模式识别
- 格式:doc
- 大小:35.50 KB
- 文档页数:10
模式识别的基本理论与方法模式识别是人工智能和计算机科学领域中的一个重要分支,也是现代科学技术中广泛应用的一种技术手段。
它涉及到从大量的数据中自动识别出某种模式的过程,其应用领域非常广泛,如人脸识别、指纹识别、语音识别等领域。
一、模式识别的基本理论模式是事物或现象中简单重复的部分或整体,模式识别是通过对数据进行分类、聚类等方式分析、发现事物或现象中的规律性,并将其应用于实际生产和科学研究中。
模式识别的基本理论主要包括数据分析、统计学、人工神经网络及算法模型等。
1. 数据分析数据分析是模式识别的一个重要组成部分,它是指通过对数据进行收集、分析、处理和应用,从中发现有用的信息以及可用于决策或预测的模型。
数据分析可以采用统计学、机器学习、人工神经网络等方法,无论采用何种方法,数据分析的目的都是找到数据表达的规律和模式。
2. 统计学统计学是模式识别所使用的数学工具之一,主要通过收集和分析数据来提供决策支持和预测结果。
统计学的主要应用领域包括控制过程、质量控制、风险评估和数据挖掘等。
3. 人工神经网络人工神经网络是一种基于人类大脑神经结构的人工智能技术,它通过对输入的数据进行处理、学习,将数据转换为信号输出,以此模拟人脑的神经网络功能。
人工神经网络可以应用于图像识别、音频识别等领域。
4. 算法模型算法模型是模式识别的基本理论之一,它是指在进行数据分析和处理的时候所采用的算法模型。
常用的算法模型包括决策树、支持向量机、神经网络等。
二、模式识别的方法模式识别的方法主要包括监督学习、无监督学习和半监督学习。
1. 监督学习监督学习是指在训练模型时,数据集中已知了对应的标签或类别信息。
监督学习的主要步骤是将已知数据输入到模型中进行训练,训练好的模型之后可以将未知的数据进行分类或预测处理。
监督学习包括分类和回归两种类型。
2. 无监督学习无监督学习是指在训练模型时,数据集中没有对应的标签或类别信息。
无监督学习的主要步骤是将数据输入到模型中进行训练,训练好的模型之后可以从数据中提取出特定的模式、结构或规律。
模式识别的方法
以下是 7 条关于模式识别方法的内容:
1. 仔细观察呀!这就像侦探找线索一样,你得认真地去看每一个细节。
比如说观察一个人的表情,从他的眼神、嘴角的细微变化中去发现情绪的蛛丝马迹,这就是很有用的模式识别方法呢!
2. 多做对比呗!就好像挑东西,把不同的放在一起比一比,优缺点立马就出来了。
比如对比不同品牌手机的性能,你就能识别出哪种更符合你的需求呀!
3. 善于归类啊!把相似的东西归到一起,这多简单!比如把水果按照类别分放,香蕉一堆、苹果一堆,这不就找到规律,识别出模式了嘛!
4. 不断总结呀!这就如同在拼拼图,每完成一块就总结一下经验。
像学骑自行车,每次摔倒后总结为啥摔了,下次不就更容易掌握平衡的模式了嘛!
5. 多听他人经验,哎呀,这可太重要啦!就像听老师讲课一样,那些过来人的经验能让你少走好多弯路呢!比如听前辈讲职场规则,不就能更快识别出职场的模式了吗?
6. 保持好奇心哟!像小孩子探索世界一样,不停地问为什么。
比如对天上的星星好奇,研究它们的规律,不就识别出星座的模式了嘛!
7. 学会联想呀!把看似不相关的东西联系起来,哇,这会有奇妙的发现哦!就像从云的形状联想到各种动物,这就是在进行有趣的模式识别呢!
我觉得这些模式识别的方法都超有用的,能帮我们更好地理解和认识世界,大家赶紧用起来呀!。
1、什么叫模式?什么叫模式识别?
模式主要有两重含义,一是代表事物(个体或一组事物)的模板或原型,二是表征事物特点的特征或性状的组合。
识别就是把对象分门别类地认出来。
识别就是再认知的过程。
模式识别就是对模式的区分和认识,把对象根据其特征归到若干类别中适当的一类。
2、模式识别的主要方法?
模板匹配:首先对每个类别建立一个或多个模版
输入样本和数据库中每个类别的模版进行比较,求相关或距离
根据相关性或距离大小进行决策
优点:直接、简单
缺点:适应性差
形变模版
统计方法:根据训练样本,建立决策边界(decision boundary)
统计决策理论——根据每一类总体的概率分布决定决策边界
判别式分析方法——给出带参数的决策边界,根据某种准则,由训练样本决定“最
优”的参数
句法方法:许多复杂的模式可以分解为简单的子模式,这些子模式组成所谓“基元”
每个模式都可以由基元根据一定的关系来组成
基元可以认为是语言中的词语,每个模式都可以认为是一个句子,关系可以认
为是语法
模式的相似性由句子的相似性来决定
优点:适合结构性强的模式
缺点:抗噪声能力差,计算复杂度高
神经网络:进行大规模并行计算的数学模型
具有学习、推广、自适应、容错、分布表达和计算的能力
优点:可以有效的解决一些复杂的非线性问题
缺点:缺少有效的学习理论
3、监督模式识别与非监督模式识别的区别?。
模式识别与人工智能第一点:模式识别在人工智能中的应用模式识别是指机器通过对大量数据的学习和分析,从中提取出有用的信息,并对这些信息进行处理和理解,从而实现对未知数据的预测和分类。
在人工智能领域,模式识别是一项核心技术,被广泛应用于图像识别、语音识别、自然语言处理、医学诊断、智能控制等领域。
在图像识别中,模式识别技术可以帮助机器识别出图片中的物体、场景和行为,从而实现自动驾驶、人脸识别等功能。
在语音识别中,模式识别技术可以帮助机器识别出语音信号中的音素、词汇和句子,从而实现智能语音助手、自动字幕等功能。
在自然语言处理中,模式识别技术可以帮助机器理解文本中的语义和情感,从而实现情感分析、机器翻译等功能。
此外,模式识别技术在医学诊断中也起到了重要作用。
通过分析医学影像数据,模式识别技术可以帮助医生发现病灶和异常,从而提高诊断的准确性和效率。
在智能控制领域,模式识别技术可以通过对传感器数据的分析,实现对设备的智能控制和优化。
第二点:人工智能在模式识别中的助力人工智能是指通过模拟人类的智能行为,使机器能够自主学习和适应环境,从而实现对未知数据的处理和理解。
在模式识别领域,人工智能技术可以帮助机器更好地完成任务,提高识别的准确性和效率。
深度学习是人工智能领域的一个重要分支,它通过构建深度神经网络模型,实现对大量数据的自动特征提取和分类。
在模式识别中,深度学习技术可以帮助机器从原始数据中学习到复杂的特征,从而提高识别的准确性和效率。
此外,强化学习是人工智能领域的另一个重要分支,它通过让机器在实际环境中进行尝试和探索,从而学习到最优的行为策略。
在模式识别中,强化学习技术可以帮助机器在复杂的环境中快速适应,从而提高识别的效率和鲁棒性。
总之,模式识别与人工智能是相辅相成的两个领域,模式识别技术在人工智能中的应用可以提高机器的智能水平,而人工智能技术在模式识别中的助力可以提高机器的识别能力。
随着技术的不断发展和创新,模式识别与人工智能将会为人类带来更多的便利和效益。
思维的模式识别大脑中的模式识别过程思维的模式识别:大脑中的模式识别过程思维是人类认识世界、解决问题、创造新知的过程,而大脑中的模式识别是思维的重要组成部分。
模式识别是指通过对事物共同特征的观察和分析,将它们归类为特定的类别或者模式。
本文将探讨人类大脑中的模式识别过程,以及它在思维中的重要作用。
一、模式识别的定义模式识别是指通过对一系列事物或信息进行观察和分析,发现其中的共性规律,并将其归纳为一类特定的模式的能力。
在大脑中,这个过程是通过对感官输入的处理和分析来实现的,从而使我们能够认识到事物的属性和关系。
二、大脑中的模式识别过程1. 感官输入大脑中的模式识别过程始于感官输入。
人类通过视觉、听觉、触觉等感官器官获取外界信息,这些信息被传递到大脑的感觉区域进行处理和解读。
2. 特征提取在感官输入的基础上,大脑会通过对信息进行特征提取,即找出其中的共同特征和规律。
比如,在观察一组物体时,大脑会注意到它们的形状、颜色、大小等特征,并通过将这些特征进行比较和分析来区分不同的物体。
3. 模式归类在进行特征提取的基础上,大脑会将事物归类到相应的模式中。
这种分类是通过将感知到的事物与已知的模式进行比较和匹配来实现的。
例如,当我们看到一个四条腿、有尾巴的动物时,大脑会将其归类为"狗"的模式。
4. 模式联想在模式识别的过程中,大脑还具有模式联想的能力。
这意味着当我们看到一个特定的模式时,会自动引发与之相关的其他模式和信息的回忆。
例如,当我们看到一个苹果模式时,大脑可能会自动联想到它的颜色、味道、营养成分等相关概念。
5. 模式生成除了识别已有的模式外,大脑还可以通过对已有模式的重组和变异来生成新的模式。
这种能力使人类能够进行创造性思维和创新。
例如,当我们将苹果的形状和橙子的颜色进行融合,就可以产生一个新的模式——橘色的苹果。
三、思维中的模式识别作用模式识别在思维中起到了重要的作用。
首先,它是人类获取知识和经验的基础。
模式识别是人工智能的一个重要应用领域,其方法主要包括以下几种:
统计模式识别:基于统计原理,利用计算机对样本进行分类。
主要方法有基于概率密度函数的方法和基于距离度量的方法。
结构模式识别:通过对基本单元(如字母、汉字笔画等)进行判断,是否符合某种规则来进行分类。
这种方法通常用于识别具有明显结构特征的文字、图像等。
模糊模式识别:利用模糊集合理论对图像进行分类。
这种方法能够处理图像中的模糊性和不确定性,提高分类的准确性。
人工神经网络:模拟人脑神经元的工作原理,通过训练和学习进行模式识别。
常见的神经网络模型有卷积神经网络(CNN)、循环神经网络(RNN)等。
支持向量机(SVM):通过找到能够将不同分类的样本点最大化分隔的决策边界来进行分类。
SVM在处理高维数据和解决非线性问题时具有较好的性能。
决策树:通过树形结构对特征进行选择和分类。
决策树可以直观地表示分类的决策过程,但易出现过拟合问题。
集成学习:通过构建多个弱分类器,并将其组合以获得更强的分类性能。
常见的集成学习方法有bagging、boosting等。
在实际应用中,根据具体任务的需求和数据特点,可以选择适合的模式识别方法。
同时,也可以结合多种方法进行综合分类,以提高分类的准确性和稳定性。
模式识别模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种定义1:借助计算机,就人类对外部世界某一特定环境中的客体、过程和现象的识别功能(包括视觉、听觉、触觉、判断等)进行自动模拟的科学技术。
所属学科:测绘学(一级学科);摄影测量与遥感学(二级学科)定义2:一类与计算机技术结合使用数据分类及空间结构识别方法的统称。
所属学科:地理学(一级学科);数量地理学(二级学科)定义3:昆虫将目标作为一幅完整图像来记忆和识别。
所属学科:昆虫学(一级学科);昆虫生理与生化(二级学科)定义4:主要指膜式识别受体对病原体相关分子模式的识别。
所属学科:免疫学(一级学科);概论(二级学科);免疫学相关名词(三级学科)模式识别研究内容:模式还可分成抽象的和具体的两种形式。
前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。
我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。
模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。
前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。
应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。
这些对象与数字形式的信息相区别,称为模式信息。
模式识别所分类的类别数目由特定的识别问题决定。
有时,开始时无法得知实际的类别数,需要识别系统反复观测被识别对象以后确定。
模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。
它与人工智能、图像处理的研究有交叉关系。
例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。
又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。
模式识别研究方法:一、模式识别方法1、决策理论方法又称统计方法,是发展较早也比较成熟的一种方法。
被识别对象首先数字化,变换为适于计算机处理的数字信息。
一个模式常常要用很大的信息量来表示。
许多模式识别系统在数字化环节之后还进行预处理,用于除去混入的干扰信息并减少某些变形和失真。
随后是进行特征抽取,即从数字化后或预处理后的输入模式中抽取一组特征。
所谓特征是选定的一种度量,它对于一般的变形和失真保持不变或几乎不变,并且只含尽可能少的冗余信息。
特征抽取过程将输入模式从对象空间映射到特征空间。
这时,模式可用特征空间中的一个点或一个特征矢量表示。
这种映射不仅压缩了信息量,而且易于分类。
在决策理论方法中,特征抽取占有重要的地位,但尚无通用的理论指导,只能通过分析具体识别对象决定选取何种特征。
特征抽取后可进行分类,即从特征空间再映射到决策空间。
为此而引入鉴别函数,由特征矢量计算出相应于各类别的鉴别函数值,通过鉴别函数值的比较实行分类。
2、句法方法又称结构方法或语言学方法。
其基本思想是把一个模式描述为较简单的子模式的组合,子模式又可描述为更简单的子模式的组合,最终得到一个树形的结构描述,在底层的最简单的子模式称为模式基元。
在句法方法中选取基元的问题相当于在决策理论方法中选取特征的问题。
通常要求所选的基元能对模式提供一个紧凑的反映其结构关系的描述,又要易于用非句法方法加以抽取。
显然,基元本身不应该含有重要的结构信息。
模式以一组基元和它们的组合关系来描述,称为模式描述语句,这相当于在语言中,句子和短语用词组合,词用字符组合一样。
基元组合成模式的规则,由所谓语法来指定。
一旦基元被鉴别,识别过程可通过句法分析进行,即分析给定的模式语句是否符合指定的语法,满足某类语法的即被分入该类。
模式识别方法的选择取决于问题的性质。
如果被识别的对象极为复杂,而且包含丰富的结构信息,一般采用句法方法;被识别对象不很复杂或不含明显的结构信息,一般采用决策理论方法。
这两种方法不能截然分开,在句法方法中,基元本身就是用决策理论方法抽取的。
在应用中,将这两种方法结合起来分别施加于不同的层次,常能收到较好的效果。
模式识别的应用:二、模式识别的应用模式识别可用于文字和语音识别、遥感和医学诊断等方面。
①文字识别汉字已有数千年的历史,也是世界上使用人数最多的文字,对于中华民族灿烂文化的形成和发展有着不可磨灭的功勋。
所以在信息技术及计算机技术日益普及的今天,如何将文字方便、快速地输入到计算机中已成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我过得到普及的应用。
目前,汉字输入主要分为人工键盘输入和机器自动识别输入两种。
其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。
从识别技术的难度来说,手写体识别的难度高于印刷体识别,而在手写体识别中,脱机手写体的难度又远远超过了联机手写体识别。
到目前为止,除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。
②语音识别语音识别技术技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。
近年来,在生物识别技术领域中,声纹识别技术以其独特的方便性、经济性和准确性等优势受到世人瞩目,并日益成为人们日常生活和工作中重要且普及的安验证方式。
而且利用基因算法训练连续隐马尔柯夫模型的语音识别方法现已成为语音识别的主流技术,该方法在语音识别时识别速度较快,也有较高的识别率。
③指纹识别我们手掌及其手指、脚、脚趾内侧表面的皮肤凹凸不平产生的纹路会形成各种各样的图案。
而这些皮肤的纹路在图案、断点和交叉点上各不相同,是唯一的。
依靠这种唯一性,就可以将一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,便可以验证他的真实身份。
一般的指纹分成有以下几个大的类别:环型(loop),螺旋型(whorl),弓型(arch),这样就可以将每个人的指纹分别归类,进行检索。
指纹识别基本上可分成:预处理、特征选择和模式分类几个大的步骤。
③遥感遥感图像识别已广泛用于农作物估产、资源勘察、气象预报和军事侦察等。
④医学诊断在癌细胞检测、X射线照片分析、血液化验、染色体分析、心电图诊断和脑电图诊断等方面,模式识别已取得了成效。
三、统计模式识别统计模式识别(statistic pattern recognition)的基本原理是:有相似性的样本在模式空间中互相接近,并形成“集团”,即“物以类聚”。
其分析方法是根据模式所测得的特征向量Xi=(xi1,xi2,…,xid)T(i=1,2,…,N),将一个给定的模式归入C个类ω1,ω2,…, ωc中,然后根据模式之间的距离函数来判别分类。
其中,T表示转置;N为样本点数;d为样本特征数。
统计模式识别的主要方法有:判别函数法,近邻分类法,非线性映射法,特征分析法,主因子分析法等。
在统计模式识别中,贝叶斯决策规则从理论上解决了最优分类器的设计问题,但其实施却必须首先解决更困难的概率密度估计问题。
BP神经网络直接从观测数据(训练样本)学习,是更简便有效的方法,因而获得了广泛的应用,但它是一种启发式技术,缺乏指定工程实践的坚实理论基础。
统计推断理论研究所取得的突破性成果导致现代统计学习理论——VC理论的建立,该理论不仅在严格的数学基础上圆满地回答了人工神经网络中出现的理论问题,而且导出了一种新的学习方法——支持向量机(SVM)。
四、模式识别技术的近乎无限的发展潜力模式识别技术是人工智能的基础技术,21世纪是智能化、信息化、计算化、网络化的世纪,在这个以数字计算为特征的世纪里,作为人工智能技术基础学科的模式识别技术,必将获得巨大的发展空间。
在国际上,各大权威研究机构,各大公司都纷纷开始将模式识别技术作为公司的战略研发重点加以重视。
1、语音识别技术语音识别技术正逐步成为信息技术中人机接口(Human Computer Interface, HCI)的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。
中国互联网中心的市场预测:未来5年,中文语音技术领域将会有超过400亿人民币的市场容量,然后每年以超过30%的速度增长。
2、生物认证技术生物认证技术(Biometrics)本世纪最受关注的安全认证技术,它的发展是大势所趋。
人们愿意忘掉所有的密码、扔掉所有的磁卡,凭借自身的唯一性来标识身份与保密。
国际数据集团(IDC)预测:作为未来的必然发展方向的移动电子商务基础核心技术的生物识别技术在未来10年的时间里将达到100亿美元的市场规模。
3、数字水印技术90年代以来才在国际上开始发展起来的数字水印技术(Digital Watermarking)是最具发展潜力与优势的数字媒体版权保护技术。
IDC预测,数字水印技术在未来的5年内全球市场容量超过80亿美元。
模式识别的研究状况:模式识别从20世纪20年代发展至今,人们的一种普遍看法是不存在对所有模式识别问题都适用的单一模型和解决识别问题的单一技术,我们现在拥有的只是一个工具袋,所要做的是结合具体问题把统计的和句法的识别结合起来,把统计模式识别或句法模式识别与人工智能中的启发式搜索结合起来,把统计模式识别或句法模式识别与支持向量机的机器学习结合起来,把人工神经元网络与各种已有技术以及人工智能中的专家系统、不确定推理方法结合起来,深入掌握各种工具的效能和应有的可能性,互相取长补短,开创模式识别应用的新局面。
对于识别二维模式的能力,存在各种理论解释。
模板说认为,我们所知的每一个模式,在长时记忆中都有一个相应的模板或微缩副本。
模式识别就是与视觉刺激最合适的模板进行匹配。
特征说认为,视觉刺激由各种特征组成,模式识别是比较呈现刺激的特征和储存在长时记忆中的模式特征。
特征说解释了模式识别中的一些自下而上过程,但它不强调基于环境的信息和期待的自上而下加工。
基于结构描述的理论可能比模板说或特征说更为合适。
模式识别的未来研究趋势:中国移动推出了二维码业务,其中关键技术不是二维码的编码和解码,而是用手机摄像头采集二维码时对二维码的定位问题。