全自动比表面及孔隙度分析仪解析
- 格式:ppt
- 大小:1.11 MB
- 文档页数:50
激光粒度分析仪1技术指标:1.1 *测试范围: 0.01-3500微米。
1.2 测量原理:全量程采用激光衍射法和完全米氏光散射理论,仪器无须校准。
软件必须提供包含样品的折射率和吸收率的数据库。
1.3 *测量速度: 扫描速度10000次/秒, 扫描次数用户可调;30秒完成光路校正、数据采集与处理、报告生成等全部操作。
1.4 *重复性: +/-0.5%,准确性: +/-1%。
1.5 *仪器必须符合ISO13320及FDA的21 CFR 11标准;必须能提供被ISO,EMC,FDA等国际著名认证机构认可的QSPEC认证报告。
1.6 光路系统:由光源,光学平台,反傅立叶透镜组成。
光学平台:完全铸钢光学平台。
1.7 *激光光源:主光源:高稳定氦-氖激光器;辅光源:蓝光固体光源。
全套装置符合激光产品一级标准。
1.8 采用反傅立叶光学透镜用于扩大光信号接收范围,真实测量超微粒子。
1.9 *检测系统:由宽范围的前向,侧向,大角度和背向三维多元固体硅光电感测器群组,暗场光学标线和多元自动快速光路准直系统组成;主检测器采用非均匀交叉面积补偿扇形排列技术。
1.10 *仪器的光学测量系统与进样系统完全独立。
1.11 *应用软件及说明书:能同时提供中英文操作软件;软件具SOP及用户报告设计功能。
1.12说明书:能同时提供中英文说明书,并提供样品分散手册。
1.13进样系统:*浸入式搅拌棒(螺旋桨机械搅拌系统)和内置式超声波探头,搅拌速度、超声强度连续可调。
插入式样品池独立于密封的光路系统,样品池清洗方便。
*离心泵循环,泵速连续可调,样品容量600 ml。
*自动清洗,自动分散;全自动操作2 基本配置2.1 仪器主机 1套2.2 湿法分散系统(包括螺旋桨机械搅拌系统和内置式超声波探头)1套2.3仪器操作软件1套2.4 电脑品牌机当前主流配置:i3CPU,2G内存,500GB硬盘, 19 LED显示屏显器。
注:*表示为重要的必须满足指标。
ASAP 2460是一种全自动比表面积和孔隙度分析仪,通常用于测量固体材料的比表面积和孔径分布。
以下是解读ASAP 2460报告的一些关键信息:
1. 样品信息:报告中会列出所测试样品的名称、批次号等基本信息。
2. 测试条件:报告会记录测试时使用的仪器参数,如氮气作为吸附气体的压力范围、温度以及相对湿度等。
3. 比表面积:这是报告的核心内容之一,它表示单位质量或体积的样品具有的总表面积。
报告中通常会给出BET(Brunauer-Emmett-Teller)比表面积,这是一个基于多层物理吸附理论计算出来的值。
4. 孔径分布:报告会展示样品的孔径分布曲线,通常以孔径大小为横坐标,对应的孔容积或孔数为纵坐标。
这可以帮助了解样品的孔结构特征。
5. 总孔体积:报告会提供样品总的孔体积,它是所有孔隙空间的总和。
6. 微孔和大孔分析:如果样品具有广泛的孔径范围,报告可能会区分微孔和大孔的特性,并分别给出相关的数据。
7. 误差分析与重复性:报告可能包含对测试结果的不确定性评估,以及通过多次测量得到的重复性数据。
8. 结论与建议:最后,报告通常会总结分析结果,并根据应用需要提出相应的建议。
为了准确地解读ASAP 2460的比表面积报告,你需要具备一定的专业知识背景,包括比表面积和孔隙度分析的基本原理以及相关的物理化学知识。
比表面积及孔径测试仪比表面积及孔径测试仪是一种用于测量材料表面比表面积和孔径的仪器。
比表面积是指单位质量或单位体积的表面积,常用于研究物质的吸附、催化、化学反应等性质。
孔径是指材料表面的孔洞大小,也是材料性质的重要参数。
比表面积及孔径测试仪通过测定物料吸附某种气体时的吸附量来计算比表面积和孔径。
工作原理比表面积及孔径测试仪工作的原理可以简单概括为以下三步骤:1.准备样品:将样品加热、脱气以去除杂质和水分,使样品表面达到一个稳定的状态。
2.气体吸附:将试样置于环境压力下,加入已定压力的吸附气体,使其在样品表面发生吸附。
通常使用的气体有氧气、氮气、二氧化碳等。
3.测试结果:通过测定吸附气体的体积或重量变化,计算出样品的比表面积和孔径。
比表面积及孔径测试仪通常会提供多种计算方法,常见的有BET法(Brunauer-Emmett-Teller法)、Langmuir法、BJH法(Barrett-Joyner-Halenda 法)等。
应用领域比表面积及孔径测试仪广泛应用于材料科学、环境科学、化学、医药等领域。
以下列举几个具体的应用案例:1.催化剂研究:通过测量催化剂表面的比表面积和孔径,研究其催化活性和选择性。
2.吸附材料研究:通过测量吸附材料表面的比表面积和孔径,研究其对特定气体或液体的吸附性能。
3.药物研究:通过测量药物微粒的比表面积和孔径,研究其生物利用度和释放性能。
常见类型比表面积及孔径测试仪的类型比较多,按其测量原理可以分为以下几类:1.物理吸附法:根据物理吸附理论,测量吸附剂在固体表面的物理吸附量,从而计算出比表面积和孔径。
该方法适用于孔径范围较小的材料,比如活性炭、分子筛等。
2.化学吸附法:通过化学反应形成吸附剂和被吸附物之间的化学键,测量化学吸附量,从而计算比表面积和孔径。
该方法适用于孔径范围较大的材料,比如介孔材料。
3.流体吸附法:测量流体在孔道内的渗透压,从而推算出吸附剂的孔径大小和亲水性等参数。
全自动比表面及孔隙分析仪麦克(Micromeritics)和康塔(Quantachrome):两家的仪器都是目前大家最常用的,做气体吸附,没有太大区别(1)控制页面变化麦克采用等温夹:等温夹适合各种冷浴,包括液氮,液氩,冰水等。
具有专利保护。
康塔采用液位指示灯:时时指示液面,保证及时添加液氮。
好像也是有专利保护的。
(2)微孔分析方法在微孔分析方面,两家用的方法不一样Micromeritics用的是逐步dose法,就是给定一个dose(e.g. 5 cc/g),然后测对应的压力给出的数据是amount relative pressure5 cc/g P110 cc/g P215 cc/g P3...Quantachrome采用固定压力,测对应的吸附量给出的数据是relative pressure amount1E-6 amount 12E-6 amount 23E-6 amount 3所以Micromeritics给出的第一个数据点,吸附量很小而Quantachrome给出的第一个数据点,吸附量较大Quantachrome声称他们的方法最准确,但要很长时间而Micromeritics需要的时间相对少些,但如果 degas不好,低压部分会有个“S”形状康塔的Qudrasorb,就已经就已经可以采取3中方式进行测试,当然包括固定取点,也包括dose,同时还包括低压高压相对测试,和固定与dose并用,功能亦然很强大。
(3)分析站和脱气站以麦克公司的ASAP2020为例,具有一个分析站和两个脱气站,脱气站和分析站各配有独立的真空系统(即脱气站和分析站不共用真空系统),且可以达到脱气+工作站连用;康塔以Autosorb-1MP为例,它的脱气站和分析站共用真空系统,且用康塔仪器在脱气完成后,转移至工作站之前还要再次接触外界气氛。
但是,康塔也有他的好处,他一般Qudrasorb系列就开始采用4个站,可以同时做样。
全自动比表面积及孔隙度仪操作规程及注意事项一、准备1、检查气体钢瓶压力值0.1-0.15MP;2、冷阱位置杜瓦瓶在开机状态下始终保持有液氮;3、注意分析杜瓦瓶中液氮位置。
二、开机1、打开外围设备包括:油泵、干泵、电脑、打印机等;2、打开仪器主机开关(白色按钮),仪器和分子泵指示灯亮(显示绿色);3、双击桌面ASAP2020图标打开应用软件;三、作样操作步骤1、处理样品(必要时先烘干)并称量两个质量:A:空管质量(包括sealfrit密封塞)、B:管加样品的总质量,B-A=脱气前样品质量;2、建立样品文件file-open-sample information file;3、编辑文件信息并保存;4、点击unit-start degas 进行脱气,点击browse选择样品文件;5、脱气后,称管加样品质量C,与空管质量比较,C-A=脱气后样品实际质量;6、点击unit-sample analysis 进行分析,点击browse 选择被选文件,输入样品质量(脱气后样品实际质量)做微孔样品时,开始分析前需要进行第二阶段脱气。
最好在分析站分析前用2号加热包给样品手动加热,操作如下:进入仪器脱气示意图(点击unit1-degas-show degas schematic),点击unit1-degas-enable manual control(进入手动模式),设定二号加热包温度(根据实际样品而定)。
A.如果是颗粒,不容易被抽飞起的样品,进行仪器分析示意图(点击unit1-show instrument schematic),点击unit1-enable manual control(进入手动模式),可以直接打开7、9、2阀门;(建议按B方法)B.如果是粉末样品,最好回填氮气,操作如下:进行仪器分析示意图(点击unit1-show instrument schematic),点击unit1-enable manual control(进入手动模式),关闭所有阀门,打开PS、5、4、7、P1阀门回填一个大气压。
低温静态容量法测定固体比表面和孔径分布第一部分 基 本 原 理一. 背景知识细小粉末中相当大比例的原子处于或靠近表面。
如果粉末的颗粒有裂缝、缝隙或在表面上有孔,则裸露原子的比例更高。
固体表面的分子与内部分子不同,存在剩余的表面自由力场。
同样的物质,粉末状与块状有着显著不同的性质。
与块状相比,细小粉末更具活性,显示出更好的溶解性,熔结温度更低,吸附性能更好,催化活性更高。
这种影响是如此显著,以至于在某些情况下,比表面积及孔结构与化学组成有着相当的重要性。
因此,无论在科学研究还是在生产实际中,了解所制备的或使用的吸附剂的比表面积和孔径分布有时是很重要的事情。
例如,比表面积和孔径分布是表征多相催化剂物化性能的两个重要参数。
一个催化剂的比表面积大小常常与催化剂活性的高低有密切关系,孔径的大小往往决定着催化反应的选择性。
目前,已发展了多种测定和计算固体比表面积和孔径分布的方法,不过使用最多的是低温氮物理吸附静态容量法。
1.吸附气体与清洁固体表面接触时,在固体表面上气体的浓度高于气相,这种现象称吸附(adsorption)。
吸附气体的固体物质称为吸附剂(adsorbent);被吸附的气体称为吸附质(adsorptive);吸附质在表面吸附以后的状态称为吸附态。
吸附可分为物理吸附和化学吸附。
化学吸附:被吸附的气体分子与固体之间以化学键力结合,并对它们的性质有一定影响的强吸附。
物理吸附:被吸附的气体分子与固体之间以较弱的范德华力结合,而不影响它们各自特性的吸附。
两种吸附的不同特征化 学 吸 附 物 理 吸 附吸附热 吸附速率 发生温度 选择性吸附层 较大需要活化,速率慢高温(高于气体液化点)有选择性,与吸附质、吸附剂性质有关单层较小不需要活化,速率快接近气体液化点无选择性,任何气体可在任何吸附剂上吸附多层由于物理吸附的“惰性”,通过物理吸附的行为及吸附量的大小可以确定固体的表面积、孔体积及其孔径分布。
2.孔的定义固体表面由于多种原因总是凹凸不平的,凹坑深度大于凹坑直径就成为孔。
比表面积及孔隙度分析仪如今被广泛应用于催化剂、燃料电池、电池、纤维、聚合物材料、医药、颜料、化妆品、磁粉、分离膜、过滤器、调色剂、水泥、陶瓷和半导体材料等多个行业,新接触这款仪器的朋友起初可能只能是依样画葫芦,别人怎么用自己就怎么用,到底仪器的原理是什么也不甚清楚。
本文就跟大家聊聊比表面积及孔隙度分析仪的测量原理,并推荐一款还不错的仪器,希望可以帮到大家。
比表面积及孔隙度分析仪在不同仪器上用的原理是不同的,就好比MicrotracBEL 的比表面积及孔隙度分析仪用的是容量法气体吸附和自家研究的ASFM专利,其他公司用的也有重量法等,这些都是根据公司技术选择的。
以MicrotracBEL的比表面积及孔隙度分析仪为例,容量法气体吸附主要测定不同压力下材料对气体的吸附量绘制比表面积曲线,计算得出比表面积及孔隙度。
仪器的原理都大差不差,仪器选得好用的自然才能方便。
这边给大家推荐的是MicrotracBEL 的比表面积及孔隙度分析仪,这款仪器的这几个特点值得为大家推荐。
1.低压力测定:这款仪器有标配分子涡轮泵和较高精度的压力传感器,可以满足低压力的测定;2.利用高气密性的气动阀控制,较传统的电磁阀同样时间内可以保持真空度高出3个数量级;3.实现多样品的测量。
仪器可以实现一个站微孔空隙测定,2个站的Kr同时测定低比表面,3个站的介孔孔隙和比表面积同时测定,多种模式能有效地缩短分析时间,相对而言更快捷;4.校正简便。
测试全过程采用较为准确的ASFM自由体积校正,不必要再使用液位恒定装置,更加简便快捷;5.可以实现多种吸附介质的兼容。
仪器可以实现包含比表面及孔径分布、其它非腐蚀性气体吸附、氪气Kr的低比表面测试、化学吸附、蒸气吸附、其它有机液体的蒸汽吸附等,一个仪器做多种介质的吸附,省心省力省钱;6.操作简便。
采用全自动化设计,仅需点击鼠标,即可完成,节省人力和时间成本。
比表面积及孔隙度分析仪的选购使用以及作用原理都是比较重要的,希望本文可以给到大家一些帮助。
全自动比表面和孔隙度分析仪*仪器型号:美国康塔(Quantachrome Instruments)AUTOSORB-1(1) 设备名称及用途*1.1 该分析系统是全自动运行的孔径系统,它能在同时测定四个样品的同时,独立地对另外两个样品进行脱气操作。
该系统可以全面测定比表面,孔径分析范围从0.35nm-950um。
(2) 微孔及介孔分析技术指标2.1 该系统必须能产生所需要的吸附和脱附数据,并能计算给出的表面积和如下条目中所列的有关数学模型和参数:*2.1.1 等温线:用户可以在指定的目标压力选择数据点的个数。
*2.1.2 BET比表面积,朗格莫尔表面积*2.1.3 BJH 孔径分布,*2.1.4 Dollimore-Heal*2.1.5 Dubinin-Radushkevich 微孔面积2.1.6 t法:微孔表面积,中孔表面积,微孔体积,相关系数。
*2.1.7 微孔孔径分布模型:至少有MP, HK, SF, DA, 非定域密度函数理论(NLDFT)10种以上。
*2.1.8 密度函数理论(DFT)核心数据库必须包括以下模型:●N2 at 77K on carbon (slit pore, NLDFT equilibrium model)●N2 at 77K on carbon (cylindrical pore, NLDFT equilib. model)●N2 at 77K on carbon (slit/cylindrical pore, NLDFT equilib. model)●Ar at 77K on carbon (slit pore, NLDFT equilibrium model)●Ar at 87K on carbon (cylindrical pore, NLDFT equilibrium model)●CO2 at 273K on carbon (slit pore, NLDFT equilibrium model)●N2 at 77K on silica (cylindrical pore, NLDFT equilibrium model)●N2 at 77K on silica (cylindrical pore, NLDFT ads. branch model)●Ar at 87K on zeolites/silica (spherical/cylindrical pore, NLDFT equilibrium model)●Ar at 87K on zeolites/silica (spherical/cylindrical pore, NLDFT adsorption branch model)●Ar at 87K on zeolites/silica (cylindrical pore, NLDFT equilibrium model)●Ar at 87K on zeolites/silica (cylindrical pore, NLDFT adsorption branch model)*2.1.9 必须提供GCMC模型方法*2.1.10 必须提供QSDFT碳材料计算模型*2.1.11 分形维数:Neimark-Kiselev (NK), Frenkel-Halsey-Hill (FHH)2.2 工作条件必须满足以下要求:*2.2.1 压力传感器系统:分析站必须具有3个不同测量位置的传感器。