ANSYS中建立有限元模型的方法
- 格式:pdf
- 大小:175.23 KB
- 文档页数:4
基于ANSYS的钢筋混凝土结构试验有限元分析共3篇基于ANSYS的钢筋混凝土结构试验有限元分析1混凝土结构是我们生活和工作环境中不可或缺的部分。
为了保证结构的安全性和耐久性,需要进行大量的试验和分析。
钢筋混凝土结构试验有限元分析是其中一种方法,本文将介绍如何基于ANSYS进行试验有限元分析。
1、前期准备工作进行钢筋混凝土结构试验有限元分析前,需要进行一些前期准备工作。
首先要确定模型的尺寸和几何形状,包括梁的长度、宽度和高度,钢筋的数量和材料等信息。
其次是建立材料模型。
钢筋和混凝土的本构关系可以参考各种规范和文献,例如ACI318和EHE等。
最后是进行荷载和边界条件的设置。
这些参数可以根据试验的要求进行设定。
2、建立有限元模型通过ANSYS软件建立钢筋混凝土结构的有限元模型。
其中,混凝土部分采用可压缩性线性弹性模型;钢筋采用弹塑性模型,可以考虑材料的塑性性质。
首先,选择适当的元素类型,包括梁单元和实体单元。
对于梁单元,要选择适当的截面类型和断面参数。
对于实体单元,要确定网格的大小和形状。
然后,按照模型的几何形状和材料参数设置单元类型和属性。
最后,进行单元的划分和网格生成,调整边界条件,使其与试验条件保持一致。
3、分析和结果在模型准备就绪之后,进行分析和结果的处理。
首先,定义荷载和边界条件,可以模拟多种加载模式,例如单点荷载、均布荷载、自重等。
然后,进行静态分析或动态分析。
静态分析可以计算结构的变形、应力和应变等参数;动态分析可以模拟结构在地震、风等自然灾害下的响应。
最后,进行结果的处理和分析。
包括可视化、动画演示、应力云图、位移云图等,能够对计算结果进行全方位的检查和分析。
综上所述,基于ANSYS的钢筋混凝土结构试验有限元分析是一种非常有用的手段,可以帮助工程师更准确地评估结构的安全性和耐久性。
它具有良好的可靠性和可操作性,可在较短的时间内快速建立模型和分析结果。
基于ANSYS的钢筋混凝土结构试验有限元分析2钢筋混凝土结构是目前建筑工程最常用的一种结构形式,其优点在于承载能力强、耐久性好、施工方便等。
ANSYS的基本使用方法1.1ANSYS分析过程中的三个主要步骤1、创建有限元模型(1)、创建或读入几何模型。
(2)、定义材料属性。
(3)、划分网格(节点及单元)。
2、施加载荷并求解。
(1)、施加载荷及载荷选项、设定约束条件。
(2)、求解。
3、查看结果。
ANSYS在分析过程中需要读写文件,文件名格式为jobname.ext.ANSYS分析中还有几个数据库文件jobname.db,记录文件jobname.log(文本),结果文件jobname.rxx,图形文件jobname.grph。
1.2典型分析过程举例如图1-1所示。
使用ANSYS分析一个工字悬臂梁,求解在力P的作用下A点处的变形。
已知条件如下:P=4000Ibf E=29E6psiL=72in A=28.2in2I=833in 4H=12.71in1.启动ANSYS以交互式模式进入ANSYS,工作文件名为beam。
2.创建基本模型(1)GUI:Main Menu>Preprocessor>-Modeline-Create>keypoints>In Active CS.使用带有两个关键点的线模拟梁,梁的高度及横截面积将在单元中的实常量中设置。
(2)输入关键点编号I。
(3)输入x、y、z坐标0,0,0。
(4)选择Apply。
(5)输入关键点编号2。
(6)输入x、y、z坐标72,0,0。
(7)选择OK。
(8)GUI:Main Menu>Proprocessor>-Modeline-Create>Lines-lines>Straight Lines。
(9)选取两个关键点。
(10)在拾取菜单中选取OK。
3.存储ANSYS数据库Toolbar:SA VE-DBUtility Menu>File4.设定分析模块使用“Preferences“对话框选择分析模块,以便对菜单进行过滤,使菜单更简洁明了。
(1)GUI:Main Menu>Preferences(2)选择Structural(3)选择OK5.设定单元类型及相应选项对于任何分析,必须在单元类型库中选择一个或几个适合的单元类型,单元类型决定了附加的自由度(位移、转角、温度)。
学会使用AnsysWorkbench进行有限元分析和结构优化Chapter 1: Introduction to Ansys WorkbenchAnsys Workbench是一款广泛应用于工程领域的有限元分析和结构优化软件。
它的功能强大,能够帮助工程师在设计过程中进行力学性能预测、应力分析以及结构优化等工作。
本章节将介绍Ansys Workbench的基本概念和工作流程。
1.1 Ansys Workbench的概述Ansys Workbench是由Ansys公司开发的一套工程分析软件,主要用于有限元分析和结构优化。
它集成了各种各样的工具和模块,使得用户可以在一个平台上进行多种分析任务,如结构分析、热分析、电磁分析等。
1.2 Ansys Workbench的工作流程Ansys Workbench的工作流程通常包括几个基本步骤:(1)几何建模:通过Ansys的几何建模功能,用户可以创建出需要分析的结构的几何模型。
(2)加载和边界条件:在这一步骤中,用户需要为结构定义外部加载和边界条件,如施加的力、约束和材料特性等。
(3)网格生成:网格生成是有限元分析的一个关键步骤。
在这一步骤中,Ansys Workbench会将几何模型离散化为有限元网格,以便进行分析计算。
(4)材料属性和模型:用户需要为分析定义合适的材料属性,如弹性模量、泊松比等。
此外,用户还可以选择适合的分析模型,如静力学、动力学等。
(5)求解器设置:在这一步骤中,用户需要选择适当的求解器和设置求解参数,以便进行分析计算。
(6)结果后处理:在完成分析计算后,用户可以对计算结果进行后处理,如产生应力、位移和变形等结果图表。
Chapter 2: Finite Element Analysis with Ansys Workbench本章将介绍如何使用Ansys Workbench进行有限元分析。
我们将通过一个简单的示例,演示有限元分析的基本步骤和方法。
金属切削理论大作业2017年04月1基于ANSYS金属切削过程的有限元仿真付振彪,2016201064天津大学机械工程专业2016级研究生机械一班摘要:本文基于材料变形的弹塑性理论,建立了材料的应变硬化模型,采用有限元仿真技术,利用有限元软件ANSYS,对二维正交金属切削过程中剪切层及切屑的形成进行仿真。
从计算结果中提取应力应变云图显示了工件及刀具的应力应变分布情况,以此对切削过程中应力应变的变化进行了分析。
关键词:有限元模型;切削力;数学模型;二维模型;ANSYS1 绪论1.1金属切削的有限元仿真简介在当今世界,以计算机技术为基础,对于实际的工程问题应用商业有限元分析软件进行模拟,已经成为了在工程技术领域的热门研究方向,这也是科学技术发展所导致的必然结果。
研究金属切削的核心是研究切屑的形成过程及其机理,有限元法就是通过对金属切屑的形成机理进行模拟仿真,从而达到优化切削过程的目的并且可用于对刀具的研发。
有限元法对切屑形成机理的研究与传统的方法相比,虽然都是对金属切削的模拟,但是用有限元法获得的结果是用计算机系统得到的,而不是使用仪器设备测得的。
有限元法模拟的是一种虚拟的加工过程,能够提高研究效率,并能节约大量的成本。
1.2研究背景及国内外现状最早研究金属切削机理的分析模型是由Merchant [1][2],Piispanen[3],Lee and Shaffer[4]等人提出的。
1945 年Merchant 建立了金属切削的剪切角模型,并确定了剪切角与前角之间的对应关系这是首次有成效地把切削过程放在解析基础上的研究,成功地用数学公式来表达切削模型,而且只用几何学和应力-应变条件来解析。
但是材料的变形实际上是在一定厚度剪切区发生的,而且它假设产生的是条形切屑,所以该理论的切削模型和实际相比具有很大的误差。
1951 年,Lee and Shaffer 利用滑移线场(Slip Line Field)的概念分析正交切削的问题。
有限元分析的基本步骤⼀个典型的ANSYS分析过程可分为以下6个步骤:1定义参数2创建⼏何模型3划分⽹格4加载数据5求解6结果分析1定义参数1.1指定⼯程名和分析标题启动ANSYS软件,选择File→Change Jobname命令选择File→Change Title菜单命令1.2定义单位(2) 设置计算类型ANSYS Main Menu: Preference→Material Props →Material Models →Structural →OK(3) 定义分析类型ANSYS Main Menu: Preprocessor →Loads →Analysis Type →New Analysis→STATIC →OK1.3定义单元类型选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令单击[Options]按钮,在[Element behavior]下拉列表中选择[Plane strs w/thk]选项,单击确定1.4定义单元常数在ANSYS程序主界⾯中选择Main Menu→Preprocessor→Real Constants→Add/Edit/Delete命令单击[Add]按钮,进⾏下⼀个[Choose Element Type]对话框1.5定义材料参数在ANSYS程序主界⾯,选择Main Menu→Preprocessor→Material Props→Material Models命令(1)选择对话框右侧Structural→Linear→Elastic→Isotropic命令,并单击[Isotropic]选项,接着弹出如下所⽰[Linear Isotropic Properties for Material Number 1]对话框。
在[EX]⽂本框中输⼊弹性模量“200000”,在[PRXY]⽂本框中输⼊泊松⽐“0.3”,单击OK2创建⼏何模型在ANSYS程序主界⾯,选择Main Menu→Preprocessor→Modeling→Creat→Areas→Rectangle →By 2Corners命令选择Main Menu→Preprocessor→Modeling→Creat→Areas→Circle→Solid Circle命令3⽹格划分(之前⼀定要进⾏材料的定义和分配)选择Main Menu→Preprocessor→Modeling→Operate→Booleans→Subtract→Arears Circle命令选择Main Menu→Preprocessor→Meshing→Mesh→Areas→Free命令,弹出实体选择对话框,单击[Pick All]按钮,得到如下所⽰⽹格4加载数据(1)选择Main Menu→Preprocessor→Loads→Define Loads→Apply→Structural→Displacement→On Lines命令,出现如下所⽰对话框,选择约束[ALL DOF]选项,并设置[Displacement value]为0,单击OK。
实验3 轴静态分析建模方式:自底向上的建模方式图3-1 轴平面图根据轴的对称性,在这里将利用面体素中的矩形先生成一个平面,而后用这个平面绕其中心线进行旋转而生成轴体如图3-1。
其具体的操作步骤如下。
1定义工作文件名和工作标题1)定义工作文件名:Utility Menu>File>Change Jobname,在出现的对话框中输入“SHAFT1”,并将“New log and error files”复选框选为“yes”,单击“OK”。
如图3-2。
图3-2 定义工作名对话框2)定义工作标题:Utility Menu>File>Change Title在出现的对话框中输入“The ShaftModle”,单击“OK”。
如图3-3图3-3 定义工作标题对话框3)重新显示:Utility Menu>Plot>Replot。
2显示工作平面1)显示工作平面:Utility Menu>Workplane>Display Working Plane。
2)关闭三角坐标符号:Utility Menu>PlotCtrls>Window Controls>Windoe options,弹出一个如图3-4所示的对话框,在“Location of triad”后面的下拉选框中,选择“Not Shown”单击“OK”。
图3-4 输出窗口对话框图3-5 工作平面移动对话框3)显示工作平面移动、旋转工具条:Utility Menu>Workplane>Offset WP by increments,在屏幕输出窗口上出现一个如下图所示的“Offset WP”工具条,即工作平面移动、旋转工具条。
如图3-53利用矩形面素生成面1)生成矩形面:Main Menu>Preprocessor>Create>Rectangle>By Dimensions,弹出一个如图3-6所示的对话框,在对话框的“X-coordinates”和“Y-coordinates”后面输入栏中分别输入下列数据:X1=0,X2=260,Y1=0,Y2=70,单击“Aplay”;图3-6生成矩形对话框X1=260,X2=380,Y1=0,Y2=75,单击“Aplay”;XI=380,X2=420,Y1=0,Y2=100,单击“Aplay”;X1=420,X2=660,Y1=0,Y2=80,单击“Aplay”;X1=660,X2=800,Y1=0,Y2=75,单击“ok”;生成的结果如图3-7所示。
基于ANSYS的自行车车架结构有限元分析自行车车架是连接自行车各个部件的重要结构,其设计优化对于提高整车性能和骑行舒适度至关重要。
有限元分析是一种常用的工程分析方法,可以用来评估自行车车架的结构强度、刚度和耐久性等特性。
在ANSYS软件中进行自行车车架有限元分析可以帮助设计师更好地理解和改进车架的设计。
首先,进行自行车车架有限元分析的第一步是建立几何模型。
可以使用ANSYS中的建模工具来创建车架的三维几何模型。
在建模过程中,需要考虑车架各个部件的几何形状、连接方式和材料参数等。
接下来,需要为车架模型分配材料属性。
车架材料的选择对于整体结构的强度和刚度具有重要影响。
可以利用ANSYS中的材料库来选择合适的材料,并为车架的不同部件分配相应的材料属性。
然后,需要进行约束和加载设置。
在真实的使用条件下,车架会受到各种力的作用,如骑行时的重力、路面不平和操控力等。
在有限元分析中,应根据实际工况和设计要求来设置适当的约束和加载。
例如,在车架的连接点设置约束,模拟骑行时的力加载。
随后,进行网格划分和网格质量检查。
网格划分是将车架模型离散化为有限元网格的过程。
在ANSYS中,可以使用自动划网工具或手动划网。
划分好网格后,还需要进行网格质量的检查和优化,以确保计算结果的准确性和可靠性。
然后,进行有限元分析求解。
有限元分析是通过将车架模型离散化为多个有限元单元,并根据材料特性、加载条件和边界条件来计算结构的应力、变形和刚度等参数。
在ANSYS中,可以选择不同的分析类型和求解器来进行分析。
根据需要,可以进行静力学、动力学、热力学和疲劳分析等。
最后,进行结果评估和优化。
通过有限元分析,可以得到车架在各个部件的应力分布图、变形图和刚度分析结果。
根据这些结果,可以评估车架的结构强度和刚度,并进行优化设计。
例如,可以优化车架的几何形状、材料选用和连接方式,以提高车架的性能。
总结起来,基于ANSYS的自行车车架结构有限元分析是一种重要的工程分析方法,可以帮助设计师评估和改进车架的设计。
基于ANSYS软件的有限元分析作者:朱旭,霍龙,景延会,张扬来源:《科技创新与生产力》 2018年第7期摘要:ANSYS软件是大型通用有限元分析程序,操作简单方便,功能强大。
对ANSYS软件的发展历程和功能进行了说明,对基于ANSYS软件的有限元分析流程进行了详细介绍,并通过平面悬臂桁架结构实例详细介绍了ANSYS软件在有限元分析中的应用。
结果表明,ANSYS软件是有限元分析强有力的工具,能够完成各种工程问题的有限元数值模拟。
关键词:数值模拟方法;有限元分析;ANSYS软件中图分类号:TP391.7 文献标志码:A DOI:10.3969/j.issn.1674-9146.2018.07.097目前在工程领域中常用的数值模拟方法有有限单元法、边界元法、有限差分法等,其中以有限单元法的应用和影响最广。
有限单元法是一种连续结构离散化数值计算方法,通过对连续体划分单元,用单元和节点组成有限未知量的近似离散系统去逼近无限未知量的真实连续系统[1]。
有限单元法具有适应性强、计算精度高、计算格式规范统一等诸多优点,已经广泛应用到土木工程、机械工程、航空航天、核工程、海洋工程、生物医学等诸多领域中。
早在18世纪末,欧拉就用与现代有限元相似的方法求解了轴力杆的平衡问题。
随着计算机技术的快速发展,有限元数值模拟技术日益成熟。
ANSYS软件是美国ANSYS公司出品的集结构、流体、电场、磁场、声场等多领域分析于一体的大型通用有限元分析软件,能与多数计算机辅助设计软件(如Pro/Engineer,CATIA,AutoCAD等)接口,实现数据的共享和交换[2]。
基于ANSYS软件的有限元分析,将有限元分析和计算机图形学结合在一起,不仅能够为各种工程问题提供可靠的有限元分析结果,而且可以显示构件的变形图和应力云图等可视化结果,还可以观察到试验中无法观察到的发生在结构内部的一些物理现象,例如弹体在不均匀介质侵彻过程中的受力与偏转等。
ANSYS塑性分析指南引言:塑性分析是材料力学中的一个重要研究内容,它可以用来研究材料在外力作用下的塑性变形和破坏行为。
ANSYS作为一种常用的有限元分析软件,可以进行复杂结构的塑性分析。
本文将提供一份ANSYS塑性分析的指南,以帮助读者了解塑性分析的基本原理和使用ANSYS进行塑性分析的基本流程。
一、塑性分析的基本原理塑性分析基于塑性力学理论,其基本原理包括:弹性和塑性本构关系、流动规则和判据准则。
弹性和塑性本构关系是描述材料在加载作用下的应力应变关系的数学表达式。
流动规则是描述材料的变形行为的数学表达式,它代表了材料的塑性流动过程。
判据准则用于判断材料是否发生应力屈服或破坏。
二、ANSYS塑性分析的基本步骤1.建立有限元模型:首先根据实际结构建立有限元模型,在ANSYS软件中进行网格划分,选择适当的元素类型和网格密度。
2.设定材料本构关系:根据实际材料的力学性能,设定材料的弹性和塑性本构关系,在ANSYS中选择相应的材料模型,并设定材料的本构参数。
3.定义边界条件:根据实际结构的边界条件,定义结构的约束和加载方式,在ANSYS中设定相应的节点约束和荷载。
4.运行塑性分析:利用ANSYS提供的塑性分析功能运行分析,得到结构的应力、应变和变形等结果。
5.结果分析和后处理:根据分析结果,评估结构的安全性和可靠性,进行优化设计。
利用ANSYS提供的后处理工具进行结果的可视化和数据的提取。
三、ANSYS塑性分析的扩展功能除了基本的塑性分析功能,ANSYS还提供了一些扩展功能,以满足复杂结构的塑性分析需求。
以下是其中的几个扩展功能:1.动态塑性分析:用于研究结构在动态载荷作用下的塑性响应,如爆炸、冲击等。
2.温度场塑性分析:用于研究材料在高温环境下的塑性行为。
3.多尺度塑性分析:用于研究材料的微观塑性行为,并将其引入宏观塑性分析中。
4.非线性大变形塑性分析:用于研究结构在大变形和塑性变形条件下的力学行为。
ANSYS有限元分析实例1.悬臂梁的结构分析悬臂梁是一种常见的结构,其呈直线形式,一端固定于支撑点,另一端自由悬挂。
在这个分析中,我们将使用ANSYS来确定悬臂梁的最大弯曲应力和挠度。
首先,我们需要创建悬臂梁的几何模型,并给出其材料属性和加载条件。
然后,在ANSYS中创建有限元模型,并进行网格划分。
接下来,进行力学分析,求解材料在给定加载下的应力和位移。
最后,通过对结果的后处理,得出最大弯曲应力和挠度。
2.螺旋桨的流体力学分析螺旋桨是一种能够产生推力的旋转装置,广泛应用于船舶、飞机等交通工具中。
螺旋桨的流体力学分析可以帮助我们确定其叶片的受力情况和推力性能。
在这个分析中,我们需要建立螺旋桨的几何模型,并给出流体的流速和压力条件。
然后,我们在ANSYS中创建螺旋桨的有限元模型,并进行网格划分。
通过求解流体场方程,计算叶片上的压力分布和受力情况。
最后,通过对结果的后处理,得出叶片的受力情况和推力性能。
3.散热片的热传导分析散热片是一种用于散热的装置,广泛应用于电子设备、电脑等领域。
散热片的热传导分析可以帮助我们确定散热片在给定热源条件下的温度分布和散热性能。
在这个分析中,我们需要建立散热片的几何模型,并给出材料的热导率和热源条件。
然后,我们在ANSYS中创建散热片的有限元模型,并进行网格划分。
通过求解热传导方程,计算散热片上各点的温度分布。
最后,通过对结果的后处理,得出散热片的温度分布和散热性能。
以上是三个ANSYS有限元分析的实例,分别涉及结构分析、流体力学分析和热传导分析。
通过这些实例,我们可以充分展示ANSYS在不同领域的应用,并帮助工程师和科研人员解决工程问题,提高设计效率和产品性能。
ANSYS Workbench 是一种流行的工程仿真软件,广泛应用于工程领域。
有效质量计算是在有限元分析中常见的问题,因此我们需要了解有效质量的计算公式及其在ANSYS Workbench 中的实际应用。
1. 有效质量的概念有效质量是指在振动系统中,与振动频率有关的等效质量。
在工程设计中,我们往往需要考虑结构的振动特性,而有效质量可以帮助我们评估结构在振动时所受到的影响。
有效质量的计算可以帮助工程师优化结构设计,提高结构的振动性能。
2. 有效质量的计算公式在ANSYS Workbench 中,有效质量的计算公式可以通过以下方式进行计算:有效质量 = 结构的质量 / (1 + (频率比)^2)其中,结构的质量指的是结构的总质量,频率比指的是振动系统的激励频率与结构的自然频率之比。
通过这个公式,我们可以很容易地计算出结构在不同频率下的有效质量,从而帮助我们分析结构的振动特性。
3. ANSYS Workbench 中的有效质量计算方法在使用ANSYS Workbench 进行有限元分析时,我们可以通过以下步骤进行有效质量的计算:步骤一:建立结构的有限元模型我们需要建立结构的有限元模型,并进行网格划分、边界条件设置等前期工作。
在建立完整的有限元模型后,我们可以进行振动分析,并得到结构的振动模态。
步骤二:获取振动模态数据通过振动分析,我们可以得到结构在不同振动模态下的频率和振型数据。
这些数据可以作为有效质量计算的基础。
步骤三:应用有效质量计算公式在ANSYS Workbench 中,我们可以利用振动模态数据和有效质量计算公式,计算出结构在不同频率下的有效质量。
通过这个过程,我们可以更加深入地了解结构的振动特性,并进行结构设计的优化。
4. 有效质量计算在工程设计中的应用有效质量的计算在工程设计中具有重要意义。
通过分析结构在不同频率下的有效质量,我们可以评估结构在振动环境下的性能,帮助工程师进行结构设计的改进和优化。
1. ANSYS交互界面环境包含交互界面主窗口和信息输出窗口。
2. 通用后处理器提供的图形显示方式有变形图、等值线图、矢量图、粒子轨迹图以及破裂和压碎图。
3. ANSYS软件是融结构、流体、电场、磁场、声场和耦合场分析于一体的有限元分析软件。
4. 启动ANSYS 10.0的程序,进入ANSYS交互界面环境,包含主窗口和输出窗口。
5. ANSYS程序主菜单包含有前处理、求解器、通用后处理、时间历程后处理器等主要处理器,另外还有拓扑优化设计、设计优化、概率设计等专用处理器。
6. 可以图形窗口中的模型进行缩放、移动和视角切换的对话框是图形变换对话框。
7. ANSYS软件默认的视图方位是主视图方向。
8. 在ANSYS中如果不指定工作文件名,则所有文件的文件名均为 file 。
9. ANSYS的工作文件名可以是长度不超过 64 个字符的字符串,必须以字母开头,可以包含字母、数字、下划线、横线等。
10. ANSYS常用的坐标系有总体坐标系、局部坐标系、工作平面、显示坐标系、节点坐标系、单元坐标系和结果坐标系。
11. ANSYS程序提供了4个总体坐标系,分别是:总体直角坐标系,固定内部编号为0;总体柱坐标系,固定内部编号为1;总体球坐标系,固定内部编号为2;总体柱坐标系,固定内部编号为5。
12. 局部坐标系的类型分为直角坐标系、柱坐标系、球坐标系和环坐标系。
13. 局部坐标系的编号必须是大于或等于 11 的整数。
14. 选择菜单路径Utility Menu →WorkPlane→Display Working Plane,将在图形窗口显示工作平面。
15. 启动ANSYS进入ANSYS交互界面环境,最初的默认激活坐标系(当前坐标系)总是总体直角坐标系。
16. ANSYS实体建模的思路(方法)有两种,分别是自底向上的实体建模和自顶向下的实际建模。
17. 定义单元属性的操作主要包括定义单元类型、定义实常数和定义材料属性等。