模式识别论文
- 格式:pdf
- 大小:339.03 KB
- 文档页数:12
模式识别与智能系统硕士毕业论文一、论文说明本团队专注于毕业论文写作与辅导服务,擅长案例分析、编程仿真、图表绘制、理论分析等,论文写作300起,具体价格信息联系二、论文参考题目基于INTEMOR平台构建兴隆庄煤矿智能监控系统远程电网智能监控系统基于CORBA的智能交通管理系统的研究与实现基于Web的智能决策支持系统模型方法研究与应用基于Internet温室环境远程智能控制系统研究基于WEB的选程智能学习系统—自反馈模型的建模研究智能交通系统理论的研究与实现基于智能体概念的虚拟企业管理信息系统模型多智能体分布式实时仿真实验系统开发与规划算法研究基于案例的推理在智能决策支持系统中的应用矿井掘进瓦斯爆炸实时智能预警监控系统基于因特摩技术的煤矿自燃发火、瓦斯在线智能监测系统基于本体的智能答疑系统研究焦炉压力智能控制系统的设计与实现面向WEB智能应用系统的一种知识通信语言的研究矿井安全智能监控信息技术研究智能车辆双目视觉系统的研究与设计焦炉集气管压力智能控制系统矿用架线电机车智能刹车系统研究基于射频技术的智能小区四表一卡通系统的研究NERMS中智能答疑系统的研究与实现包装印刷传动智能控制系统的研究智能交通系统在九寨沟景区管理中的应用探讨及运营评价基于Web的智能教学系统的数据库设计智能控制在纯滞后系统中的应用研究住宅小区智能化系统的设计与开发基于Agent油田开发智能软件社会模型的研究远程智能图像监控系统的研究与开发智能辅助驾驶车无陀螺惯性定位及姿态测量系统研究建筑智能环境系统原理及系统工程方法的研究嵌入式操作系统Windows CE的研究与应用一种皮带运输机故障智能诊断系统研究基于以太网现场总线通信系统的研究与实现犁架的智能CAD系统及CAE研究智能压力检测系统的压力测试仪与PC机数据处理软件的设计智能家居中红外遥控系统的设计与实现嵌入式智能会议系统终端的设计与实现CDMA移动通信系统智能天线的研究智能交通通信平台的设计与应用烟叶复烤机智能控制系统的研究基于Jini的智能家居系统集成技术研究智能光纤传感器系统设计及应用研究基于Agent的环保信息智能服务系统的研究与实现基于GIS/GPS/GPRS的智能公交系统智能教学系统中多种教学模式调度的研究与实现基于智能家居系统手持设备检测工具的研究与设计智能建筑集成管理系统的研究与实现电子政务中基于移动Agent的智能信息推送系统基于专家系统的智能压路机液压系统故障诊断技术的研究基于领域本体的跨学科智能教学系统的研究多智能体理论及其在厚度控制系统中的应用研究智能变电站二次系统可靠性及相关问题研究数据挖掘在智能教学系统中的应用研究与设计财务智能系统构建与模型实现基于物联网的智能高速公路系统研究具有智能材料嵌入的弦系统的谱分析基于多智能体的车间调度系统研究集中式家居智能控制系统的研究与实现广东省智能交通管理系统及其投融资模式初步研究NAAC算法及其在智能故障诊断系统中的应用基于物联网的智能家居系统设计与改进基于DM365的智能视频监控系统研究基于人工神经网络的智能交通系统检测与控制智能制造技术与系统研究智能决策支持系统基于Zigbee无线网络的智能家居系统设计与研究基于Android的智能医疗信息服务系统服务器端设计与实现嵌入式智能站牌控制系统研究与设计包头电力系统综合智能监控管理系统研究基于ARM和嵌入式Linux的智能家居系统研究港口企业智能调度系统研究智能车辆驱动系统研究与开发基于多智能体的分布式入侵防御系统的设计基于模糊逻辑推理故障智能诊断系统及其仿真研究智能大厦空调监控系统的研究和设计基于CAN总线的智能检测仪的研究与设计基于协同的足球机器人智能决策系统及冲突消解的研究库存算法研究与仓库智能订货系统基于ARM的智能电表系统设计与实现基于Delphi简易智能监控系统的设计与实现4GMIMO智能天线系统的研究智能用电综合服务系统设计智能建筑中电力监控系统应用研究基于Linux的智能家居系统设计与实现企业商务智能决策支持系统的构建研究基于IPMI的智能平台管理系统的实现一种足球机器人多智能体对抗系统的分层变学习率增强式学习方法平面倒立摆系统的模糊自校正仿人智能协调控制研究基于WCDMA网络的智能公交系统接口协议研究无人值守边防哨卡智能视频监控系统设计智能建筑室内环境测控CPS系统设计基于SVM的CPS智能照明系统辅助感知决策基于无线传感器网络的智能家居安防系统城市智能交通管理系统智能决策支持系统在高校教职工薪酬管理系统中的应用多智能体技术及其在生产系统协调控制中的应用基于嵌入式的智能家居系统研究基于协同认知的智能股票预测IP和ATM结合技术及在智能大厦通信系统中应用研究基于智能电网的负荷管理系统分析与评价研究基于3G的无线智能视频监控系统的设计基于ARM Cortex-A8与Android平台的智能家居系统设计智能家居系统及其关键技术研究基于ARM与ZigBee技术的智能家居系统设计基于Android系统的便携式智能家居控制终端技术研究智能电表系统的设计与研究基于物联网的智能家居安防系统设计与实现智能低压配电管理系统控制模块的研究及其实现深圳市智能交通系统运维模式及评价体系研究智能车定向天线跟踪系统的研究与开发模糊仿人智能控制在倒立摆系统中的应用研究智能家庭监控系统的设计基于Mobile Agent的智能建筑信息系统集成的研究基于电力线通信技术的智能家居系统的设计与开发基于Web和数据挖掘的智能教学系统研究商务公寓式智能大厦弱电系统的设计与实现智能导航系统研究基于DSP和CPLD的智能监测系统设计与开发基于ARM+Linux的智能家居系统设计与实现基于知识的智能家居系统的研究与设计嵌入式智能家居系统的总体设计与实现实验室智能监控系统的设计与实现基于现场总线技术的箱式变电站智能配电系统的研究基于微处理器的智能车控制系统开发与研究基于虚拟仪器的智能小区配电系统信息采集与处理基于DALI的智能照明系统设计贝叶斯网在农业智能系统中的应用研究基于智能传感器的实时系统任务调度分析智能控制理论在交通控制系统中的应用智能建筑中基于互联网络协议的系统集成研究多智能体技术在航空电子系统中的应用研究基于自适应遗传算法的短道速滑仿真系统智能体的设计与实现基于RFID的低功耗智能门禁系统的设计与研究深圳市智能交通系统运行维护及商业化运营模式研究电液位置伺服系统的智能控制智能公共交通监管与调控系统分析与实施IC卡智能系统知识产权保护问题探析智能车自主驾驶控制系统研制与试验智能检测系统的应用研究TD-SCDMA在智能交通系统中的应用研究保密设备性能测试基于BACnet的智能家居远程控制系统的设计与实现一个基于WEB的智能答疑系统的设计与实现后方仓库弹药信息智能管理系统智能建筑中视频监控系统设计与应用基于分词技术的智能答疑系统基于黑板系统的多智能体系实现方法的研究新型智能仪器系统研究及设计基于INTEMOR平台构建兴隆庄煤矿智能监控系统远程电网智能监控系统基于CORBA的智能交通管理系统的研究与实现基于Web的智能决策支持系统模型方法研究与应用基于Internet温室环境远程智能控制系统研究基于WEB的选程智能学习系统—自反馈模型的建模研究智能交通系统理论的研究与实现基于智能体概念的虚拟企业管理信息系统模型多智能体分布式实时仿真实验系统开发与规划算法研究基于案例的推理在智能决策支持系统中的应用矿井掘进瓦斯爆炸实时智能预警监控系统基于因特摩技术的煤矿自燃发火、瓦斯在线智能监测系统基于本体的智能答疑系统研究焦炉压力智能控制系统的设计与实现面向WEB智能应用系统的一种知识通信语言的研究基于Android的智能供水控制系统的设计与实现基于ARM-Linux的智能家居控制系统研究与开发移动透明计算中智能终端多操作系统启动及其性能分析优化ZigBee技术在智能家居系统中的应用研究智能车目标跟踪和遥控系统的研究新型家庭智能终端中软件系统设计与应用研究基于ARM的智能家居系统的设计与实现气动标记系统中智能软件控制系统的设计与实现基于S3C2440的智能家居系统设计天津智能交通系统发展策略研究智能公交系统乘客满意度和行为意愿分析智能家居系统及其关键技术研究整合UPnP与Jini服务的OSGi智能家居系统集成研究基于中文分词技术的智能答疑系统智能家居系统人机关系研究智能建筑系统oBIX集成技术的研究智能运输系统在物流企业中的应用研究智能网网络管理系统中业务评价系统的设计和实现基于Web和数据挖掘的智能教学系统模型的研究与设计智能控制系统的智能水平的评价算法的研究商务智能决策支持系统研究水下机器人智能决策系统可靠性研究多智能体及其在生产系统的控制和故障诊断中的应用分布式智能车辆仿真调试系统的研究智能交通系统信息平台的研究及其应用——公交智能调度管理系统的开发基于智能电表的居民用电营销系统功能设计研究衡水电网智能调度技术支持系统方案设计与实施基于嵌入式B/S架构的智能家居远程监控系统开发基于云服务的智能家居系统的研究与设计基于ACP的商业智能系统研究面向智能家居的安卓控制系统设计与实现智能家居中嵌入式系统的应用一种基于MSP430的无线家居智能控制系统的设计与研究智能交通系统中的地图路况服务研究与实现商务智能决策支持系统框架的研究与设计医院智能空间网络搭建及其定位系统设计与应用智能视频监控系统的分析与设计基于ZigBee无线通信技术的智能家居系统基于语义的虚拟企业智能决策系统研究智能建筑突发事件管理系统的数据仓库研究与实现智能建筑系统的控制论描述及其优化城市综合智能公交动态管理系统研究面向智能仪器的SOPC嵌入式系统设计与实现智能建筑水环境监控系统的研究基于知识的传感器概念设计智能启发系统的研究结合专家系统与工作流技术在智能家居中的研究与应用基于Niagara技术的智能建筑系统集成设计与开发基于子系统平等模式的智能建筑系统集成的研究一个双主型的计算机基础智能教学系统的设计与实现交流电机智能测试与控制系统研究基于无线通信技术的智能变电站分布测试系统的研制智能车运动状态监测系统的研究智能电网云存储系统数据私密性问题研究嵌入式智能小车运动控制系统的研制一体化电网智能系统在三乡区域的研究及其应用基于多缩微车的智能交通系统仿真平台研究智能照明控制系统研究智能家居中网络系统关键技术的研究基于GIS的智能公交管理系统的应用研究基于ZigBee的无线传感器网络在智能家居系统中的应用物联网环境下智能交通系统模型设计及架构研究基于GPRS的嵌入式家庭智能系统设计基于Agent的智能教学系统的研究与实现基于UCOS_II的智能窗系统的设计智能车辆安检系统中的图像压缩与传输技术研究基于Niagara平台的智能建筑系统集成技术研究基于GIS的智能小区系统的设计与实现智能变电站数字化保护与同步系统方案设计基于云平台的智能家居系统设计与实现智能家居体验中心系统的硬件设计与实现一种智能家居照明系统的控制方法及装置研究智能变电站二次系统故障诊断方法研究基于Pentaho的电话中心商务智能系统设计与实现基于web的智能答疑系统的研究与设计智能移动机器人控制系统设计研究低成本智能楼宇对讲系统的设计与实现智能视频监控系统的研究与开发高职实训资源智能调度管理系统的研究基于PSIA的智能家居系统设计智能家居系统中的防火安防研究智能建筑太阳能应用系统的研究智能小区物业管理系统的研究与开发我国智能公交系统下的大站管理模式研究环绕智能环境下手机家居监控系统设计与实现面向对象的建筑器管理材决策系统多Agent技术在智能建筑系统集成中的研究与应用基于DALI的智能照明控制系统支持智能ERP系统的MAS结构若干问题研究基于多智能体技术的智能决策支持系统的研究基于DFRuino硬件平台的智能家居系统设计与开发面向智能家居的安防系统的设计与实现智能电网的发展效益测评与系统规划研究智能铁路货运服务系统研究基于DALI协议的LED智能照明控制系统基于ZigBee的智能家居系统设计基于视觉的多智能体定位系统与定位算法设计基于ZigBee技术的智能家居系统研究智能交通系统中运动目标检测技术的研究与实现山东省高速公路智能交通信息管理系统开发与应用家用整体智能厨房控制系统的设计与实现基于智能Agent决策的CRM系统研究与实现智能家居系统中嵌入式图形用户界面系统(GUI)设计连云港市智能交通系统的研究领域智能答疑系统基于价值管理的商务智能系统需求分析基于黑板的多Agent智能决策支持系统的研究智能网络磁盘(IND)存储系统调度算法研究无线传感器网络在智能公交系统中的应用小区智能系统的研究基于B/S的形成性考核智能管理系统智能照明系统的研究与开发基于信息系统的智能小区研究面向服务的VoIP网络系统的智能增强设计与实现基于多智能体机器人系统的实时通迅研究基于多智能体的机器人系统通信技术的研究基于改进ZigBee路由协议的智能家居系统研究与设计基于ZigBee技术的智能家居控制系统的研究基于多智能体理论的分布式智能化三相逆变器并联系统的研究基于智能电表的用电管理系统的设计与实现多功能智能家居系统的设计与实现电力智能计量挂锁系统的研制面向状态检修的变电站智能巡检系统研究北斗/GPS双模智能车载终端系统研究与实现基于HLA的智能家居仿真系统的研究与构建无人驾驶智能车制动控制系统研究热带地区小户型干式沼气发酵装置及其智能监控系统研究高速公路智能交通监控系统的研究与开发基于Pentaho的水泥企业商业智能信息系统研究与开发基于ZigBee的智能家居系统设计基于DALI协议的智能照明系统设计基于MapX的南昌市智能交通信息查询系统的设计与实现风光互补智能控制系统的设计与实现智能小区管理系统的设计与开发智能建筑信息管理系统的研究与设计基于Web的高校学报社智能管理信息系统研究智能家居系统设计与防雷保护研究基于ZigBee技术的智能家居无线网络系统智能施肥灌溉决策系统的设计与实现智能手机系统软件设计与研究商业智能系统研究与设计家庭智能网络终端系统的研制智能天线对CDMA/SDMA系统性能增强的研究基于VxWorks的智能机器人软件系统支撑平台的研究与实现嵌入式智能仪器基本系统设计与实现往复泵泵阀故障的智能诊断技术与实现粮食收购智能定等系统的研究基于网络的智能监控系统的分析与设计电液位置伺服系统智能控制及仿真技术研究基于ZigBee技术的智能家居环境数据采集系统的设计与实现基于物联网技术的智能家电管理系统的界面设计研究基于Android平台的智能家居系统设计与实现小卫星地面模拟智能控制及观测验证系统的设计与实现基于Android系统的智能家居安防的研究与设计基于物联网的智能家居控制系统设计智能公交系统背景下的公交调度优化研究智能建筑系统分析与设计基于Linux的智能家居控制终端系统的设计与实现面向智能电网先进报警管理系统的研究智能网络存储系统中存储入侵检测系统(SIDS)的研究基于ARM技术的汽车智能管理系统的研究与设计基于无线通信网络的多智能小车协作控制系统研究基于无线传感网的智能家居软系统设计新近智能导引系统的特点、实效与研发机制高端小区的智能家居系统的研究与实现基于上下文感知计算的智能家居系统研究基于切换系统理论的伺服系统智能PID控制器设计嵌入式智能家居控制系统的研究基于移动通信增值业务平台的智能交通系统研究复式住宅中智能家居系统的研究与实现基于带时变修正权函数FUZZY-PID控制器的智能车系统研究基于以太网和FPGA的智能小区管理系统智能脉冲式高压电网防护系统的研究智能群体决策支持系统的多库协同管理研究与实现基于Web和数据挖掘的智能教学系统的研究与开发基于网络的智能家居系统的研究与应用基于嵌入式INTERNET技术的智能设备控制系统的研究基于面向对象方法的智能CAD系统的研究与实现机械设备故障智能诊断系统研究长春一汽厂区门禁智能管理系统智能家居生态与安防系统设计与实现基于多功能家庭网关的智能家居系统研究与实现基于GIS的智能喷灌控制系统上位机的设计与实现智能电网建设时期用电信息采集系统的研究智能交通系统中的无线传感器网络和新的传输方式基于物联网的智能交通系统网关研究与实现基于OSGi的语义智能监控系统设计与实现基于IMS智能终端的智能家居系统研究与实现基于MSP430的智能家居系统设计面向物联网的智能家居安防系统研究基于Android平台的智能家居控制系统设计智能监控系统的运动目标检测跟踪算法研究与实现智慧门系统的智能监控设计与开发基于数字可寻址照明接口协议的智能照明系统设计研究基于zigbee技术和android系统的智能家居系统设计智能家居控制系统的设计与开发数控电火花线切割机床工作液智能控制系统的设计研究基于Web的商业智能决策支持系统研究智能小区管理控制系统的设计研究便携式智能导游终端系统的人性化设计与开发三维重构技术在智能监控系统中的应用研究智能电话预付费系统及其关键算法的设计智能控制技术在中央空调监控系统中的应用研究兰州市智能交通管理系统设计及其通信系统应用研究基于虚拟仪器技术的发酵智能测控系统集成与应用研究智能公用电话系统信令自动测试的研究面向城市的智能交通管理系统网格数据库的改进及在智能交通系统中的应用开放性智能教学系统研究与实现小区域智能交通模拟系统演示平台银行商业智能系统研究与实现智能天线对SCDMA无线接入系统性能的影响基于网络的智能家居管理系统需求侧智能能量管理系统的设计、实现与应用基于监控的智能家居系统设计与实现基于ZigBee的智能雷通信系统的设计与实现基于CAN/以太网网关的智能楼宇系统的研究与设计基于S5PV210处理器的智能家居控制系统软件设计基于Zigbee技术的智能家居系统研究与设计智能家居系统中智能网关的设计与实现智能挡车器控制系统的研究与设计面向功能机用户的安卓智能机用户引导系统研究与设计智能交通中智能图像质量检测系统的硬件研究与实现基于CDMA 1X网络的智能公交系统设计与实现基于Socket的智能自动化广告硬盘管理系统开发智能公交系统网络解决方案的研究智能建筑楼宇自控系统集成技术研究便携式智能终端系统的设计与实现商业智能技术的研究和在人力资源管理系统中的应用基于ZigBee技术的家居智能控制系统设计试题库系统智能组卷与试卷分析的研究智能E维护决策支持系统及其关键技术研究电力营销智能培训仿真系统的研究与开发智能家居系统的研究车辆导航的智能查询知识库系统研究智能决策支持系统及其在石油储运中的应用振动压路机智能故障诊断系统的研究与开发CDMA移动通信系统DOA估计算法的研究基于NC的农业智能系统集成框架的研究与实现智能家居信息采集系统的研究与实现智能财务决策支持系统的应用研究基于IPMI的智能平台管理系统设计基于ARM与Zigbee技术的嵌入式智能家居系统设计城市隧道通用智能监控系统研究智能家居远程监控系统的研究与设计基于ARM和ZigBee技术智能家居系统的设计与实现消防车智能监控系统研究与开发智能MCC系统工程设计方法在造纸中的应用基于物联网技术的智能小区安防系统的设计与实现基于ZigBee的智能照明系统的设计与实现基于ZigBee无线传感网络的智能家居系统设计与实现基于现场总线的塔机嵌入式智能监控系统研究智能车电机控制和图像采集系统设计与研究基于ARM9的智能家居控制系统的研究与设计城市照明智能监控管理系统设计与实现面向智能电网的高级计量算法研究及系统设计包头会展中心项目中的智能配电系统设计基于ARM和ZIGBEE的物联网智能家居系统的设计基于多Agent的智能教学系统的设计与研究智能交通中的车辆监控系统钻削类主轴箱传动系统智能设计的研究。
《模式识别》学习心得模式识别(Pattern Recognition)技术也许是最具有挑战性的一门技术了,模式识别有时又被称为分类技术,因为模式识别说到底就是对数据进行分类。
说到识别,最为常用的便是模仿人的视觉的图像识别(当然还有语音识别),也许你会想当然地认为那还不简单,觉得我们用我们的眼睛可以轻而易举地识别出各种事物,但是当你想用计算机中的程序来实现它时,于是你便会觉得很沮丧,甚至于有无从下手的感觉,至此你再也不会觉得电脑有多聪明,你会觉得电脑是多么的低能。
是的,现在的电脑智能,即人工智能还远不如蟑螂的智能,这其中最为根本的原因是模式识别技术还是处于较为低层次的发展阶段,很多的识别技术还无法突破,甚至有人还断言,再过30年也不会有本质的飞跃。
当然,世事总是让人难以预料,我们也用不着这么地悲观,科学技术总是向前发展的,没有人可以阻档得了的。
在这里,我把我对模式识别技术的学习和研究心得拿出来与大家分享一下。
模式识别具有较长的历史,在20世纪60年代以前,模式识别主要是限于统计学领域中的理论研究,还无法有较强的数学理论支持,20世纪80年代神经网络等识别技术得到了突破,计算机硬件技术更是有了长足的发展,模式识别技术便得到了较为广泛的应用,光学字符识别(OCR)是模式识别技术最早得到成功应用的技术,之后的应用还有如DNA序列分析、化学气味识别、图像理解力、人脸检测、表情识别、手势识别、语音识别、图像信息检索、数据挖掘等。
模式识别是一门与数学结合非常紧密的科学,所应用到的数学知识非常多,最基本的便是概率论和数理统计了,模式识别技术到处都充满了概率和统计的思想,我们经常所说的识别率,其实就是概率的表达:在大数据量(严格地说应当是数据量无穷大)测试中识别成功的概率,还有常用的贝叶斯决策分类器便是运用了概率公式。
模式识别还用到了线性代数,因为运用线性代数可以较为方便表达具有多特征的事物,我们一般会用向量来表达一个事物的特征,对于向量的计算是一定会用到线性代数的知识的。
模式识别人工智能论文
本文研究的是基于模式识别的人工智能,旨在分析模式识别技术如何帮助实现人工智能。
它介绍了模式识别的基本概念,以及它在人工智能中的作用。
在模式识别技术的基础上,它给出了一些实际应用的示例,例如文本分析,图像识别和语音识别。
此外,它还探讨了模式识别在人工智能中的潜在挑战,并给出了解决方法。
首先,本文简单介绍了模式识别的基本概念。
模式识别是机器学习和人工智能的重要分支,它旨在分析数据,对输入数据进行有意义的分析,以确定它们的关系和结构。
它是人工智能中非常重要的一个技术,可以帮助机器学会从数据中提取特征,并建立模型来预测可能发生的结果。
其次,本文介绍了模式识别在人工智能中的作用。
它可以用来开发机器学习和计算机视觉系统,这些系统可以用于自动识别和分析文本,图像和视频等信息。
例如,使用模式识别技术,可以开发文本分析系统,该系统可以自动分析文本,从中提取有用的信息,从而节省人力。
此外,它还可以用来开发图像识别系统,可以快速识别不同类型的图片,比如动物、植物、自然场景等,并返回分析结果。
时间序列分析中模式识别方法的应用摘要:时间序列通常是按时间顺序排列的一系列被观测数据,其观测值按固定的时间间隔采样。
时间序列分析(Time Series Analysis)是一种动态数据处理的统计方法,就是充分利用现有的方法对时间序列进行处理,挖掘出对解决和研究问题有用的信息量。
经典时间序列分析在建模、预测等方面已经有了相当多的成果,但是由于实际应用中时间序列具有不规则、混沌等非线性特征,使得预测系统未来的全部行为几乎不可能,对系统行为的准确预测效果也难以令人满意,很难对系统建立理想的随机模型。
神经网络、遗传算法和小波变换等模式识别技术使得人们能够对非平稳时间序列进行有效的分析处理,可以对一些非线性系统的行为作出预测,这在一定程度上弥补了随机时序分析技术的不足。
【1】本文主要是对时间序列分析几种常见方法的描述和分析,并重点介绍神经网络、遗传算法和小波变换等模式识别方法在时间序列分析中的典型应用。
关键字:时间序列分析模式识别应用1 概述1.1 本文主要研究目的和意义时间序列分析是概率论与数理统计学科的一个分支,它是以概率统计学作为理论基础来分析随机数据序列(或称动态数据序列),并对其建立数学模型,即对模型定阶、进行参数估计,以及进一步应用于预测、自适应控制、最佳滤波等诸多方面。
由于一元时间序列分析与预测在现代信号处理、经济、农业等领域占有重要的地位,因此,有关的新算法、新理论和新的研究方法层出不穷。
目前,结合各种人工智能方法的时序分析模型的研究也在不断的深入。
时间序列分析已是一个发展得相当成熟的学科,已有一整套分析理论和分析工具。
传统的时间序列分析技术着重研究具有随机性的动态数据,从中获取所蕴含的关于生成时间序列的系统演化规律。
研究方法着重于全局模型的构造,主要应用于对系统行为的预测与控制。
时间序列分析主要用于以下几个方面:a 系统描述:根据观测得到的时间序列数据,用曲线拟合的方法对系统进行客观的描述;b 系统分析:当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理;c 未来预测:一般用数学模型拟合时间序列,预测该时间序列未来值;d 决策和控制:根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到偏离目标时便可进行控制。
浅谈人工智能与模式识别的应用一、引言随着计算机应用范围不断的拓宽,我们对于计算机具有更加有效的感知“能力”,诸如对声音、文字、图像、温度以及震动等外界信息,这样就可以依靠计算机来对人类的生存环境进行数字化改造.但是从一般的意义上来讲,当前的计算机都无法直接感知这些信息,而只能通过人在键盘、鼠标等外设上的操作才能感知外部信息。
虽然摄像仪、图文扫描仪和话筒等相关设备已经部分的解决了非电信号的转换问题,但是仍然存在着识别技术不高,不能确保计算机真正的感知所采录的究竟是什么信息。
这直接使得计算机对外部世界的感知能力低下,成为计算机应用发展的瓶颈。
这时,能够提高计算机外部感知能力的学科—-模式识别应运而生,并得到了快速的发展,同时也成为了未来电子信息产业发展的必然趋势。
人工智能中所提到的模式识别是指采用计算机来代替人类或者是帮助人类来感知外部信息,可以说是一种对人类感知能力的一种仿真模拟。
近年来电子产品中也加入了诸多此类的功能:如手机中的指纹识别解锁功能;眼球识别解锁技术;手势拍照功能亦或是机场先进的人耳识别技术等等.这些功能看起来纷繁复杂,但如果需要一个概括的话,可以说这都是模式识别技术给现代生活带来的福分.它探讨的是计算机模式识别系统的建立,通过计算机系统来模拟人类感官对外界信息的识别和感知,从而将非电信号转化为计算机可以识别的电信号.二、人工智能和模式识别(一)人工智能。
人工智能(Artificial Intelligence),是相对与人的自然智能而言的,它是指采用人工的方法及技术,对人工智能进行模仿、延伸及扩展,进而实现“机器思维"式的人工智能.简而言之,人工智能是一门研究具有智能行为的计算模型,其最终的目的在于建立一个具有感知、推理、学习和联想,甚至是决策能力的计算机系统,快速的解决一些需要专业人才能解决的问题。
从本质上来讲,人工智能是一种对人类思维及信息处理过程的模拟和仿真。
(二)模式识别。
人工智能专题报告题目模式识别及人工神经网络概述姓名专业学号学院电脑科学与技术学院内容摘要:模式识别是一项极具研究价值的课题,随着神经网络和模糊逻辑技术的发展,人们对这一问题的研究又采用了许多新的方法和手段,也使得这一古老的课题焕发出新的生命力.目前国际上有相当多的学者在研究这一课题,它包括了模式识别领域中所有典型的问题:数据的采集、处理及选择、输入样本表达的选择、模式识别分类器的选择以及用样本集对识别器的有指导的训练。
人工神经网络为数字识别提供了新的手段。
正是神经网络所具有的这种自组织自学习能力、推广能力、非线性和运算高度并行的能力使得模式识别成为目前神经网络最为成功的应用领域。
关键词:模式识别,神经网络,人工智能,原理,应用Abstract:Pattern recognition is an extremely valuable project research, with neural network and fuzzy logic technology development, people on this subject, and adopted many new methods and means, also make the ancient subject coruscate gives new vitality. Current international has quite a number of scholars in the study of this topic, and it includes pattern recognition field of typical problems: the data acquisition, processing and selection, input data express choice, the choice of mode identification classifier and using samples of the reader has guidance training. Artificial neural network for digital recognition to provide a new way. It is neural network which has this kind of self-organization self-learning capability, generalization, nonlinear and computing highly parallel ability makes the pattern recognition become the neural network was the most successful application fields.引言具体的模式识别是多种多样的,如果从识别的基本方法上划分,传统的模式识别大体分为统计模式识别和句法模式识别,在识别系统中引入神经网络是一种近年来发展起来的新的模式识别方法。
模式识别人工智能论文
模式识别是计算机视觉(CV)领域中重要的研究内容,也是人工智能(AI)领域中关键技术之一、模式识别通过分析不同类型的数据,识别出
其中的模式,以便对输入的特征或材料进行分类和分析。
它被用于更广泛
的计算机视觉应用,如图像分割,图像检索,图像检测,图像建模,图像
深度学习,机器视觉,以及计算机自动控制等应用。
目前,深度学习技术在模式识别领域取得了重大进展。
深度学习模型
具有有效的表示学习能力,可以从大量复杂数据中学习特征,从而更加准
确地预测和分析出数据中的模式。
例如,深度学习模型可以用于图像识别,通过训练模型来学习图像中各个对象的特征,从而可以准确地识别和分类
图像中的对象。
另外,语音识别也可以借助深度学习模型,根据不同语音
的特征,识别出不同的语音。
此外,深度学习模型可以用于识别和分析文本,可以分析文本中的主题,情感,语义等信息。
随着计算机视觉和人工智能的快速发展,模式识别技术也在不断地演
进和创新,提高了视觉计算和人工智能的性能。
基于2DPCA的人脸识别算法研究摘要人脸识别技术是对图像和视频中的人脸进行检测和定位的一门模式识别技术,包含位置、大小、个数和形态等人脸图像的所有信息。
由于近年来计算机技术的飞速发展,为人脸识别技术的广泛应用提供了可能,所以图像处理技术被广泛应用了各种领域。
该技术具有广阔的前景,如今已有大量的研究人员专注于人脸识别技术的开发。
本文的主要工作内容如下:1)介绍了人脸识别技术的基础知识,包括该技术的应用、背景、研究方向以及目前研究该技术的困难,并对人脸识别系统的运行过程以及运行平台作了简单的介绍。
2)预处理工作是在原始0RL人脸库上进行的。
在图像的预处理阶段,经过了图象的颜色处理,图像的几何归一化,图像的均衡化和图象的灰度归一化四个过程。
所有人脸图像通过上述处理后,就可以在一定程度上减小光照、背景等一些外在因素的不利影响。
3)介绍了目前主流的一些人脸检测算法,本文采用并详细叙述了Adaboost人脸检测算法。
Adaboost算法首先需要创建人脸图像的训练样本,再通过对样本的训练,得到的级联分类器就可以对人脸进行检测。
4)本文介绍了基于PCA算法的人脸特征点提取,并在PCA算法的基础上应用了改进型的2DPCA算法,对两者的性能进行了对比,得出后者的准确度和实时性均大于前者,最后将Adaboost人脸检测算法和2DPCA算法结合,不仅能大幅度降低识别时间,而且还相互补充,有效的提高了识别率。
关键词:人脸识别 2DPCA 特征提取人脸检测2DPCA Face Recognition Algorithm Basedon The ResearchAbstract:Face recognition is a technology to detect and locate human face in an image or video streams,Including location, size, shape, number and other information of human face in an image or video streams.Due to the rapid development of computer operation speed makes the image processing technology has been widely applied in many fields in recent years. This paper's work has the following several aspects:1)Explained the background, research scope and method of face recognition,and introduced the theoretical method of face recognition field in general.2)The pretreatments work is based on the original ORL face database. In the image preprocessing stage, there are the color of the image processing, image geometric normalization, image equalization and image gray scale normalization four parts. After united processing, the face image is standard, which can eliminate the adverse effects of some external factors.3)All kinds of face detection algorithm is introduced, and detailed describing the Adaboost algorithm for face detection. Through the Adaboost algorithm to create a training sample,then Training the samples of face image,and obtaining the cascade classifier to detect human face.4)This paper introduces the facial feature points extraction based on PCA ,and 2DPCA is used on the basis of the PCA as a improved algorithm.Performance is compared between the two, it is concluds that the real time and accuracy of the latter is greater than the former.Finally the Adaboost face detection algorithm and 2DPCA are combined, which not only can greatly reduce the recognition time, but also complement each other, effectively improve the recognition rate.Key words:Face recognition 2DPCA Feature extraction Face detection目录第1章前言 (1)1.1 人脸识别的应用和研究背景 (1)1.2 人脸识别技术的研究方向 (2)1.3 研究的现状与存在的困难 (3)1.4 本文大概安排 (4)第2章人脸识别系统及软件平台的配置 (4)2.1 人脸识别系统概况 (4)2.1.1 获取人脸图像信息 (5)2.1.2 检测定位 (5)2.1.3 图像的预处理 (5)2.1.4 特征提取 (6)2.1.5 图像的匹配与识别 (6)2.2 OpenCV (6)2.2.1 OpenCV简介 (6)2.2.2 OpenCV的系统配置 (7)2.3 Matlab与图像处理 (8)第3章图像的检测定位 (8)3.1 引言 (8)3.2 人脸检测的方法 (8)3.3 Adaboost算法 (9)3.3.1 Haar特征 (10)3.3.2 积分图 (10)3.3.4 级联分类器 (11)第4章图像的预处理 (13)4.1 引言 (13)4.2 人脸图像库 (13)4.3 人脸预处理算法 (14)4.3.1 颜色处理 (14)4.3.2几何归一化 (15)4.3.3直方图均衡化 (16)4.3.4灰度归一化 (18)4.4 本章小结 (19)第5章图像的特征提取与识别 (19)5.1 引言 (19)5.2 图像特征提取方法 (20)5.2.1基于几何特征的方法 (20)5.2.2基于统计的方法 (20)5.2.3弹性图匹配(elastic graph matching) (21)5.2.4神经网络方法 (21)5.2.5支持向量机(SVM)方法 (22)5.3 距离分类器的选择 (22)5.4 PCA算法的人脸识别 (24)5.5 二维主成分分析(2DPCA) (25)5.5.1 2DPCA人脸识别算法 (25)5.5.2 特征提取 (27)5.5.3 分类方法 (27)5.5.4 基于2DPCA的图像重构 (28)5.6 实验分析 (28)第6章总结与展望 (33)6.1 本文总结 (33)6.2 未来工作展望 (33)致谢 (34)参考文献: (35)第1章前言1.1 人脸识别的应用和研究背景随着社会科学技术的发展进步,特别是最近几年计算机的软硬件技术高速发展,以及人们越来越将视野集中到快速高效的智能身份识别,使生物识别技术在科学研究中取得了重大的进步和发展。
毕业设计基于模式识别的水果智能分类系统基于模式识别的水果智能分类系统摘要本论文综合运用了数字图像处理,模式识别的理论来构建起一个简单的水果智能分类系统。
实现了在相同条件下拍摄的水果图片的特征提取和种类识别,在此基础上设计出了基于人工神经网络的水果智能分类器,由计算机自动调整神经网络中各个权值,达到水果种类识别的自动化。
数字图像处理对源位图进行了加工,是特征提取的基础。
数字图像处理的理论涉及到彩色图像的灰度化、中值滤波、二值化、轮廓提取、种子填充、轮廓跟踪等。
其中,二值化采用了基本自适应门限的方法。
模式识别包括了特征提取和分类器的设计,是种类识别的关键。
特征提取主要利用了水果的几何特征,反映了水果的大小和形状。
分类器的设计主要采用了人工神经网络的方式来实现,具体说来是利用了神经网络中反向传播算法来进行网络训练,并利用训练结果完成了水果种类的智能识别。
关键词:特征提取人工神经网络二值化基本自适应门限反向传播算法A Intellective System for Fruit ClassificationBased on Pattern RecognitionAbstractIn this paper, we apply the theory of digital image processing and pattern recognition to construct a simply and intellective system for fruit classification based on pattern recognition. We have already fulfilled characteristic withdrew and type recognition for the pictures of fruit which are photographed under the same condition .We have also designed a categorize machine based on artificial neuro-network , which can adjust the weights of neuro-network automatically by computer in order to recognize the type of the fruit.Digital image processing deals with the original bitmap ,which is the basis of characteristic withdrew .The theory of digital image processing refers to the gradation of color image ,median filter ,image binary, outline withdrew ,the seed fills ,outline track and so on. Among them, image binary makes use of the basic auto-adapted threshold method.Pattern recognition involves characteristic withdrew and the design of categorize machine, which are the keys of type recognition. The characteristic withdrew has mainly used fruit's geometry characteristics ,which reflect fruit’s size and shape .The categorize machine is designed by means of artificial neuro-network, which uses the algorithm of Back-Propogation in detail and completes the fruit type intelligent recognition by using the training results. Keywords:characteristic withdrew, artificial neuro-network, image binary, basic auto-adapted threshold, the algorithm of Back-Propogation.目录摘要 (I)Abstract (III)第1章绪论 (6)模式识别的发展情况 (6)模式识别和模式的概念 (6)模式识别的应用 (7)水果智能分类系统的研究情况 (7)国内研究现状 (7)国外研究现状 (8)第2章图像采集 (9)图像采集的几种方法 (9)本课题所采用的图像采集方法 (9)第3章图像预处理 (11)数字图像处理的基本内容 (11)常用的几种图像文件 (11)与设备无关位图 (12)位图的显示 (14)彩色图像的颜色空间转换 (15)彩色图像的灰度化处理 (17)将伪彩色图像转化为灰度图 (17)将24位真彩位图转化为灰度图 (17)中值滤波 (18)图像的二值化处理 (18)基本全局门限 (19)基本自适应门限 (20)第4章图像分割与特征提取 (21)消除小杂质区域面积 (21)二值图像的区域标记 (21)二值图像的小区域消除 (22)消除大杂质区域 (22)轮廓提取 (23)种子填充 (24)消除杂质区域 (25)特征提取简介 (25)本系统的特征提取 (26)特征形成 (26)特征获取 (26)第5章分类器的设计 (28)人工神经网络基础 (28)人工神经元 (28)前馈神经网络 (29)反向传播算法的应用(BP法) (29)数据归一化 (29)BP算法 (30)神经网络设计思路 (32)结论 (34)致谢 (36)参考文献 (35)附录 (32)第1章绪论1.1模式识别的发展情况模式识别[1]诞生于20世纪20年代,随着40年代计算机的出现,50年代人工智能的兴起,模式识别在60年代初迅速发展成一门学科。
——一全里堡璺苎查兰兰些查垦主茎丝苎6神经网络高维空闯复杂几何形体覆盖识别方法及其应用实例在实际的仿生模式识别中为了判别是否属于集合P。
,必须用软件或硬件为手段,在特征空问RⅡ中构筑一个能覆盖集合P。
的n维空间几何形体。
近似于覆盖集合P。
的n维空间几何形体是以不同维数的“流形”(集合A)中,无穷多的点作球心,以常数k作半径的无穷多个n维超球体的并,即集合A与n维超球体的拓扑乘积。
根据维数理论f”,要把n维空间分成两部分,其界面必须是一个n-1维的超平面或超曲面。
而人工神经网络中一个神经元正是在11维空间中作一个n-1维的超平面或超曲面,把Rn分成两个部分。
一个神经元,也可以是多种多样的复杂的封闭超曲面睥】。
冈而,人工神经网络是实现仿生模式识别的十分合适的手段。
为了方便发展神经网络仿生模式识别,我们在前一篇论文中一】引入了神经网络高维空间几何分析方法,用来作为发展仿生模式识别的一种实用性工具,该文中对n维空间的点、直线、平面、超平面、圆、球面、超球面间的关系作了叙述,但未对非球超曲面进行讨论。
以下,将介绍和讨论一个应用非球超曲面的仿生模式识别的实例。
仿生模式识别应用实例的要求是在海面上或地平面上对不同方向观察的目标(如舰艇、坦克、汽车、牛、马、羊等)的认识。
样本的采集是从不同方向观察所采集到的bmp文件,进行前处理(连续映射)后压缩成256维特征空间样本点。
由于观察方向都是水平的,可咀说方向的改变只有一个变量,因而,特征空问中样本点的分布应近似于呈一维流形分布。
加以其他方向存在的微弱变动,可以考虑某类对象在特征空间中的覆盖形状应是个与圆环同胚的一维流形与256维超球的拓扑乘积。
用语言描述也就是在256维特征空间中,离开一条头尾相接的空问曲线的最小距离小于某定值k的所有点的集合P。
,而该空间曲线包含所有采集的样本点集合S,即S={Xx=S。
(i=1,2….采集样本总数)}图3Pa=(xfp()【,y)<kY∈A,X∈舯}其中A={x{x2Xi,i_(I,2,…,n)’11CN,P(xm,x叶1)<£,p(X1x。
模式识别课题:基于支持向量机人工神经网络的水质预测研究专业:电子信息工程摘要针对江水浊度序列宽频、非线性、非平稳的特点,将经验模态分解(EMD)和支持向量机(SVM)回归方法引入浊度预测领域,建立了基于EMD2SVM的浊度预测模型.通过EMD分解,将原始非平稳的浊度序列分解为若干固有模态分量(IMF),根据各IMF序列的特点,选择不同的参数对各IMF序列进行预测,最后合成原始序列的预测值.将该方法应用于实际浊度预测,并与径向基神经网络(RBF)预测及单独支持向量机回归预测结果进行比较,仿真结果表明该方法预测精度有明显提高.水质评价实际上是一个监测数据处理与状态估计、识别的过程,提出一种基于支持向量机的方法应用于水质评价,该方法依据决策二叉树多类分类的思想,构建了基于支持向量机的水环境质量状况识别与评价模型。
以长江口的实际水质监测数据为例进行了实验分析,并与单因子方法及单个BP神经网络方法进行了比较分析。
实验结果表明,运用该模型对长江口的实际水质监测数据进行的综合水质评价效果较好,且具有较高的实用价值。
关键词:浊度;预测;经验模态分解;支持向量;BP神经网络一.概述江水浊度受地表径流、温度以及人类活动等的影响,波动明显,在不同的月份有着很大的变化,表现出非平稳、非线性的特点.对其进行分析和预测,对于河流生态评价、航运安全以及以江河水为原水的饮用水生产具有重要的指导意义.国内外在浊度序列分析方面的研究文献较少,通常都是综合考虑各种水质参数而对浊度进行预测,采用较多的是人工神经网络等非线性模型方法[1,2].这种模型结构复杂,要求原始数据丰富,在实际操作中实现较为困难.此外,对于江水浊度这一具有宽带频谱的小样本混沌时间序列,采用单一的预测方法,将会把原始浊度序列中的各种不同特征信息同质化,势必影响其预测精度.采用经验模态分解(Empirical Mode Decomposition,EMD)将浊度序列分解后分别预测,再进行合成将可能提高其预测精度.不同于小波变换,在对信号进行经验模态分解时不需要先验基底,每一个固有模态函数(In2trinsic Mode Function,IMF)包含的频率成分不仅与采样频率有关,并且还随着信号本身的变化而变化,具有自适应性,能够把局部时间内含有的多个模态的非线性、非平稳信号分解成若干个彼此间影响甚微的基本模态分量,这些分量具有不同的尺度,从而简化系统间特征信息的干涉或耦合[3].支持向量机(Support Vector Ma2chines,SVM)是建立在统计学习理论上的一种机器学习方法,是目前针对小样本统计估计和预测学习的较好方法[4],对统计学习理论的发展起到巨大推动作用并得到广泛应用[5~8].SVM有良好的泛化能力,并解决了模型选择与欠学习、过学习问题及非线性问题,避免了局部最优解,克服了“维数灾难”,且人为设定参数少,便于使用,已成功应用于许多分类、识别和回归问题[5,6,8].根据江水浊度序列的特点,结合EMD和SVM两种方法的不同功能,本文提出了基于EMD2SVM模型的预测方法,用于江水浊度的预测.二.基本原理1.1经验模态分解(EMD)假设任一信号都是由若干固有模态函数IMF组成的,任何时候,一个信号都可以包含多个固有模态信号.固有模态信号是满足以下两个条件的信号:(1)整个数据中,零点数与极点数相等或至多相差1(2)信号上任意一点,由局部极大值点确定的包络线和由局部极小值点确定的包络线的均值均为0,即信号关于时间轴局部对称.对任一信号s(t),首先确定出s(t)上的所有极值点,然后将所有极大值点和所有极小值点分别用一条曲线连接起来,使两条曲线间包含所有的信号数据.将这两条曲线分别作为s(t)的上、下包络线.若上、下包络线的平均值记作m, s(t)与m的差记作h,则:s(t)-m=h(1)将h视为新的s(t),重复以上操作,直到当h满足一定的条件(如h变化足够小)时,记c1=h(2)将c1视为一个IMF,再作s(t)-c1 =r(3)将r视为新的s(t),重复以上过程,依次得第二个IMF c2,第三个IMF c3,⋯.当cn(n∈N)或r满足给定的终止条件(如分解出的IMF或残余函数r足够小或r成为单调函数)时,筛选过程终止,得分解式:s(t)=Σci+r(4)其中,r称为残余函数,代表信号的平均趋势.1.2支持向量机(SVM)对于给定的非线性样本数据{(xi,yi)|i=1,2,⋯,k},(其中xi∈Rn为样本输入,yi∈Rn为样本输出),利用非线性映射φ(·)将训练数据集非线性映射到一个高维特征空间(Hilbert空间),将在输入空间中的非线性函数估计问题转化为高维特征空间中的线性函数估计问题.2基于EMD2SVM的浊度预测模型通过支持向量机学习一个时间序列模型的最简单方法就是将时间序列的延迟样本作为支持向量机的输入样本.时间序列越复杂,则需要的过去信息就越多.经验模式分解不仅使原始信号中包含的信息通过各基本模态分量得以充分体现,而且还简化了系统间特征信息的干涉或耦合.对各基本模态分量分别进行支持向量机学习时,不仅所需要的过去信息明显减少,而且网络训练的迭代次数明显减少,大大简化了学习任务.(1)原始浊度序列的EMD分解采用镜像法对数据端点进行延拓,以减弱端点效应,将原始浊度序列分解为一系列基本模态分量.(2)模型的输入输出样本选取对训练样本数据进行相空间重构,即将一维的时间序列转化为矩阵形式,获得数据间的关联信息,以尽可能大地挖掘数据的信息量.可通过嵌入窗法、G2P算法和C2C算法等方法来确定嵌入维数m,和延迟时间τ.通过相空间重构,来构造预报样本{xi,yi},其中: xi为m维向量.(3)模型参数选取及核函数的确定支持向量机参数的选择,即不敏感损失函数ε和误差惩罚因子γ.ε影响支持向量的数目,ε值越大,支持向量数目就越少,估计的函数精度越低,反之亦然;γ取得小,训练误差变大,系统的泛化能力变差,γ值取大,12ωTω的权重就小,同样泛化能力下降.以平均相对误差最小为寻优条件,用网格搜索法并通过试算分别对各序列的输入输出矩阵进行参数选择,得到不同序列的最优参数.不同的核函数决定了不同特征空间的结构.目前常用的核函数有线性函数、多项式函数、径向基函数和Sigmoid函数等.本研究针对不同的输入输出对象分别采用了线性核函数和径向基核函数.3仿真三.步骤1.取样与监测在降雨-径流发生期间,在落水管地面排水口安装60°三角堰,用便携式自动采样器(配超声波流量计)监测路面径流流量变化,并采集瞬时径流水样,采样间隔5~30min,视降雨历时和径流流量而定。
同时用雨量计记录降雨特征并收集雨水样品。
2.水质测试径流样品的保存和水质参数的测定均依照标准方法进行,测试的水质参数包括温度、pH、电导率(Cond.)、悬浮固体(SS)、营养盐(TN、TP、OP和NO3-N)、重金属(Cu、Zn、Pb、Cd、Ni和Cr)、石油类(O &G)以及五日生化需氧量(BOD5)和化学需氧量(COD)等。
其中温度、pH和电导率用便携式pH/电导率测试仪(WTW,Multi340i)测定;SS用0.45μm滤膜过滤、干燥秤重法测定;COD用重铬酸钾氧化法,BOD5用稀释接种法测定;TOC用燃烧氧化-非分散红外吸收法、总有机碳分析仪(日本岛津公司,TOC-VCPH)测定;TN和NO3-N用紫外分光光度法测定,其中TN用过硫酸钾氧化;TP和OP用钼锑抗分光光度法测定,其中TP用过硫酸钾消解;Zn和Cu用火焰原子吸收分光光度法测定(北京北京瑞利分析仪器公司,WFX-130AAS);Pb 和Cd用石墨炉原子吸收分光光度法测定(德国耶拿公司,AAS ZEEnit 60);Cr和Ni用电感偶合等离子发射光谱法测定(美国利曼公司,PS-1000AT ICP-AES)。
由于某些样品在测试之前进行浓缩处理,重金属浓度可能低于仪器检测限。
3.主成分程序N=50;n=2*N;randn('state',6);x1=randn(2,N)y1=ones(1,N);x2=1.5+randn(2,N);y2=-ones(1,N);figure(1)plot(x1(1,:),x1(2,:),'bx',x2(1,:),x2(2,:),'k.');axis([-38-38]);title('C-SVC')hold on;X1=[x1,x2];Y1=[y1,y2];X=X1';Y=Y1';C=Inf;ker='rbf';global p1p2p1=3;p2=1;[nsv alpha bias]=SVC(X,Y,ker,C);figure(2)svcplot(X,Y,ker,alpha,bias);predictedY=SVCOUTPUT(X,Y,X,ker,alpha,bias);运行结果:[nsv alpha bias]=SVC(X,Y,ker,C)Support Vector Classification_____________________________Constructing...Optimising...Execution time:0.8secondsStatus:OPTIMAL_SOLUTION|w0|^2:46012701943.396507Margin:0.000009Sum alpha:46012697628.191757Support Vectors:100(100.0%)nsv=100alpha=1.0e+009*四.分析使用决策二叉树对数据进行分类时,由树根开始将该对象的属性代入分类函数逐渐测试其值。
当测试值为1时,即到达叶节点,终止前进,表示该数据所处的类为此叶节点代表的类;当测试值为-1时,顺着分支向下走,直至到达某个叶节点。
用该多分类支持向量机训练出的水质评价模型对长江口水文站2002年2月、4月、6月、8月、10月共35组水质监测数据进行评价,错分类别仅为三组,识别准确率高达91.4%。
为了增加分类效果的对比性,用三层结构的BP神经网络对同组数据进行训练并作分类测试,其中BP网络的初始值和阈值是通过MATLAB工具箱中rand()函数产生均匀分布随机数矩阵来确定的,控制误差定为0.001,网络的学习率采用变步长法。
最后对相同监测数据测试,识别率仅为85.7%。
环境检测部门通常采用单因子评价方法,则本实验通过单因子评价方法得到的评价结果与通过国家标准融合处理测定的水类别进行比较,正确率仅为62.9%。
从上述三种评价方法可以看出,单因子评价方法过于保守,当水体中有害物质(如砷化物)严重超标时,采用此方法进行水质评价是合适的,有利于保护人们的身体健康;但对于毒性不强又与人们生活息息相关的水质参数(如BOD5,DO,NH3-N等),利用单因子评价法进行水质评价是不合理的,因为没有利用各种水质参数数据提供的信息及其对水质评价的贡献。