中的温度分布和热应力,以优化模具的冷却系统和加热系统。
5. 模具流道设计:根据产品的形状和尺寸,设计合理的模具流道,以保证塑料材料在注塑过程中的均匀流动和充填。
四、预期成果和创新点通过本次研究,预期可以得到以下成果:1. 注塑模设计的优化方案,提高注塑成型工艺的效率和产品的质量。
2. 注塑模的结构设计和材料选择的理论指导,为注塑模设计提供科学依据。
3. 注塑模的热流分析结果和模具流道设计的优化方案,提高注塑模的冷却效果和塑料材料的充填性。
本次研究的创新点主要有:1. 结合现代工业的需求,对注塑模设计进行深入研究,提出切实可行的优化方案。
2. 运用热流分析软件进行模拟,对注塑模的热流分布进行分析和优化。
3. 结合产品的形状和尺寸,设计合理的模具流道,提高注塑成型工艺的稳定性和一致性。
五、研究的局限性和挑战在进行注塑模设计的研究过程中,可能会面临以下局限性和挑战:1. 数据采集的困难:注塑模设计需要大量的实验数据和现场观察,而这些数据的采集可能会受到一些限制和困难。
第一讲注射模CAD/CAE/CAM概述一、注射模的重要性1.塑料具有密度小、质量轻、比强度大、绝缘性好、介电损耗低、化学稳定性强、成型生产率高和价格低廉等优点,在国民经济和人民日常生活的各个领域得到了日益广泛的应用,早在二十世纪九十年代初,塑料的年产量按体积计算已经超过钢铁和有色金属年产量的总和。
在机电(如所谓的黑色家电)、仪表、化工、汽车和航天航空等领域,塑料已成为金属的良好代用材料,出现了金属材料塑料化的趋势。
2.以汽车工业为例,由于汽车轻量化、低能耗的发展要求,汽车零部件的材料构成发生了明显的以塑代钢的变化,目前我国汽车塑料占汽车自重的5%至6%,而国外已达13%,根据专家预测,汽车塑料的单车用量还将会进一步增加。
在现代车辆上,无论是外装饰件、内装饰件,还是功能与结构件,都可以采用塑料材料,外装饰件有保险杠、挡泥板、车轮罩、导流板等;内装饰件有仪表板、车门内板、副仪表板、杂物箱盖、座椅、后护板等;功能与结构件有油箱、散热器水室、空滤器罩、风扇叶片等。
据统计,我国2000 年汽车产量200 多万辆,车用塑料达138 万吨。
从国内外汽车塑料应用的情况看,汽车塑料的用量现已成为衡量汽车生产技术水平的标志之一。
3.作为塑料制件最有效的成型方法之一的注塑成型由于可以一次成型各种结构复杂、尺寸精密和带有金属嵌件的制品,并且成型周期短,可以一模多腔,生产率高,大批生产时成本低廉,易于实现自动化生产,因此在塑料加工行业中占有非常重要的地位。
据统计,塑料模具约占所有模具(包括金属模)的38.2%,塑料制品总重量的大约32%是用于注射成型的,80%以上的工程塑料制品都要采用注射成型方式生产。
4.根据海关统计,我国2000 年共进口模具9.77 亿美元,其中塑胶模具共5.5 亿美元,占56.3%,2001年共进口模具11.12亿美元,其中塑胶模具共6.16亿美元,占55.4%。
从品种上来说,进口量最大的是塑胶模具。
Moldex3D软件简介及其在模拟注塑中的应用Moldex3D是一款专业的注塑模拟软件,它通过数值计算和仿真技术,模拟出注塑过程中的流变性能、热力学性能和变形性能等,能够帮助企业更好地研发新产品、优化设计和生产工艺。
注塑模拟软件的作用在于减少实际操作过程中的试错成本,节省时间和成本。
因此,在制造业中应用广泛,尤其是在汽车、家电、电子等行业中得到了广泛的应用,下面将详细介绍的应用及其优势。
1.模拟出注塑过程中的流变性能在注塑过程中,材料的流变性能是非常关键的。
可以模拟出材料在注塑过程中的流动状态,以及热传递、凝固等关键过程,从而帮助企业更准确地确定注塑工艺参数,确保产品的设计成型度和力学性能达标。
2.优化模具设计可以对模具结构进行优化设计,通过模拟仿真,可以检测出模具结构的缺陷,并采取相应的优化措施。
同时,还可以预测产品的变形情况,进一步改进模具设计,从而提高整个生产流程的质量和效率。
3.节约成本通过的模拟仿真,企业可以避免实际操作中的试错成本,及时发现问题并进行改进,从而减少生产成本。
同时,还可以预测产品的缺陷,帮助企业尽早解决问题,避免后期返工和投诉。
4.提高产品质量通过的模拟仿真,企业可以在最短的时间内找到最佳的工艺参数和最适合的模具设计,确保产品的成型度和力学性能达到标准要求,从而提高产品质量和市场竞争力。
5.智能化生产可以与其他自动化设备相结合,实现生产过程的自动化和智能化。
通过与MES系统(制造执行系统)相集成,可以实现产量统计、在线监测等功能,从而提高生产效率和质量。
总的来说,可以模拟出产品的相关性能,包括材料流动、热传递、凝固变形等方面,对企业研发新产品、设计模具和生产工艺等都有很好的帮助。
其主要优势在于可以节约成本、提高产品质量和智能化生产,为制造业提供更有效的解决方案,帮助企业在市场中取得更大的竞争优势。
第1篇一、实验目的1. 了解模流分析的基本原理和方法。
2. 通过模流分析实验,掌握熔融塑料在模具中的流动规律。
3. 优化模具设计,提高塑料制品的成型质量。
二、实验原理模流分析是一种模拟熔融塑料在模具中流动过程的数值模拟方法。
通过建立熔融塑料在模具中的流动模型,分析熔融塑料的流动特性,为模具设计提供理论依据。
三、实验设备与材料1. 实验设备:模流分析软件、计算机、打印机等。
2. 实验材料:聚丙烯(PP)颗粒。
四、实验步骤1. 模具设计:根据实验要求,设计合适的模具结构,包括浇注系统、流道、冷却系统等。
2. 模具建立:利用模流分析软件建立模具的三维模型。
3. 材料属性设置:根据实验材料(PP)的特性,设置材料的热物理参数,如密度、比热容、导热系数、粘度等。
4. 浇注系统设置:设置浇注系统参数,如浇口类型、浇口位置、浇口尺寸等。
5. 冷却系统设置:设置冷却水道参数,如水道位置、水道尺寸、水道流量等。
6. 模流分析:运行模流分析软件,模拟熔融塑料在模具中的流动过程。
7. 结果分析:分析模拟结果,如熔融塑料的流动速度、压力分布、温度分布等。
8. 优化模具设计:根据模拟结果,对模具设计进行优化。
五、实验结果与分析1. 熔融塑料的流动速度:在模具入口处,熔融塑料的流动速度较大,随着流动距离的增加,流动速度逐渐减小。
在模具的狭窄部位,流动速度较大,而在宽大部位,流动速度较小。
2. 压力分布:在模具的狭窄部位,压力较大,而在宽大部位,压力较小。
在浇口处,压力最大。
3. 温度分布:在模具的冷却水道附近,温度较低,而在模具的加热部位,温度较高。
4. 优化模具设计:根据模拟结果,对模具设计进行优化,如调整浇口位置、改变冷却水道尺寸等。
六、实验结论1. 模流分析实验能够有效地模拟熔融塑料在模具中的流动过程,为模具设计提供理论依据。
2. 通过对模拟结果的分析,可以优化模具设计,提高塑料制品的成型质量。
3. 模流分析实验有助于缩短新产品开发周期,降低产品开发成本。
基于 Creo注塑件模流分析【摘要】本文模拟熔融塑料填充整个型腔的流动过程,对浇注件的成形过程进行模流分析,对塑料的填充情况、注射时产生的熔接痕、气泡和塑料变形等进行注射模拟分析。
塑料顾问模块还可以对填充时间、注射压力、注射温度、填充质量和流动取向等进行分析。
通过注塑过程模拟,分析设计方案,了解塑料注塑填充过程。
关键词:Creo;气泡分析;熔接痕分析;注射压力;注射温度;填充质量;流动取向分析现代科技的发展不只对工业生产、人们生活产生很大的影响,也推动着我们职业教育教学的发展和革新。
模具设计与制造是一个传统的加工方向,在Creo、UG等软件的加入后,使得模具设计的过程更加直观和有效率,Creo参数化的设计让模具设计改变设计方案更加简单和方便。
Creo中的模流分析模拟了注塑件注射成型过程,模拟塑料从液体状态填充整个模具型腔的过程,分析注塑过程中气泡、融合线和塑料变形等缺陷的填充过程,便于及早改进设计。
在我们职业教育中,用creo进行三维设计、模具设计、添加模架、数控加工和进行模流分析,直观的把模具设计过程展现在学生面前,模流分析动态模拟了塑料注塑过程,让学生动态观察熔融塑料注塑的过程,了解塑料注塑的原理和过程,激发学生学习激情,知识可视化有效提高教学效果。
Creo是美国PTC公司推出的机械三维CAD/CAM/CAE参数化软件系统。
Creo 内容涵盖了产品从三维模型设计、动态模拟与仿真、数控加工、模具设计、工程图输出,到生产加工成产品的全过程。
注塑模具设计还包含三个模块:模具设计模块、模座设计模块(EMX)和塑料顾问模块(Plastic Advisor)模块。
一个完整的注塑模具设计首先需要进行零件三维造型,对零件进行模具设计,之后加模架,最后把需要的模具型腔生成工程图并进行加工。
本文模拟熔融塑料填充整个型腔的流动过程,对生成的浇注件进行模流分析,分析注塑过程中气泡、融合线和塑料变形等缺陷的填充过程,对注塑过程中的注塑压力、注塑温度、填充时间和注塑质量等进行模拟分析,了解注塑件填充过程,对塑料注塑过程进行模拟分析,以便了解注塑件的填充过程和原理。
等)N
度度度
射出机料管4定期清理料管模具日常保1次/30分464机台尽可能固定颜色生管/注塑
有黑斑养生产
缩水4保压过小2依照标准成型成型条件每批216
条件表点检表
8保压过小2依照标准成型成型条件每批232
条件表点检表
胶芯穿孔4模具灌点2零件寿命管制成型条件每批216
过大点检表
8模具灌点2零件寿命管制成型条件每批232
过大点检表
■
包装
混料6
未按照标准
作
2
依照制造通知
单填写
224标签贴错6
未按照标准
作业
2
依照制造通知
单填写
224功能丧失
无法组装
无法组装
外观不良
功能丧失
外观不良。
注塑产品模具可行性分析(DFM)注塑产品模具可行性分析(DFM) 是一个非常重要的步骤,它可以确保注塑产品的设计和制造过程的高效性和有效性。
在注塑制造过程中,模具是关键的组成部分,因此必须对其可行性进行分析。
DFM 的核心思想是尽早识别并解决问题。
通过在产品设计过程中进行模具设计的同时进行DFM评估,可以识别和解决制造中可能出现的问题。
这有助于确保制造成本低,生产时间短,制造过程稳定。
在进行DFM分析之前,需要对产品进行详细的设计和审查,以了解其具体要求。
这个阶段需要关注产品的几何特征、材料选择、加工方式和装配要求等。
在产品设计完成之后,进行DFM分析,主要从以下几个方面进行处理。
首先,在DFM分析中,需要进行注塑产品的容易制造性评估。
这意味着识别和评估影响注塑生产的组件设计,以便在生产之前识别潜在的生产问题。
例如,在设计过程中,需要评估产品几何特征,以确保它们可以顺利地从模具释放出来,同时避免任何不必要的挤压。
其次,在注塑过程中,材料的选择也是控制生产成本和保证产品质量的关键。
在DFM过程中,需要识别正确的材料选择和处理方式,以确保生产效率和稳定性。
材料的选择必须符合产品的要求,而且需适合模具的材质和加工过程,从而确保生产成功。
除了以上两点,DFM还需要考虑注塑产品的设计与装配要求,包括产品不同组件的尺寸和形状,组件之间的间隔等。
在DFM分析中,需要检查这些方面,以确保产品组装后不会出现任何问题。
最后,在DFM过程中,需要注意生产过程中的成本和时间。
这意味着需要避免任何可能导致成本增加或生产时间过长的问题。
要确保模具的设计不会导致生产成本过高或影响产品的质量。
综合以上几点,可见DFM对产品设计和注塑过程都非常重要。
DFM分析可以帮助厂家减少生产过程中出现的成本和质量问题,同时也可提高生产效率与稳定性,从而达到更好的生产效益。
大型模具系统注塑成型过程中传热行为的数值模拟王犇;李旭东【摘要】为了研究大型整体式模具系统在注塑成型工艺流程中各个阶段内模具表面温度分布规律以及相应的模具系统内各个部分的热交换效应,基于ABAQUS有限元分析平台对注塑成型用的大型整体式模具系统进行拟实性传热行为的数值模拟.结果表明:高温塑料熔体在型腔内流动的过程中,模具表面温度沿熔体流动方向呈梯度分布,注射结束后,透明预制件表面温度分布不均匀且低于芯部温度.此外,随形管道造成透明预制件内外表面冷速不同,对制件区域性能的一致性有显著影响.通过对模具系统注塑过程热交换效应的模拟再现,为工程实际中模具系统结构上的设计优化提供理论依据.【期刊名称】《甘肃科学学报》【年(卷),期】2018(030)004【总页数】7页(P119-125)【关键词】模具系统;注塑成型;传热行为;模具温度;数值模拟【作者】王犇;李旭东【作者单位】兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,甘肃兰州 730050;兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,甘肃兰州 730050【正文语种】中文【中图分类】TQ320.66注塑成型是将热塑性或热固性塑料加热转变为熔融状态,然后将熔体注射到型腔中并经过一定的工艺条件或工艺设置,将熔体冷却为各种复杂结构的制件的成型过程。
注塑成型是重要的塑料制品成型方式,适于大批量生产形状复杂、尺寸要求精确的塑料制品,注塑成型工艺非常复杂,成型制品质量受到模具设计参数,材料性能参数及充填、保压和冷却过程中工艺参数等许多因素的影响[1]。
传热过程是注塑成型过程中最重要的部分之一[2],其中注塑模具的温度大小及其分布是影响制品品质的重要因素,尤其是型腔壁面温度,模具的预热及冷却系统设计和注塑工艺设置都会考虑该重要参数,制品的形变量、尺寸精度、力学性能以及表面质量都受到模具温度的影响[3]。
模具温度过高,会使塑料制品收缩率增大,尺寸精度下降,表面产生花斑,并导致脱模困难;模具温度过低,使得塑料熔体粘度降低,流动阻力增大,导致物料交联固化不充分,机械强度受影响。
毕业论文(设计)题目:一模多腔的注塑模具结构设计及仿真分析(英文):The Design of Multi-cavity InjectionMould For Multi-way Buttons andSimulation Analysis院别:机电学院专业:机械设计制造与其自动化(CAD/CAM)姓名:学号:指导教师:日期:2011年5月一模多腔的注塑模具结构设计及仿真分析摘要本次设计主要特点是根据MOLDFLOW软件仿真模流分析来指导模具结构的设计。
MOLDFLOW软件模拟塑料熔体在整个注射过程中的充填、冷却及流动情况,确保获得高质量制件。
打破传统模具结构设计的试模、修模等过程,达到降低成本,提高生产率的目的。
在得到仿真分析最佳质量效果的数据、参数之后用来作为模具结构设计的依据。
本次设计主要包括:(1)模流仿真分析注射成型时熔体在型腔中的流动过程非常复杂,与许多因素如聚合物性能、制件结构、温度、压力、时间、模具结构及注射设备等有关。
仿真定量地给出成型过程的成型窗口状态参数(如压力、温度、速度等)。
(2)依据仿真的成型窗口状态参数进行整个注塑模具的结构设计。
如注射机的选择、浇注系统、成型零件、合模机构、脱模机构和冷却系统的设计,绘制模具零件图和装配图等。
关键词:仿真分析;模具设计;一模六腔;PROE建模The Design of Multi-cavity Injection Mould For Multi-way Buttons and Simulation AnalysisABSTRACTThe main features of the design is based on software simulation flow analysis MOLDFLOW to guide the design of die structure. MOLDFLOW software to simulate the injection of plastic melt in the process of filling, cooling and flow, ensuring access tohigh-quality parts. Breaking traditional mold structure design test mode, the process of repair molds, to reduce costs, improve productivity purposes. Obtained the best quality in the simulation results of the data, parameters after the design used as the basis for the mold.The design includes: (1)Moldflow injection molding simulation of melt flow in the cavity is very complex process with many factors. Such as polymer properties, parts structure, temperature, pressure, time, and injection mold structure and other related equipment. Quantitative simulation of the molding window molding process given the state parameters (such as pressure, temperature, speed, etc.). (2) Simulation based on the parameters of the molding window state the structural design of the injection mold. Such as the choice of injection machine, injection system, molded parts, mold bodies, stripping institutions and cooling system design, drawing die part and assembly drawings, etc..Keywords:Simulation Analysis;Mold Design ;Six-cavity Mold;Proe Modeling目录1绪论 (1)1.1 模具工业在国民经济中的地位 (1)1.2我国模具工业的现状 (1)1.3未来模具发展方向 (1)1.4论文的提出及研究意义 (2)2多向按键工艺分析及模具方案的初步确定 (3)2.1塑件的结构和尺寸精度及表面质量分析 (4)2.2塑件的原材料分析 (4)2.3模具方案的初步确定 (6)2.31 模具结构各个部件的分析确定 (6)2.32 总体结构方案的论证和初步确定 (6)3运用MOLDFLOW进行模具结构有限元仿真分析 (7)3.1介绍其功能 (7)3.2 MOLDFLOW分析的流程 (7)3.3应用MOLDFLOW进行分析 (8)3.31 划分产品网格 (8)3.32 选择成型材料 (9)3.33 确定最佳浇口位置 (10)3.34 创建浇注系统及优化 (11)3.35 创建冷却系统及优化 (13)3.36 成型窗口分析 (16)3.37 选择分析类型 (17)3.38 注射工艺参数的优化 (20)4多向按键的注塑模具结构的最终确定 (24)4.1型腔数目及布局的确定 (24)4.2注塑机的选择 (25)4.3分型面的设计 (27)4.4浇注系统的设计 (29)4.41主流道的设计及计算 (29)4.42定位圈 (30)4.43分流道的设计 (30)4.5浇口的设计 (32)4.51浇口形状的分析与确定 (32)4.52浇口位置的确定 (33)4.6排气系统的设计 (34)4.7模架的确定 (34)4.8推出机构的设计 (34)4.81顶杆的设计及计算 (35)4.82复位杆的设计 (36)4.83推板和推杆固定板的设计 (37)4.9合模导向机构的设计 (37)4.10成型零件的设计 (39)4.101计算成型零件的工作尺寸 (40)4.11冷却系统 (42)4.12模具工作原理 (44)5设计总结 (46)参考文献 (47)致谢 (49)附录 (50)1绪论1.1模具工业在国民经济中的地位模具是制造业的一种基本工艺装备,它的作用是控制和限制材料(固态或液态)的流动,使之形成所需要的形体。
为什么要进行注塑成型模拟分析 一.为什么要进行注塑成型模拟分析 1 塑料及其性质 由于塑料的内部结构比金属复杂,故掌握其性能特点也就比较困难。然而要想有效地进行塑料的注射成型,就应该对其与成型有关的性能有所了解。 1).比热容 不同塑料的比热容差别较大,并随着温度的变化而变化。 2). 热扩散系数 塑料的热扩散系数对成型中材料的温度与冷却有较大关系,并且也随着温度的变化而变化。 3). 密度/比容 塑料的密度与温度有强烈的依赖关系,温度升高时密度较小。注射成型过程中,温度不断变化,故材料的密度也在不断变化,这种变化对产品的质量有重要影响。 4). 热降解、分解温度 塑料因加工温度偏高,或在较高温度下停留时间过长,从而使平均分子量降低的现象称为热降解。如出现这种情况,则熔体的粘度降低,制品出现飞边、气泡和银丝,机械性能变差,如弹性消失、强度降低等。分解温度是指聚合物因受热而迅速分解为低分子的温度。显然分解温度是注射成型温度的上限。 5). 剪切变稀 塑料熔体的粘性系数并非常数(非牛顿流体),而是随剪应变率的增加而降低,这种现象称为剪切变稀。不同塑料的剪切变稀程度差别较大。因为粘度特性在注射成型工艺中是一个非常重要的因素,故剪切变稀对注射成型的压力、温度等有重要影响 2. 应用注射模流动模拟软件的必要性 塑料材料性能的复杂性决定了注射成型过程的复杂性,有些注射成型问题连有经验的模具设计师也很难把握。同时,注塑制品的质量也主要取决于注射成型过程,塑料熔体注入模具后的流动行为在决定制品质量方面具有头等重要意义,因此很有必要对充模过程进行有效地分析。注塑过程中的流动分析在国外已得到了普遍的应用,它建立在计算机与CAD被广泛应用的基础上,其目的是预测塑料熔体注入模具型腔时的流动情况,从而判断熔体流动给注塑件质量带来的影响。流动模拟软件的应用主要包括三个方面:第一是利用软件来预计所设定注塑方案的压力、温度等的分布;第二是利用预计的压力、温度等的分布来改善模具和塑料制品的设计;第三是对多个候选的注塑方案进行比较优化,选择最佳方案。传统的注塑模设计首先考虑的是模具本身的需要,之后考虑的才是注塑制品的需要。换句话说,传统的注塑模设计是把塑料熔体在流道和型腔中的流动放在第二位考虑的。例如,常规的模具设计通常是根据经验确定浇口的数量和位置,而不是根据流动分析来确定这些参数,结果经常是浇口数量偏多、尺寸偏大。但是在市场经济条件下,产品的质量与成本已成为企业生存发展的生命线,注射成型模拟软件可以辅助企业确立竞争优势。 二.如何应用注塑成型分析报告指导模具设计 1. 注塑条件对制品成型的影响 1). 塑料材料 如前所叙,塑料材料性能的复杂性决定了注射成型过程的复杂性。而塑料材料的性能又因品种不同、牌号不同、生产厂家不同、甚至批次不同而差异较大。不同的性能参数可能导致完全不同的成型结果。对注射成型过程影响比较大的材料参数见“基础篇” 2). 注射温度 熔体流入冷却的型腔,因热传导而散失热量。与此同时,由于剪切作用而产生热量,这部分热量可能较热传导散失的热量多,也可能少,主要取决于注塑条件。熔体的粘性随温度升高而变低。这样,注射温度越高,熔体的粘度越低,所需的充填压力越小。同时,注射温度也受到热降解温度、分解温度的限制。 3). 模具温度 模具温度越低,因热传导而散失热量的速度越快,熔体的温度越低,流动性越差。当采用较低的注射速率时,这种现象尤其明显。 4). 注射时间 注射时间对注塑过程的影响表现在三个方面: (1)缩短注射时间,熔体中的剪应变率也会提高,为了充满型腔所需要的注射压力也要提高。 (2)缩短注射时间,熔体中的剪应变率提高,由于塑料熔体的剪切变稀特性,熔体的粘度降低,为了充满型腔所需要的注射压力也要降低。 (3)缩短注射时间,熔体中的剪应变率提高,剪切发热越大,同时因热传导而散失的热量少,因此熔体的温度高,粘度越低,为了充满型腔所需要的注射压力也要降低。 以上三种情况共同作用的结果,使图1中的充满型腔所需要的注射压力的曲线呈现“U”形。也就是说,存在一个注射时间,此时所需的注射压力最小。 2. CAE软件的指导作用 注射模流动模拟软件的指导意义十分广泛,她是一种设计工具,能够辅助模具设计者优化模具结构与工艺,指导产品设计者从工艺的角度改进产品形状,选择最佳成型性能的塑料,帮助模具制造者选择合适的注射机,当变更塑料品种时对现有模具的可行性做出判断,分析现有模具设计弊病。同时,流动软件又是一种教学软件工具,能够帮助模具工作者熟悉熔体在型腔内的流动行为,把握熔体流动的基本原则。下面逐项分析三维流动软件的主要输出结果是如何用来指导设计的。 1). 熔体流动前沿动态显示 三维流动模拟软件能显示熔体从进料口逐渐充满型腔的动态过程,由此可判断熔体的流动是否较理想的单项流形式(简单流动)(复杂流动成型不稳定,容易出现次品)。各个流动分支是否在同时充满型腔的各个角落(流动是否平衡)。若熔体的填充过程不理想,可以改变进料口的尺寸,数量和位置,反复运行流动模拟软件,一直到获得理想的流动形式为止。若仅仅是为了获得较好的流动形式而暂不考察详尽的温度场,应力场的变化,或是初调流道系统,最好是运行简易三维流动分析(等温流动分析),经过几次修改,得到较为满意的流道设计后,再运行非等温三维流动分析。 2). 型腔压力 在填充过程中最大的型腔压力值能帮助判断在指定的注射机上熔体能否顺利充满型腔(是否短射),何处最可能产生飞边,在各个流动方向上单位长度的压力差(又称压力梯度)是否接近相等(因为最有效的流动形式是沿着每个流动分支熔体的压力梯度相等),是否存在局部过压(容易引起翘曲)。流动模拟软件还能给出在熔体填充模具所需的最大锁模力,以便用户选择注射机。 3). 熔体温度 流动模拟软件提供型腔内熔体在填充过程中的温度场。可鉴别在填充过程中熔体是否存在着因剪贴发热而形成的局部热点(易产生表面黑点、条纹等并引起机械性能下降),判断熔体的温度分布是否均匀(温差太大是引起翘曲的主要原因),判断熔体的平均温度是否太低(引起注射压力增大)。熔体接合点的温度还可帮助判断熔合纹的相对强度 4). 剪切速率 剪贴速率又称应变速率或者速度梯度。该值对熔体的流动过程影响甚大。实验表明,熔体在剪贴速率为103S-1左右成型,制品的质量最佳。流道处熔体剪贴速率的推荐值约为5*102~5*103S-1,浇口处熔体剪贴速率的推荐值约为104~105S-1 。流动软件能给出不同填充时刻型腔各处的熔体剪切速率,这就有助于用户判断在该设计方案下预测的剪切速率是否与推荐值接近,而且还能判断熔体的最大剪切速率是否超过该材料所允许的极限值。剪切速率过大将使熔体过热,导致聚合物降解或产生熔体破裂等弊病。剪切速率分布不均匀会使熔体各处分子产生不同程度的取向,因而收缩不同,导致制品翘曲。通过调整注射时间可以改变剪切速率。 5). 剪切应力 剪切应力也是影响制品质量的一个重要因素,制品的残余应力值与熔体的剪切应力值有一定的对应关系,一般,剪切应力值大,残余应力值也大。因此总希望熔体的剪切应力值不要过大,以避免制品翘曲或开裂。根据经验,熔体在填充型腔时所承受的剪切应力不应超过该材料抗拉强度的1%。 6). 熔合纹/气穴 两个流动前沿相遇时形成熔合纹,因而,在多浇口方案中熔合纹不可避免,在单浇口时,由于制品的几何形状以及熔体的流动情况,也会形成熔合纹。熔合纹不仅影响外观,而且为应力集中区,材料结构性能也受到削弱。改变流动条件(如浇口的数目与位置等)可以控制熔合纹的位置,使其处于制品低感光区和应力不敏感区(非“关键”部位)。而气穴为熔体流动推动空气最后聚集的部位,如果该部位排气不畅,就会引起局部过热、气泡、甚至充填不足等缺陷,此时就应该加设排气装置。流动模拟软件可以为用户准确地预测熔合纹和气穴的位置。 7). 多浇口的平衡 当采用多浇口时,来自不同浇口的熔体相互汇合,可能造成流动的停滞和转向(潜流效应),这时各浇口的充填不平衡,影响制品的表面质量及结构的完整性,也得不到理想的简单流动。这种情况应调整浇口的位置。流动模拟软件在优化设计方案更显优势。通过对不同方案的模拟结果的比较,可以辅助设计人员选择较优的方案,获得最佳的成型质量。 3. 流动软件的正确使用 注射模流动模拟软件只是一种辅助工具,它能否在产生中性层发挥作用并产生经济效益,在很大程度上取决于模具设计者的正确使用。 1). 流动软件的使用人员 流动软件的使用者必须熟悉注射成型工艺,具有一定的注射模设计经验。这样,用户才能针对性地利用流动软件解决模具结构设计或工艺问题,例如,如果浇口处剪切速率过高,是修正浇口尺寸,还是改变熔体温度,抑或更换注射材料呢,不具备注射成型工艺知识的人很难做出正确选择的。流动软件的输出的结果涉及到塑料粘度,剪切速率,温度,压力以及它们的相互作用,即使是经验丰富的模具设计师也应学一点塑料流变学的知识,总结注射流动的基本规律,这样才能站在理论与实践结合的高度用好流动模拟软件。 2). 输入数据的正确性 首先要输入合理的注射成型工艺参数,常用材料的成型温度见表1(仅供参考)。
4). 剪切速率 剪贴速率又称应变速率或者速度梯度。该值对熔体的流动过程影响甚大。实验表明,熔体在剪贴速率为103S-1左右成型,制品的质量最佳。流道处熔体剪贴速率的推荐值约为5*102 ~ 5*103S-1,浇口处熔体剪贴速率的推荐值约为104 ~ 105S-1 。
除此之外,还要有正确的材料参数(如热传导率,比热,密度,不流动温度以及粘度等)。如前所叙,塑料材料的性能参数(流变性、压缩性等)十分重要,不同的性能参数将导致完全不同的模拟结果。同时,塑料材料的性能又因品种不同、牌号不同、生产厂家不同、甚至批次不同而差异较大。因此,获得所用材料的准确的性能参数是使用CAE软件的前提条件。尤其是材料的粘性参数,对充模流动有重要影响,又不易通过实验直接获得,华中科技大学模具技术国家重点实