含参二元一次方程解法
- 格式:docx
- 大小:36.40 KB
- 文档页数:1
含参数的二元一次方程组的解法攻略教学目标:①会解含参数的二元一次方程组②能利用换元法解决一些复杂的二元一次方程。
教学重点:含参数的二元一次方程组的解法教学难点:换元法教学过程:一.基础练习引入课本中的联系,复习二元一次方程组的两种解法。
二.例题讲解例1:已知方程组 32342-=-+=-x y m y x 解x 、y 互为相反数,求m 的值。
思路分析:方程组是含参数m 的方程组。
如果把m 理解成未知数,那么相当于方程组中含有三个未知数,那基本思路是消元,有两种种方法:消x ,消y 。
如果观察方程组中两条式子,可以发现两条式子一加,就可会出现y x +。
如果把方程组中的m 理解成是常数,可以先求出含参数的解x 、y ,最后再寻找x 与y 之间的关系。
解法一:消x解法二:消y解法三:观察法(此题中可直接用两式子相加)解法四:组合法(x 与y 互为相反数⇒y x +=0,再将y x +=0与32-=-x y 组成方程组求解) 解法五:直接求解法。
(用含m 的代数式表示x 与y ,再利用“x 与y 互为相反数⇒y x +=0”,求出m ) 练习配备:①已知方程组 32342-=-+=-x y m y mx 解x 、y 互为相反数,求m 的值。
思路分析:选用哪种解法最简便?解法四:组合法。
②若关于x 、y 的二元一次方程组 k y x ky x 95=-=+的解也是二元一次方程632=+y x 的解,求k 的值。
思路分析:此题中方程具有的特点,选用解法五:直接求解法,会比较简单。
小结:对于不同类型的含参数方程,根据方程特点,选择最优解法。
三.例题拓展例2:解关于x 、y 的方程 872=-=+y cx by ax 时,学生把c 看错而解得⎩⎨⎧=-=22y x ,而正确的解是⎩⎨⎧==23y x ,求a 、b 、c 的值。
思路分析:看错c 解得⎩⎨⎧=-=22y x ,则⎩⎨⎧=-=22y x 是第一条方程的解;正确解是⎩⎨⎧==23y x ,说明⎩⎨⎧==23y x 也满足第一条方程。
二元一次方程解题方式
解二元一次方程的常用方法有两种:代入法和消元法。
代入法:
1. 给定一个二元一次方程组,如:
a*x + b*y = c
d*x + e*y = f
2. 选取其中一个方程,将其中一个变量用另一个变量表示出来,如选取第一个方程,将x 用y 表示:
x = (c - b*y) / a
3. 将x 的表达式代入第二个方程中,得到只含有一个变量y 的一元一次方程:
d*((c - b*y) / a) + e*y = f
4. 对一元一次方程进行化简,求解得到y 的值。
5. 将y 的值代入x 的表达式中,得到x 的值。
消元法:
1. 给定一个二元一次方程组,如:
a*x + b*y = c
d*x + e*y = f
2. 通过分别将两个方程的某个系数的倍数相减,消去一个变量的项,使得方程组变成只含有另一个变量的一元一次方程:
(a * (d*x + e*y) - d * (a*x + b*y)) / (a*e - b*d) = (c*e - b*f) / (a*e - b*d)
3. 对一元一次方程进行化简,求解得到另一个变量的值。
4. 将其中一个变量的值代入一个方程中,求解得到另一个变量的值。
需要注意的是,在解二元一次方程组时,可能会有以下三种情况:
- 只有唯一解:方程组有且只有一个解;
- 无解:方程组无法满足;
- 无穷多解:方程组有无数个解。
解决二元一次方程组的选择方法取决于具体的情况和方程组的特点,根据实际情况选用合适的方法进行计算。
1、已知方程组的解x,y满足方程5x-y=3,求k的值.【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法.(1)由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x,y的值代入方程组中任一方程即可求出k的值.(2)把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k的值. (3)将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k 的值.把代入①,得,解得k=-4.解法二:①×3-②×2,得17y=k-22,解法三:①+②,得5x-y=2k+11.又由5x-y=3,得2k+11=3,解得k=-4.【小结】解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解法了.2、关于x,y 的方程组⎩⎨⎧+=+=-123m y x m y x 的解,也是方程 2x-y=3的解,求m 的值 解答:3、已知关于x,y 的方程组⎩⎨⎧=++=+m y x m y x 32253 的未知数 x,y 的和等于2,求m 的值及方程组的解.解答:4、(2009年山东省中考试题)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是 二元一次方程632=+y x 的解,则k 的值为( )A .43-B .43C .34D .34- 分析:将k 看作常数,解关于x 、y 的方程组,即可用k 的代数式分别表示出x 、y , 再代入后面的二元一次方程便可求解.由方程组得2x =14k ,y =-2k .代入632=+y x ,得14k -6k =6,解得k =43 答案:B .技巧提升:若将问题换成“关于x ,y 的二元一次方程组⎩⎨⎧=+=+6325y x k y x 的解也是二元一 次方程k y x 9=- 的解,求k 的值.”则应注意考虑解题顺序,仍然先解由方程k y x 5=+、k y x 9=-组成的方程组比较简便.5、关于关于y x 、的方程组⎩⎨⎧-=+-=-5m 212y 3x 4m 113y 2x 的解也是二元一次方程2073=++m y x 的解,则m 的值是( )A 、0B 、1C 、2D 、21 解答:。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题12 含“字母系数”(含参)的二元一次方程组的解题思路(解析版)第一部分典例剖析类型一利用二元一次方程的定义构造一元一次方程或二元一次方程组1.(2020春•博兴县期中)若方程3x|m|﹣2=3y n+1+4是二元一次方程,则m,n的值分别为( )A.2,﹣1B.﹣3,0C.3,0D.±3,0思路引领:根据二元一次方程的定义得出|m|﹣2=1,n+1=1,解之可得答案.解:∵方程3x|m|﹣2=3y n+1+4是二元一次方程,∴|m|﹣2=1,n+1=1,解得m=3或m=﹣3,n=0,故选:D.总结提升:本题主要考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.2.(2022春•开州区期中)若关于x,y的方程(n﹣1)x|n|+3y m﹣2=0是二元一次方程,则m+n的值( )A.1B.2C.4D.2或4思路引领:由二元一次方程的定义可知x,y的次数为1,据此可列出方程,并求解.解:∵关于x,y的方程(n﹣1)x|n|+3y m﹣2=0是二元一次方程,∴|n|=1且n﹣1≠0,m﹣2=1,解得m=3,n=﹣1,∴m+n=3﹣1=2.故选:B.总结提升:此题考查二元一次方程定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的次数都为一次;(3)方程是整式方程.3.(2017春•分宜县校级期中)方程(m2﹣9)x2+x﹣(m+3)y=0是关于x、y的二元一次方程,则m的值为( )A.±3B.3C.﹣3D.9思路引领:根据二元一次方程的定义可得m2﹣9=0,且m+3≠0,再解即可.解:由题意得:m2﹣9=0,且m+3≠0,解得:m=3,总结提升:此题主要考查了二元一次方程的定义,关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.类型二利用二元一次方程(组)的解的定义构造一元一次方程或二元一次方程组4.若关于x、y的二元一次方程组x+y=2tx−y=4t的解也是二元一次方程2x+3y=9的解,求t的值和这个方程组的解.思路引领:将t看作已知数求出方程组的解表示出x与y,代入二元一次方程中即可求出t的值,进而确定出方程组的解.解:x+y=2t①x−y=4t②,①+②得:2x=6t,解得:x=3t,①﹣②得:2y=﹣2t,解得:y=﹣t,将x=3t,y=﹣t代入2x+3y=9中得:6t﹣3t=9,解得:t=3,则方程组的解为x=9y=−3.总结提升:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.5.(2020春•天津期末)已知方程组ax+by=7ax−by=5的解为x=2y=1,则a,b的值为( )A.a=3,b=2B.a=2,b=3C.a=3,b=1D.a=1,b=3思路引领:把x与y的值代入方程组求出a与b的值即可.解:把x=2y=1代入方程组得:2a+b=7①2a−b=5②,①+②,得4a=12,∴a=3,把a=3代入①,得6+b=7,∴a =3,b =1,故选:C .总结提升:此题考查了二元一次方程组的解.解题的关键是掌握二元一次方程组的解的定义,方程组的解即为能使方程组中两方程成立的未知数的值.6.已知方程2x +(1+m )y =﹣1与方程nx ﹣y =1有一个相同的解x =−2y =1,你能求出(m +n )2020的值吗?思路引领:把x 与y 的值代入方程求出m 与n 的值,即可确定出所求式子的值.解:把x =−2y =1代入2x +(1+m )y =﹣1,得﹣4+1+m =﹣1,解得m =2;把x =−2y =1代入程nx ﹣y =1,得﹣2n ﹣1=1,解得n =﹣1.∴(m +n )2020=(2﹣1)2020=1.总结提升:此题考查了有理数的乘方以及二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.类型三 已知方程组的错解构造一元一次方程求解7.(2021春•青神县期中)甲、乙两人同时解方程组mx +y =5①2x−ny =13②甲解题看错了①中的m ,解得x =72y =−2,乙解题时看错②中的n ,解得x =3y =−7.试求:(1)原方程组m ,n 的正确值;(2)原方程组的解.思路引领:(1)把甲的解代入②中求出n 的值,把乙的解代入①中求出m 的值即可;(2)把m 与n 的值代入方程组求出解即可.解:(1)把x =72y =−2代入②得:7+2n =13,解得n =3,把x =3y =−7代入①得:3m ﹣7=5,解得m =4.所以m =4,n =3;(2)把m =4,n =3代入方程组得:4x +y =5①2x−3y =13②,①×3+②得:14x =28,即x =2,把x=2代入①得:y=﹣3,则方程组的解为x=2y=−3.总结提升:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.类型四利用方程同解构造二元一次方程组8.(2021春•上思县期末)若方程组2x+4y=−68x−4y=16和方程组ax−by=11bx−ay=13的解相同,试求(3b﹣2a)2021的值.思路引领:求出第一个方程组的解,代入第二个方程组求出a与b的值,代入原式计算即可求出值.解:2x+4y=−6①8x−4y=16②,①+②得:10x=10,解得:x=1,把x=1代入①得:2+4y=﹣6,解得:y=﹣2,∴方程组的解为x=1y=−2,把x=1y=−2代入方程组ax−by=11bx−ay=13得:a+2b=11b+2a=13,解得:a=5 b=3,则(3b﹣2a)2021=(3×3﹣2×5)2021=(﹣1)2021=﹣1.总结提升:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.9.已知关于x,y的方程组3x−y=54ax+5by=−22与2x−3y+4=0ax−by−8=0有相同的解,求a,b的值.思路引领:因为关于x,y的方程组有相同的解,根据二元一次方程组的解的定义,只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.解:由题意,关于x,y的方程组3x−y=52x−3y+4=0和4ax+5by=−22ax−by−8=0的解也相同.解方程组3x−y=5①2x−3y+4=0②,得x=197y=227.把x=197y=227代入4ax+5by=−22ax−by−8=0,a+1107b=−22a−227b=8解得a=1419b=−2111.总结提升:本题考查了二元一次方程组的解法及方程组解的意义,由于数比较大,计算较复杂,理解方程组公共解的意义和掌握解二元一次方程组的解法是解决本题的关键.10.(2019春•大丰区期末)已知关于x、y的方程组4x+ay=162x+y=4b+2和3x+ay=132x−3y=−6的解相同,求a、b值.思路引领:先把方程4x+ay=16和3x+ay=13相减,可得x的值,再代入方程2x﹣3y=﹣6,求出y的值,再把x,y的值代入第一个方程组即可求得a,b的值.解:方程4x+ay=16和3x+ay=13相减,得x=3,把x=3代入方程2x﹣3y=﹣6,得y=4.把x=3,y=4代入方程组4x+ay=162x+y=4b+2,得12+4a=166+4=4b+2解这个方程组,得a=1,b=2.总结提升:利用方程组的解相同,可以重新组合方程组,求得未知数的值.类型五利用二元一次方程组的解适合第3个方程,构造一元一次方程或者用整体思想求解11.已知方程组2x+3y=7,5x−y=3m+1的解能使等式x﹣7y=2成立,求m的值.思路引领:观察方程组中两方程的x与y的系数,发现方程①减去方程②×2后恰好直接得到(x﹣7y)的值.解:2x+3y=7①,5x−y=3m+1②,由②﹣①×2,得x﹣7y=3m﹣13,∴3m﹣13=2,解得m=5.总结提升:本题主要考查的是解二元一次方程组,求得x、y的值是解题的关键.12.(2022春•沙坪坝区期末)已知关于x,y的方程组3x+4y=a+22x+3y=2a的解满足x+y=1,求a的值及方程组的解.思路引领:根据题意,①﹣②得x+y=﹣a+2,再根据已知条件可得a的值,根据加减消元法解二元一次方程组即可.解:3x+4y=a+2①2x+3y=2a②,①﹣②得x+y=﹣a+2,∵x+y=1,∴﹣a+2=1,解得a=1,∴原方程组化为3x+4y=3①2x+3y=2②,①×2﹣②×3得﹣y=0,解得y=0,将y=0代入3x+4y=3,得3x=3,解得x=1,∴原方程组的解为x=1 y=0.总结提升:本题考查了二元一次方程组的解以及解二元一次方程组,熟练掌握解二元一次方程组的方法是解题的关键.13.(2019春•西湖区校级月考)已知关于x,y的二元一次方程组3x+2y=m+32x−y=2m−1的解x与y的值互为相反数,试求m的值和方程组的解.思路引领:由已知方程组,利用加减消元法求出x=5m17,y=9−4m7,再由x与y的值互为相反数,即可求出m的值,再将m的值代入所求x、y的表达式,即可求方程组的解.解:方程组3x+2y=m+3①2x−y=2m−1②,②×2+①得7x=5m+1,∴x=5m17,将x=5m17代入②,得y=9−4m7,∵x与y的值互为相反数,∴5m17+9−4m7=0∴m=﹣10,∴x=﹣7,y=7,∴原方程组的解为x=−7 y=7.总结提升:本题考查二元一次方程组的解;熟练掌握加减消元法解二元一次方程组,同时结合相反数的性质灵活解题是关键.14.当m,n都是实数,且满足2m﹣n=8时,我们称Q(m﹣1,n+1)为巧妙点.(1)若A(m﹣1,5)是巧妙点,则m= ,巧妙点A( ,5);(2)判断点P(3,1)是否为巧妙点,并说明理由.(3)已知关于x,y的方程组x+y=4x−y=2a,当a为何值时,以方程组的解为坐标的点B(x,y)是巧妙点?思路引领:(1)利用题中的新定义列式计算即可;(2)利用题中的新定义判断即可;(3)表示出方程组的解,根据题中的新定义判断即可.解:(1)由题意得:2(m﹣1+1)﹣(5﹣1)=8,解得:m=6,∴m﹣1=5,∴巧妙点A(5,5),故答案为:6,5;(2)点P(3,1)是巧妙点,理由如下:根据题意得m−1=3n+1=1,解得:m=4 n=0,代入得:2m﹣n=8﹣0=8,∴点P(3,1)是巧妙点;(2)x+y=4①x−y=2a②,①+②得:2x=2a+4,解得:x=a+2,把x=a+2代入①得:y=2﹣a,根据题意得:m−1=a+2 n+1=2−a,解得:m=a+3 n=1−a,代入得:2m﹣n=2a+6﹣1+a=3a+5,当3a+5=8,即a=1时,满足2m﹣n=8,即以方程组的解为坐标的点B(x,y)是巧妙点.总结提升:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.第二部分专题提优训练1.(2022春•滨海县月考)若方程(a﹣6)x|a|﹣5+5y=1是关于x,y的二元一次方程,则a的值为( )A.±6B.﹣6C.±5D.5思路引领:根据二元一次方程的定义解答即可.解:∵(a﹣6)x﹣y|a|﹣5=1是关于x,y的二元一次方程,∴a−6≠0|a|−5=1,解得a=﹣6.故选:B.总结提升:本题考查解二元一次方程的定义,解题关键是熟知二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.(2021春•银海区期中)若(R﹣2)x|R|﹣1﹣3y=2是关于x,y的二元一次方程,那么3R﹣2的值为( )A.4B.﹣8C.8D.4或﹣8思路引领:二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.解:根据题意得:R−2≠0|R|−1=1,解得R=﹣2,∴3R﹣2=﹣6﹣2=﹣8,故选:B.总结提升:此题考查了二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.3.(2021春•平凉期末)如果x=3y=−2是方程组ax+by=1ax−by=5的解,则a2008+2b2008的值为( )A .1B .2C .3D .4思路引领:将方程组的解代入方程组可得关于a 、b 的二元一次方程组3a−2b =13a +2b =5,再求解方程组即可求解.解:∵x =3y =−2是方程组ax +by =1ax−by =5的解,∴3a−2b =1①3a +2b =5②,①+②得,a =1,将a =1代入①得,b =1,∴a 2008+2b 2008=1+2=3,故选:C .总结提升:本题考查二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二.解答题(共8小题)4.若x =2y =1是方程组ax +y =b 4x−by =3a−1的解,求a 、b 的值.思路引领:把x =2y =1代入方程组ax +y =b 4x−by =3a−1,然后解关于a ,b 的方程组即可.解:把x =2y =1代入方程组ax +y =b 4x−by =3a−1,得:2a +1=b 8−b =3a−1,解得:a =85b =215,故a =85,b =215.总结提升:本题考查了二元一次方程组的解,属于基础题,关键是掌握用代入法解方程组.5.已知二元一次方程px +2y =8,5x ﹣6y =4,2x +5y ﹣8=0有公共解,求p 的值.思路引领:解方程组5x−6y =42x +5y−8=0得x ,y 的值,再代入px +2y =8求解即可.解:解方程组5x−6y =42x +5y−8=0得x =6837y =3237,代入px +2y =8,得6837p +2×3237=8,解得p =5817.总结提升:本题主要考查了二元一次方程的解,解题的关键是求出方程组公共解.6.(2021秋•金寨县期末)解方程组ax+by=6x+cy=4时,甲同学因看错a符号,从而求得解为x=3y=2,乙因看漏c,从而求得解为x=6y=−2,试求a,b,c的值.思路引领:甲同学因看错a符号,把x=3,y=2代入x+cy=4,求出c,因看错a符号,得﹣3a+2b=6,乙因看漏c,把x=6,y=﹣2代入ax+by=6,组成新的二元二次方程组,解出即可.解:∵甲同学因看错a符号,∴把x=3,y=2代入x+cy=4,得c=1 2,﹣3a+2b=6.∵乙因看漏c,∴把x=6,y=﹣2代入ax+by=6,得6a﹣2b=6,得−3a+2b=6 6a−2b=6,解得,a=4,b=9;综上所述,a=4,b=9,c=1 2.总结提升:本题主要考查了二元一次方程组的解,掌握做题的方法是解题关键.7.(2019秋•平桂区期末)已知x=2y=1是二元一次方程组mx+ny−7=0nx+my−2=0的解,求m+3n的值.思路引领:把方程组的解代入方程组求出m与n的值,即可求解.解:把x=2y=1代入方程组mx+ny−7=0nx+my−2=0,得2m+n−7=02n+m−2=0,解方程组,得m=4,n=−1把m=4n=−1代入m+3n,得m+3n=4+3×(﹣1)=1.总结提升:本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.(2021春•娄底月考)已知方程组2x+3y=10ax+by=9与方程组bx−ay=84x−3y=2的解相等,试求a、b的值.思路引领:两个方程组的解相同,也就是有一组x、y的值是这四个方程的公共解,当然也是其中任意两个方程的公共解,所以可以把原来的方程组打乱,重新组合起来求解.解:由已知可得2x+3y=104x−3y=2,解得x=2y=2,把x=2y=2代入剩下的两个方程组成的方程组ax+by=9bx−ay=8,得2a+2b=9 2b−2a=8,解得a=14b=174.故a、b的值为a=14b=174.总结提升:解答此题的关键是熟知方程组有公共解得含义,考查了学生对题意的理解能力.9.(2018春•岳麓区校级期中)(1)已知关于x,y方程组x+2y=3k2x+y=2k+1的解满足x﹣y=3,求k的值;(2)在(1)的条件下,求出方程组的解.思路引领:(1)方程组中两式相减后可得x﹣y=1﹣k,再根据条件即可求出k的值.(2)根据二元一次方程组的解法即可求出答案.解:(1)∵x+2y=3k①2x+y=2k+1②,∴②﹣①得:x﹣y=1﹣k,∵x﹣y=3,∴1﹣k=3,∴k=﹣2.(2)将k=﹣2代入x+2y=−6①2x+y=−3②,①×2得:2x+4y=﹣12③②﹣③得:﹣3y=9,∴y=﹣3,将y=﹣3代入①得:x﹣6=﹣6,∴x=0,∴方程组的解为x=0 y=−3总结提升:本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.10.已知方程组2x+y=5ax−by=−4与5x−4y=62ax−3by=2有公共解,求a、b的值.思路引领:由于两方程组有公共解,所以可把方程①和方程③联立为一个方程组进行求解,然后把所求结果代入方程②和方程④中,形成一个关于a、b的二元一次方程组,解答即可.解:在方程组2x+y=5①ax−by=−4②与5x−4y=6③2ax−3by=2④,因为有公共解,所以有2x+y=55x−4y=6和ax−by=−42ax−3by=2.由第一组可解得x=2 y=1,代入第二组,得2a−b=−4 4a−3b=2,解得a=−7b=−10.总结提升:本题考查解二元一次方程组,二元一次方程组的解,掌握二元一次方程组的解法是解题的关键.11.(2021秋•长丰县月考)已知关于x,y的二元一次方程组x+2y=a2x−y=1.(1)当方程组的解为x=1y=1时,求a的值.(2)当a=﹣2时,求方程组的解.(3)小冉同学模仿第(1)问,提出一个新解法:将x=−2y=−2代入方程x+2y=a中,即可求出a的值.小冉提出的解法对吗?若对,请完成解答;若不对,请说明理由.思路引领:(1)将x=1y=1代入方程组x+2y=a2x−y=1即可求a的值;(2)用加减消元法求方程组的解即可;(3)x=−2y=−2不是方程2x﹣y=1的解,因此x=−2y=−2不是方程组的解.解:(1)∵x=1y=1是方程组x+2y=a2x−y=1的解,∴1+2×1=a,∴a=3;(2)∵a=﹣2,∴x+2y=−2①2x−y=1②,②×2得,4x﹣2y=2③,①+③得,5x=0,∴x=0,将x=0代入②得,y=﹣1,∴方程组的解为x=0y=−1;(3)不正确,理由如下:将x=−2y=−2代入方程2x﹣y=1,可得2×(﹣2)﹣(﹣2)=﹣2≠1,∴x=−2y=−2不是方程组的解,∴解法不正确.点睛:本题考查二元一次方程组的解,熟练掌握二元一次方程组的解与二元一次方程组的关系,会用加减消元法解二元一次方程组是解题的关键.。
含参的二元一次方程组训练题1.解:设方程组为ax+by=k,-ax-by=k,由于解互为相反数,所以k=0.若x=y,则方程组为2ax=k,解为x=y=k/2,所以k=2a。
2.解:将x-y=-1代入方程组得到ax+(a-1)y=k,-ax-(a-1)y=-k,由于有一个解相同,所以k=0.若x+y=2,则方程组为2ax+2ay=k,解为x=y=k/2a,所以k=4a。
3.解:将x-3y=6代入方程组得到ax+(a-3)y=k,-ax+(3-a)y=-k,由于解相同,所以k=0.若x-y=2,则方程组为2ax+2ay=k,解为x=y=k/2a+1,所以k=2a-2.4.解:将x+y=1代入方程组得到a/2x-a/2y=1/2-k/2,-a/2x+a/2y=1/2-k/2,两式相加得到a/2(x+y)=1-k,代入x+y=1得到k=1-a/2.若3x-2y+k=0,则方程组为3x+3y=6-k,解为x+y=2-k/3,所以k=6-2m。
5.解:将x+y=1代入方程得到2x^2=1,所以x=±1/√2.代入方程得到y=±1/√2,所以解为(1/√2.-1/√2)和(-1/√2.1/√2)。
6.解:设方程组为ax+by=ab,bx+ay=ab,则(a-b)x+(b-a)y=0,即x-y=0,所以a=b。
代入方程组得到2ax=ab,解为x=y=b/2,所以a=b=2.7.解:设方程组为ax+by=k,cx+dy=m,由于解都是正整数,所以a、b、c、d、k、m都是正整数。
由于ad-bc≠0,所以解唯一,所以k和m都是正整数。
若x+y=k/a,则方程组为(a+c)x+(b+d)y=k+m,解为x+y=(k+m)/(a+c),所以a+c=k+m。
8.解:将x-y=10代入方程组得到ax+(a-10)y=k,-ax+(10-a)y=-k,由于解唯一,所以a≠5.若x-y=m,则方程组为2ax+(2a-2m)y=k,解为x+y=(k+m)/(a+a-m),所以a+a-m=10.9.解:将方程组化为矩阵形式Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。
二元一次方程的解法二元一次方程是指形如ax + by = c的方程,其中a、b、c为已知常数,而x、y为未知数。
解二元一次方程的方法有多种,下面将介绍两种常用的解法:代入法和消元法。
一、代入法解二元一次方程代入法是通过将一个变量(如x)用另一个变量(如y)的表达式代入到另一个方程中,从而将方程化简为只含一个变量的一元方程,进而求解。
例如,考虑以下二元一次方程组:2x + 3y = 8 (1)4x - 5y = 2 (2)首先,我们可以从方程(1)中解出x的表达式,得到x = (8 - 3y) / 2,将其代入方程(2)中,得到4(8 - 3y) / 2 - 5y = 2。
接下来,通过解这个一元方程,可以得到y的值。
将y的值代入到x = (8 - 3y) / 2中,可以得到x的值。
通过这种代入法,我们可以解得二元一次方程组的解。
二、消元法解二元一次方程消元法是通过适当的加减运算来消去一个变量,从而将方程组化简为含一个变量的一元方程。
具体步骤如下:例如,考虑以下二元一次方程组:2x + 3y = 8 (1)4x - 5y = 2 (2)我们可以通过倍乘或加减运算,将两个方程的系数乘以某个倍数,使得两个方程的系数相等或者互为相反数。
然后,将两个方程相加或相减,使得一个变量的系数相加或相减后消去,从而得到只含一个变量的一元方程。
在这个例子中,我们可以将方程(1)的系数乘以2,将方程(2)的系数乘以1,得到以下两个方程:4x + 6y = 16 (3)4x - 5y = 2 (4)然后,我们将方程(3)减去方程(4),可以消去x的项,得到11y = 14。
由此得到y的值。
接下来,将求得的y的值代入方程(1)或(2)中,可以解得x的值。
通过这种消元法,我们也可以解得二元一次方程组的解。
总结:二元一次方程的解法有多种,其中代入法和消元法是比较常用的方法。
通过代入法,将一个变量代入到另一个方程中,将方程化简为一元方程,然后求解。
二元一次方程的解法二元一次方程是指形如ax + by = c的方程,其中a、b、c为已知常数,x、y为未知数。
解法一:代入法代入法是一种常用且直观的解二元一次方程的方法。
步骤如下:1. 从其中一个方程中解出一个未知数,以便用于代入另一个方程。
假设我们从第一个方程中解出x,得到x = (c1 - by) / a。
2. 将解出的x代入第二个方程中,得到一个只含有一个未知数y的方程。
3. 解出y的值。
4. 将得到的y值代入第一个方程中,得到x的值。
解法二:消元法消元法是另一种常用的解二元一次方程的方法。
步骤如下:1. 将两个方程中的系数调整成相等或相差一个倍数,并将两个方程相减,使其中一个未知数被消去。
2. 解出剩下的未知数的值。
3. 将得到的未知数的值代入任意一个原方程,解出另一个未知数。
4. 得到二元一次方程的解。
解法三:矩阵法矩阵法是一种利用矩阵运算求解二元一次方程组的方法。
步骤如下:1. 将二元一次方程组写成矩阵形式,例如:[ a1 b1 ] [ x ] [ c1 ][ ] * [ ] = [ ][ a2 b2 ] [ y ] [ c2 ]2. 求解矩阵的行列式,如果行列式不为零,则方程有唯一解;如果行列式为零,则方程组无解或有无穷多解。
3. 如果有解,则使用伴随矩阵法求解,即:x = ( b1 * c2 - b2 * c1 ) / ( a1 * b2 - a2 * b1 )y = ( a1 * c2 - a2 * c1 ) / ( a1 * b2 - a2 * b1 )解法四:图解法图解法是一种通过绘制方程的图形来求解二元一次方程组的方法。
步骤如下:1. 将两个方程转化成直线的形式。
2. 绘制两个方程所对应的直线。
3. 直线的交点即为二元一次方程的解。
需要注意的是,以上解法都是基于二元一次方程的前提下进行的。
如果方程不是二元一次方程,则需要采用其他的解法。
二元一次方程的解法二元一次方程是指形如ax+by=c的方程,其中a、b、c分别是已知实数系数,x、y是未知数。
解二元一次方程的方法包括代入法、消元法和相减法。
代入法是指将一个方程的一个变量表示成另一个方程的变量的形式,然后再将其代入到另一个方程中求解。
下面举一个例子来说明代入法的解法步骤。
例子:解方程组2x + 3y = 73x - 4y = 10首先,可以选择其中一个方程(假设选第一个方程)将其中的一个变量(假设选择x)表示成另一个方程的变量的形式,然后代入另一个方程中:2x = 7 - 3yx = (7 - 3y) / 2将x代入第二个方程中,得到:3(7 - 3y) / 2 - 4y = 1021 - 9y - 8y = 20-17y = -1y = 1/17将y的值代入第一个方程中,得到:2x + 3(1/17) = 72x + 3/17 = 72x = 7 - 3/17x = (7 - 3/17) / 2因此,这个方程组的解为x = (7 - 3/17) / 2,y = 1/17。
消元法则是通过相加或相减两个方程,使其中一个变量的系数相等,从而消去这个变量,然后解剩下的一个一元方程。
下面通过一个例子来说明消元法的解法步骤。
例子:解方程组2x + 3y = 73x - 4y = 10为了消去y,可以将两个方程的系数相乘:2(3x - 4y) = 3(2x + 3y)6x - 8y = 6x + 9y-8y - 9y = 0-17y = 0y = 0将y = 0代入第一个方程中,得到:2x = 7x = 7/2因此,该方程组的解为x = 7/2,y = 0。
相减法是通过将两个方程相减,消去一个变量,然后解剩下的一个一元方程。
下面通过一个例子来说明相减法的解法步骤。
例子:解方程组2x + 3y = 73x - 4y = 10为了消去x,可以将两个方程相减:(2x + 3y) - (3x - 4y) = (7) - (10)2x + 3y - 3x + 4y = 7 - 10-y + 7y = -36y = -3y = -1/2将y = -1/2代入其中一个方程中(假设选择第一个方程),得到:2x + 3(-1/2) = 72x - 3/2 = 72x = 7 + 3/2因此,该方程组的解为x = (7 + 3/2) / 2,y = -1/2。
二元一次方程的解法在数学中,二元一次方程是由两个未知数的一次方程组成的方程。
解二元一次方程需要使用代数的基本原理和运算法则。
本文将介绍解二元一次方程的几种常见方法,包括代入法、消元法和等式相减法。
1. 代入法代入法是解二元一次方程最常用的方法之一。
它的基本思想是将一个方程的一个未知数表示成另一个方程的未知数的表达式,然后代入到另一个方程中求解。
假设有如下二元一次方程组:方程1:ax + by = c方程2:dx + ey = f首先,将方程1或方程2中的一个未知数表示成另一个方程的未知数的表达式,例如假设将方程1中的x表示成方程2的未知数y的表达式,得到:x = (f - ey) / d将上式代入方程1中,得到:a * ((f - ey) / d) + by = c通过整理化简,可以得到一个只含有一个未知数的一次方程:(af - aey) / d + by = c将上式整理为标准形式,得到:(by + aey) / d = (cd - af) / d进一步整理,得到:(1 + ae/d) * y = (cd - af) / d最后,求解这个一次方程,即可得到y的值。
将y的值代入方程1或方程2中,即可求得x的值。
2. 消元法消元法是解二元一次方程的另一种常用方法。
它的基本思想是通过适当的变换,使得方程组中的一个未知数的系数相等或互为相反数,从而消去这个未知数,然后得到只含有一个未知数的方程,进而求解。
依然以方程1和方程2为例,我们可以通过变换,使得方程1和方程2的y的系数相等或互为相反数。
具体步骤如下:将方程1乘以e,将方程2乘以b,得到新的方程组:方程1:aex + bey = ce方程2:bdx + bey = bf然后,将方程2减去方程1,得到:(bdx - aex) + (bey - bey) = bf - ce化简上式,得到一个只含有一个未知数的方程:(bd - ae) * x = bf - ce最后,求解这个一次方程,即可得到x的值。
二元一次方程(组)含参数专题训练例1、已知关于x ,y 的方程组⎩⎨⎧-=+=+22545by ax y x 与⎩⎨⎧=--=-0812by ax y x 有相同的解,求a ,b 的值. 解:由题意可将x +y =5与2x ﹣y =1组成方程组⎩⎨⎧=-=+125y x y x ,解得:⎩⎨⎧==32y x , 把⎩⎨⎧==32y x 代入4ax +5by =﹣22,得8a +15b =﹣22①, 把⎩⎨⎧==32y x 代入ax ﹣by ﹣8=0,得2a ﹣3b ﹣8=0②. 将①与②组成方程组,得⎩⎨⎧=---=+083222158b a b a ,解得:⎩⎨⎧-==21b a 例2、阅读以下内容:已知实数m ,n 满足m +n =5,且⎩⎨⎧=+-=+1098131189n m k n m ,求k 的值。
行知中学七年级七班的三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组⎩⎨⎧=+-=+1098131189n m k n m ,再求k 的值. 乙同学:将原方程组中的两个方程相加,再求k 的值.丙同学:先解方程组⎩⎨⎧=+=+10985n m n m ,再求k 的值.(1)试选择其中一名同学的思路,解答此题.(2)试说明在关于x 、y 的方程组⎩⎨⎧=--=+ay x a y x 3543中,不论a 取什么实数,x +y 的值始终不变. 解:(1)若选择乙同学的思路:⎩⎨⎧=+-=+②,1098①,131189n m k n m ,①+②得到,17(m +n )=11k ﹣3, ∵m +n =5,∴17×5=11k ﹣3,解得k =8.(2)⎩⎨⎧=--=+②.35①,43a y x a y x由①×3+②得到:4x +4y =12, ∴x +y =3,∴不论a 取什么实数,x +y 的值始终不变.巩固练习:1、已知x ﹣2y ﹣1=0,用含x 的代数式表示y ,则y =2、已知⎩⎨⎧==32y x 是二元一次方程5x +my +2=0的解,则m = 3、已知⎩⎨⎧==52y x 和⎩⎨⎧==101y x 是方程组ax +by =15的两个解,求a ﹣b 的值 . 4、已知关于x 、y 的二元一次方程2x ﹣ay =11的一个解是⎩⎨⎧==15y x ,则a = . 5、在二元一次方程组⎩⎨⎧=++=++0360132my x y x 中,当m = 时,这个方程组有无数组解. 6、已知关于x ,y 的二元一次方程组⎩⎨⎧+=--=+125m y x m y x ,则4x 2﹣4xy +y 2值为 7、若⎩⎨⎧==12y x 是关于x 、y 的方程组⎩⎨⎧=+=+72ay bx by ax 的解,则a +b 的值为 ( ) A .3 B .﹣3 C .2 D .﹣28、二元一次方程3x +2y =17的正整数解的个数是 ( )A .2个B .3个C .4个D .5个9、若关于x 、y 的方程组⎩⎨⎧=--=-18)12(4,432y a x ay x 只有一个解,则 ( )A .41=aB .41-=aC .41≠aD .41-≠a 10、已知关于x ,y 的方程组⎩⎨⎧=--=+a y x a y x 343,给出下列结论:①⎩⎨⎧-==15y x 是方程组的解;②当a =﹣2时,x 、 y 的值互为相反数;③当a =1时,方程组的解也是方程x +y =4﹣a 的解;其中正确的个数是( )A .0个B .1个C .2个D .3个11、代数式b ax x ++2,当x =2时,其值为7;当x =-2时,其值为3,求a 、b 的值。
(详细版)含参二元一次方程解法1. 问题描述我们面对的问题是求解含参的二元一次方程。
该方程的一般形式为:ax + by = c其中a、b、c为已知的参数,x、y为未知变量。
2. 解法步骤为了解决这个问题,我们可以采取如下的步骤来求解含参的二元一次方程:步骤1: 化简方程通过移项和合并同类项的方法,将方程化简为标准形式:ax + by = c步骤2: 求解x通过将y看作常数,求解关于x的一元一次方程,得到x的表达式。
步骤3: 求解y将得到的x的表达式代入原方程中,得到关于y的一元一次方程,求解得到y的表达式。
步骤4: 得出解将得到的x和y的表达式合并,即可得到含参二元一次方程的解。
3. 示例下面我们通过一个示例来演示含参二元一次方程的解法:假设我们要求解方程2x + ay = 6,其中a为一个未知参数。
步骤1: 化简方程方程已经是标准形式,无需化简。
步骤2: 求解x将y看作常数,我们可以将方程2x + ay = 6中的y消去,得到关于x的一元一次方程:2x + ay = 62x = 6 - ayx = (6 - ay) / 2步骤3: 求解y将得到的x的表达式代入原方程中,得到关于y的一元一次方程:2((6 - ay) / 2) + ay = 6(6 - ay) + ay = 66 - ay + ay = 66 = 6得到的等式恒成立,代表该一元一次方程有无穷解。
步骤4: 得出解由于方程有无穷解,我们无法得到具体的x和y的值,而是可以表示为通解的形式。
通解表达式为:x = (6 - ay) / 2y为任意实数。
4. 结论综上所述,我们可以通过化简方程、求解x和求解y的步骤,得到含参二元一次方程的解。
注意:具体的解取决于参数a、b和c的取值,有时方程可能无解或有无穷解。
在实际应用中,我们可以根据具体的参数值来判断方程的解的情况。
二元一次方程的解法1.用一个未知数表示另一个未知数(1)24x y +=,所以________x =;(2)345x y +=,所以________x =,________y =;(3) 5x-2y=10,所以x =,________y =.2.用代入法解二元一次方程组例1:方程组(1)92x y y x ……①………②ì+=ïïíï=ïî(2) ⎩⎨⎧-=+=15212x y y x(3)⎩⎨⎧-=+=-.154,653y x y x (4)⎩⎨⎧=-=-.43,532y x y x (5)⎩⎨⎧=-=+.72,852y x y x练习巩固:解下列方程组:(1)⎩⎨⎧-==+236y x y x (2)⎩⎨⎧=+-=-10235y x y x (3)⎩⎨⎧-=-=-2.32872x y y x(4)⎩⎨⎧-==+.2,72y x y x (5)⎩⎨⎧=-=+.2,6y x y x (6)⎩⎨⎧=+=-423,52y x y x(7) ⎩⎨⎧=+=-.63,72y x y x (8) ⎩⎨⎧=+=-.543,72y x y x (9)⎩⎨⎧-==+.1,623x y y x(10)⎩⎨⎧=-=+.102,8y x y x (11)⎩⎨⎧=+=+.52,42y x y x (12)⎩⎨⎧=-=-.1383,32y x y x将方程组中的一个方程的某个未知数用含有另一个未知数的代数式表示,并代入到另一个方程中,消去一个未知数,得到一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法,简称代入法.代入消元法解方程组的步骤是: ①用一个未知数表示另一个未知数; ②把新的方程代入另一个方程,得到一元一次方程(代入消元); ③解一元一次方程,求出一个未知数的值; ④把这个未知数的值代入一方程,求出另一个未知数的值;⑤检验,并写出方程组的解.例2、(1)⎩⎨⎧-=-=+854732y x y x (2)541538x y x y -=⎧⎨+=⎩①②1.对于方程432=-y x ,用含x 的代数式表示y ,则结果是;如果用含y 的代数式表示x ,结果是,2.已知方程25-=-y x ,如果用含x 的代数式表示y ,则结果是;如果用含y 的代数式表示x ,结果是.3.根据你的喜爱,把下列方程变形为用含一个未知数的代数式表示另一个未知数的形式.131=-y x )( (2)15105=-y x (3)1267=+y x (4)1035=-y x4.解下列方程组:(1)⎩⎨⎧=+=-53422y x y x (2)⎩⎨⎧=+=-823465y x y x (3)⎩⎨⎧=+=-1123273y x y x(4)⎩⎨⎧=-=+02102y x y x (5)⎩⎨⎧=+=+432543y x y x (6)⎩⎨⎧=+-=-832852y x y x(7)322313x y x y =⎧⎨+=⎩ ① ②(8)⎩⎨⎧-=-=52323y x x y (9)⎩⎨⎧=-=+15351234y x yx(10)⎩⎨⎧=+=+876765y x y x (11)⎩⎨⎧=-=+,,546368y x y x (12)⎩⎨⎧=+=-543632y xy x(13)解方程组⎩⎨⎧=-=+4251223y x y x 消元后化为一元一次方程,其中不正确的是()(A)4)312(5=--x x (B)12)45(3=-+x x (C)42)324(5=--y y (D)3·42524=--y y。
二元一次方程常见含参题型解法一、常见的含参二元一次方程题型有哪些?在解题时,我们常常会遇到含参的二元一次方程题型,这些题型可能涉及到不同的参数取值范围,需要采用不同的方法进行求解。
常见的含参二元一次方程题型包括但不限于以下几种:1. 一元二次方程的参数问题:如给定参数a,求方程x^2 + 2ax + a^2 - 3 = 0的解;2. 参数范围问题:如对于方程(x+2)(x-a) = 0,a取什么值时方程有两个相异的实根;3. 参数性质问题:如对于方程ax^2 + (a-1)x + 1 = 0,若a>0,求x 的取值范围;4. 参数关系问题:如对于方程(2a-1)x^2 + (a+1)x + 1 = 0,若方程有两个相反数根,求a的取值范围。
以上仅为一些常见的含参二元一次方程题型,实际上在解题过程中还会遇到更多类型的题目,需要根据具体情况进行灵活求解。
二、常见的含参二元一次方程解法有哪些?对于含参的二元一次方程题型,我们通常可以采用以下几种解法:1. 代数法:对于一些直接的参数问题,可以采用代数的方法进行求解。
通过将参数代入方程中,列出相关方程式,进而求得方程的解。
例如对于方程x^2 + 2ax + a^2 - 3 = 0,我们可以直接代入参数a,然后利用求根公式求得方程的解。
2. 几何法:对于一些参数范围或参数性质问题,可以采用几何的方法进行求解。
通过在坐标平面上绘制函数图像、直线或抛物线等,来分析参数的取值范围或者特定性质。
例如对于方程(x+2)(x-a) = 0,我们可以通过绘制函数图像得出a的取值范围。
3. 参数化求解法:对于一些参数关系问题,可以采用参数化的方法进行求解。
通过设定参数的具体取值,然后根据参数的性质进行讨论,并最终得出方程的解。
例如对于方程(2a-1)x^2 + (a+1)x + 1 = 0,我们可以对a进行参数化,然后讨论参数的取值范围。
以上是常见的含参二元一次方程解法,实际应用中还可能会有其他求解方法,需要根据具体题目进行灵活选择。
含参数的二元一次方程组的解法二元一次方程组是方程组的基础,是学习一次函数的基础,是中考和竞赛的常见的题目,所以这一部分知识非常重要。
现选取几道题略作讲解,供同学们参考。
一、两个二元一次方程组有相同的解,求参数值。
例:已知方程 与 有相同的解,则a 、b 的值为 。
略解:由(1)和(3)组成的方程组⎩⎨⎧=-=+5235y x y x 的解是 ⎩⎨⎧-=+=21y x 把它代入(2)得 a=14;把它代入(4)得b=2。
方法:是找每个方程组中都是已知数的方程组成新的方程组,得到的解,即是相同的解,再代入另一个方程,从而求出参数的解。
二、根据方程组解的性质,求参数的值。
例2:m 取什么整数时,方程组的解是正整数?略解:由②得x=3y2×3y-my=6 y=m-66 因为y 是正整数,x 也是正整数所以6-m 的值为1、2、3、6;m 的值为0、3、4、5。
方法:是把参数当作已知数求出方程的解,再根据已知条件求出参数的值。
三、由方程组的错解问题,示参数的值。
例3:解方程组⎩⎨⎧=-=+872y cx by ax 时,本应解出⎩⎨⎧-==23y x 由于看错了系数c,从而得到解⎩⎨⎧=-=22y x 试求a+b+c 的值。
方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而,求出参数的值。
8273=-⨯-⨯)(c 2-=c把⎩⎨⎧-==23y x 和⎩⎨⎧=-=22y x 代入到ax+by=2中,得到一个关于a 、b 的方程组。
(1) (2) ⎩⎨⎧=+=+4535y ax y x (3) (4) ⎩⎨⎧=+=-1552by x y x ① ② ⎩⎨⎧=-=-0362y x my x322222a b a b -=⎧⎨-+=⎩,解得45a b =⎧⎨=⎩所以7254=-+=++c b a四、根据所给的不定方程组,求比值。
例4:求适合方程组⎩⎨⎧=++=-+05430432z y x z y x 求 z y x z y x +-++ 的值。
二元一次方程的解法二元一次方程的解法:认识二元一次方程组的有关概念,会把一些简单的实际问题中的数量关系,用二元一次方程组的形式表示出来,学会用含有其中一个未知数的代数式表示另一个的方法。
下面小编整理了二元一次方程的解法,供大家参考。
代入消元(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法.(2)代入法解二元一次方程组的步骤。
①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. );③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用{联立两个未知数的值,就是方程组的解;⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边).例题:{x-y=3 ①{3x-8y=4②由①得x=y+3③③代入②得3(y+3)-8y=4y=1把y=1带入③得x=4则:这个二元一次方程组的解{x=4{y=1加减消元(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.[5](2)加减法解二元一次方程组的步骤①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;⑤用{联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
模块一 含参方程(组)的题型 1.同解问题 2.整数解问题 3.错解问题模块二 含参方程(组)的基本解法1.含参方程和含参方程组当方程的系数用字母表示时,这样的方程称为含字母系数的方程,这些字母系数称为参数,因此也叫做含参数的方程,简称含参方程.由至少一个含参方程组成的方程组叫做含参方程组.2.含参一元一次方程含参的一元一次方程总能化成ax b =的形式,方程ax b =的解根据a ,b 的取值范围分类讨论.①当0a ≠时,方程有唯一解bx a=;②当0a =,且0b =时,方程有无数个解,解是任意数; ③当0a =,且0b ≠时,方程无解.3.含参二元一次方程组对于方程组111222a xb yc a x b y c +=⎧⎨+=⎩,需要先通过消元转化为一元方程后再对解的情况进行讨论.①当1122a b a b ≠时,方程有唯一解; ②当111222a b ca b c ==时,方程有无数个解;③当111222a b ca b c =≠时,方程无解.模块三 含参不等式的基本解法1.含参不等式ax b <①当0a >,解集为bx a <;②当0a <,解集为bx a>;③当0a =,若0b >,则解集为任意数;若0b ≤,则这个不等式无解.(1)已知关于x 的方程1(1)12x k -=-和351148x k x +--=的解相同,则k 的值为____.(2)关于x ,y 的方程组354522x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,则()b a -=_____.(1)两个方程的解分别为21x k =-和72x k =-,由于两个方程的解相同,有1272k k -+=-,解得2k =. (2)8-.【教师备课提示】这道题主要考查含参方程(组)的同解问题.(1)(2014石室联中期末)关于x 的方程38764x k x +=+的解比关于x 的方程1123x x-+=的解大3,则k 的值为____________.(2)(西川半期)已知关于x 、y 的二元一次方程组323221y x k y x k +=+⎧⎨-=-⎩的解满足6x y +=,则k 的值为 .(1)38764x k x +=+的解为2838k x -=, 1123x x -+=的解为3-,所以28308k -=,328k =. (2)解方程得:947517k x k y -⎧=⎪⎪⎨+⎪=⎪⎩,代入,求得:32k =.【教师备课提示】这道题主要考查已知方程根的情况,求参数的值. 模块一 含参方程(组)的题型(1)(树德期末)当方程组2520x ay x y +=⎧⎨-=⎩的解是正整数时,整数a 的值为 .(2)m 为正整数,已知二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则2m =_______.(1)解方程得:10454x a y a ⎧=⎪⎪+⎨⎪=⎪+⎩,∴41,2,5,10a +=;41,5a +=.∴3a =-或1.(2)解方程得:103153x m y m ⎧=⎪⎪+⎨⎪=⎪+⎩,∴35,10m +=;35,15m +=.得2m =,24m =.【教师备课提示】这道题主要考查含参方程(组)的整数解问题.(1)解方程组87ax y x by +=⎧⎨-=⎩时,由于粗心,小宝看错了方程组中的a ,得到解为35x y =-⎧⎨=⎩,小茹看错了方程组中的b ,得到解为110x y =-⎧⎨=⎩.求方程正确的解.(2)已知方程组1620224ax by cx y +=-⎧⎨+=-⎩的解应为810x y =⎧⎨=-⎩,小超解题时把c 抄错了,因此得到的解为1213x y =⎧⎨=-⎩,则22a b c 2++的值为____________.(1)小宝看错了a 意味着b 是正确的,即解满足方程第二式,代入得357b --=;小茹看错了b 意味着a 是正确的,即满足方程第一式,代入得108a -+=.解得22a b =⎧⎨=-⎩,所以32x y =⎧⎨=⎩.(2)22234a b c ++=.【教师备课提示】这道题主要考查含参方程(组)的错解问题.(1)解关于x 的方程:428ax x-=+.(2)当a、b满足什么条件时,方程251x a bx+-=-满足:①有唯一解;②有无数解;③无解.(1)原方程可化为(2)12a x-=.当2a≠时,方程有唯一解122xa=-;当2a=时,有012=,方程无解.(2)方程化为(2)4b x a+=-,①有唯一解时,20b+≠,即2b≠-.②有无数解时,20b+=,40a-=,42a b==-,∴.③无解时,2040b a+=-≠,,24b a=-≠,∴.【教师备课提示】这道题主要考查含参方程的基本解法.(1)(2014成外期末)已知关于x的方程(23)3125a x bx x++=+有无数多个解,则a=_________,b=_________.(2)若a、b为定值,关于x的一元一次方程2236kx a x bk+--=,无论k为何值时,它的解总是1x=,求23a b+的值.(1)原方程整理为(2312)53a b x a+-=-,则由题意得,23120530a ba+-=⎧⎨-=⎩,解得53269ab⎧=⎪⎪⎨⎪=⎪⎩;(2)方程2236kx a x bk+--=可化为:(41)212k x a bk-++=,由该方程总有解1x=可知,41212k a bk-++=,即(4)132b k a+=-,又k为任意值,故401320ba+=⎧⎨-=⎩,解得1324ab⎧=⎪⎨⎪=-⎩,∴231a b+=.【教师备课提示】这道题主要考查已知解的情况,求参数的值.模块二含参方程(组)的基本解法求k ,b 为何值时,方程组(31)2y kx by k x =+⎧⎨=-+⎩的解满足:①有唯一一组解;②无解;③有无穷多组解.方程组可化为:(21)2k x b -=-, ①当210k -≠,即12k ≠时,方程(21)2k x b -=-有唯一解,从而原方程组有唯一解;②当210k -=且20b -≠,即12k =且2b ≠时,方程(21)2k x b -=-无解,从而原方程组无解;③当210k -=且20b -=,即12k =且2b =时,方程()212k x b -=-有无数个解,从而原方程组有无数组解. 【教师备课提示】这道题主要考查含参方程组的基本解法.解关于x 的不等式: (1)13kx +> (2)132kx x +>-(3)2(1)2m x +<(4)36mx nx +<--(1)移项得:2kx >当0k >时,解集为2x k >当0k <时,解集为2x k<当0k =时,不等式变为02x ⋅>,故不等式无解 (2)移项,合并同类项得:(3)3k x ->-当30k ->,即3k >时,不等式解集为33x k ->-当30k -<,即3k <时,不等式解集为33x k -<-当30k -=时,即3k =时,不等式变为03x ⋅>-,故不等式解集为任意数.模块三 含参不等式的基本解法(3)∵210m +>,∴不等式解集为221x m <+ (4)不等式变形得:()9m n x +<-,因不知()m n +的正负性,故分类讨论①当0m n +>,即m n >-时,解集为9x m n <-+ ②当0m n +<,即m n <-时,解集为9x m n>-+③当0m n +=,即m n =-时,不等式无解.(1)若关于x 的方程5342x x =-和12524ax ax x -=+有相同的解,则a 的值为______.(2)若关于x 的方程()40k m x ++=和(2)10k m x --=有相同的解,则2km-的值___.(3)(石室联中期末,B26)若方程组2376x y ax by +=⎧⎨-=⎩与方程组4453ax by x y +=⎧⎨-=⎩有相同的解,求102a b -+.(1)方程5342x x =-的解为8x =-, 把8x =-代入12524a x ax x -=+中,求得12a =.(2)法一:方程()40k m x ++=的解为4x k m -=+,方程(2)10k m x --=的解为12x k m=-,∴412k m k m -=+-,∴3m k =,∴523k m -=-. 法二:方程(2)10k m x --=等号两边乘以4-得(48)40m k x -+=,故48k m m k +=-,则523k m -=-.模块一 含参方程(组)的题型巩 固(3)由237453x y x y +=⎧⎨-=⎩得:21x y =⎧⎨=⎩,代入:2624a b a b -=⎧⎨+=⎩,可求得:521a b ⎧=⎪⎨⎪=-⎩∴10227a b -+=-.(1)当a = 时,方程组3522718x y ax y a -=⎧⎨+=-⎩的解互为相反数,此时方程组的解为 .(2)若关于x 、y 的方程组364x my x y +=⎧⎨+=⎩的解都是正整数,则整数m = .(3)甲、乙二人同解方程组232ax by cx y +=⎧⎨-=-⎩,甲正确解得11x y =⎧⎨=-⎩,乙因抄错了c ,解得26x y =⎧⎨=-⎩,求a ,b ,c 的值.(1)∵0x y +=,上述方程组化简为82518y a y a -=⎧⎨=-⎩,∴1845a a y -=-=,解之得8a =,于是24a y =-=-,2523a yx +==, 故8a =时,方程组的解为22x y =⎧⎨=-⎩.(2)3-,0,1.(3)52a =,12b =,5c =-.解关于x 的方程(3)(3)(3)49m x n m n n ++=-+++.去括号,化简可得:mx n =.当0m ≠时,方程的解为nx m=.当00m n ==,时,方程的解为任意数. 当00m n =≠,时,方程无解.如果关于x 的方程2(3)15(23)326kx x +++=有无数个解,求k 的值.原方程整理得(410)0k x -=, 由方程有无数个解得4100k -=,52k =.已知关于x 、y 的方程组3624x my x y a+=⎧⎨+=⎩,求m ,a 为何值时方程组:(1)无解;(2)有无穷解.将m ,a 视为参数求解方程组得到3-⨯①②:(6)612m y a -=- ③.(1)方程组无解,即③无解,③无解的条件为:60m -=,6120a -≠.6m =∴,12a ≠. 此时y 无解,自然22x y =-亦无解.(2)方程组有无穷解,即③有无穷解,③有无穷解的条件为:60m -=,6120a -=.6m =∴,12a =.此时y 有无穷解,自然22x y =-亦有无穷解.模块二 含参方程(组)的基本解法已知(21)1m x +>的解集是121x m <+,求m 的取值范围.12m <-.模块三 含参不等式的基本解法。
二元一次方程的解法一、引言二元一次方程是数学中的基本概念之一,它可以用来解决一些实际问题,如线性模型、经济学中的供求关系等。
本文将介绍二元一次方程的解法,并提供一些实际应用的示例。
二、方法一:代入法二元一次方程的代入法是一种常见而简单的解法。
首先,在其中一个方程中将其中一个变量表示为另一个变量的函数,然后将其代入另一个方程,从而得到单变量的一元方程。
例如,我们考虑以下二元一次方程组:方程一:x + y = 7方程二:2x - y = 1我们可以将方程一改写为x = 7 - y,并代入方程二:2(7 - y) - y = 1通过展开和整理,我们得到:14 - 2y - y = 114 - 3y = 1继续整理,得到:-3y = 1 - 14-3y = -13y = -13 / -3y = 13/3将y的值代入方程一中,我们得到:x + 13/3 = 7x = 7 - 13/3x = 12/3 - 13/3x = -1/3所以,该二元一次方程组的解为x = -1/3,y = 13/3。
三、方法二:消元法消元法是解二元一次方程组的另一种常用方法。
通过合理的加减运算,将方程组中的一个变量消去,从而得到只含有一个变量的一元二次方程。
继续以前面的例子为基础,我们通过消元法解决该方程组。
我们可以将方程二的系数乘以2,得到:方程一:x + y = 7方程二:4x - 2y = 2然后我们将方程一乘以2,并与方程二相减,从而消去y变量:2(x + y) - (4x - 2y) = 2(7) - 22x + 2y - 4x + 2y = 14 - 2-2x + 4y = 12整理后得到:4y - 2x = 12接下来,我们将这个结果与方程一相加,以消去x变量:(4y - 2x) + (x + y) = 12 + 74y - 2x + x + y = 19整理后得到:5y - x = 19现在,我们得到了一个只含有一个变量的方程。
含参二元一次方程组解法、同解、错解问题含参问题类型类型题1:含参问题构建二元一次方程组解方程例题1.若0)532(54=-++-+n m n m ,求()2n m -的值。
2.已知方程3)5()2()24(12=+----b a y b x a 是关于x、y的二元一次方程,求a与b的值。
3.已知与互为相反数,则=______,=________.4.已知2a y+5b 3x 与b 2-4y a 2x 是同类项,那么x,y的值是().学生/课程年级学科授课教师日期时段核心内容含参二元一次方程组解法、同解、错解问题教学目标1.掌握含参的二元一次方程组的同解、错解的解题方法2.掌握复杂的二元一次方程组的解法2.了解二元一次方程组的解有无数组解、唯一解与无解,会进行简单的求解二元一次方程组的灵活应用针对练习1.若|x-2|+(3y+2x)2=0,则的值是.2.若x a+1y-2b与-x2-b y2的和是单项式,则a、b的值分别的()A.a=2,b=-1B.a=2,b=1C.a=-2,b=1D.a=-2,b=-13.若单项式与是同类项,则,的值分别是多少4..若|x-y-1|+(2x-3y+4)2=0,则x=,y=.5.若是关于,的二元一次方程,则()A.,B.,C.,D.,类型题2:恒成立问题构建二元一次方程组解方程例题1.在方程(x+2y-8)+m(4x+3y-7)=0中,找出一对x,y值,使得m无论取何值,方程恒成立.2.在方程(a+6)x-6+(2a-3)y=0中,找出一对x,y值,使得a无论取何值,方程恒成立.类型题3:(新题型)含有三个未知数的方程组求比例例题1.已知满足方程组,求【学有所获】1)口述:2个未知数需要几个方程,3个未知数需要几个方程,n个未知数需要几个方程2)整体思想一般运用在哪些方面,试着自己归类总结。
针对练习1.已知4x-3y-6z=0,x+2y-7z=0,且xyz≠0.(1)请用含z的代数式表示x、y,并求出x:y:z的值(2)你能求出的值。
含字母系数的一次方程组一、二元一次方程及二元一次方程的解 1.二元一次方程的概念 含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”.2.二元一次方程的一般形式二元一次方程的一般形式为:0ax by c ++=(0a ≠,0b ≠)3.二元一次方程的解使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解. 一般情况下,一个二元一次方程有无数个解.二、二元一次方程组及二元一次方程组的解 1.二元一次方程组的概念注意:(1只有一元(不过一元方程在这里也可看作另一未知数系数为0的二元方程).如2631x x y =⎧⎨-=⎩也是二元一次方程组.(2)定义中“两个”的含义:二元一次方程组的解必须满足方程组中的每一个方程,同时它也必须是一个数对,而不能是一个数.2.二元一次方程组解的情况(1)在x 、y 的方程组111222a xb yc a x b y c +=⎧⎨+=⎩ ①②中,1a 、2a 、1b 、2b 、1c 、2c 均为已知数,(1a 与1b 、2a 与2b 都至少有一个不等于0),则有:由21b b ⨯-⨯①②得:12212112a b a b x b c b c -=-() 由21a a ⨯-⨯①②得:12211221a b a b y a c a c -=-()当12210a b a b -≠时,方程组有唯一一组解;当12210a b a b -=,且21120b c b c -≠,12210a c a c -≠时,方程组无解; 当12210a b a b -=,且21120b c b c -=,12210a c a c -=时,方程组有无穷多组解; (2)二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解的情况有以下三种:①当111222a b c a b c ==时,方程组有无数多解.(∵两个方程等效) ②当111222a b c a b c =≠时,方程组无解.(∵两个方程是矛盾的) ③当1122a b a b ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解:1221122121121221c b c b x a b a b c a c a y a b a b -⎧=⎪-⎪⎨-⎪=⎪-⎩(这个解可用加减消元法求得)注意:(1)方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行.(2)求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论.一、一次方程(组)解的讨论【例1】 下列说法正确的是( )A .二元一次方程只有一个解.B .二元一次方程组有无数个解.C .二元一次方程组的解必是它所含的二元一次方程的解.D .二元一次方程组一定有解.【解析】略 【答案】C 例题精讲【例2】 不解方程组,判定下列方程组解的情况:①23369x y x y -=⎧⎨-=⎩;②23423x y x y -=⎧⎨-=⎩;③351351x y x y +=⎧⎨-=⎩【解析】如果在此我们仍然使用上面的结论判断,会不太方便,对于上面的结论,我们还可以这样记忆:1a 、2a 、1b 、2b 、1c 、2c 均不为0,那么上结论可这样记忆:当1122a b a b ≠时,方程组有唯一一组解(这个解可用加减消元法求得); 当111222a b c a b c ==时,方程组有无穷多组解(因为两个方程等效); 当111222a b c a b c =≠时,原方程组无解(因为两个方程是矛盾的). 这个公式很常用!利用此结论会很快判断出结果:①123369-==-,方程组有无穷多组解;②213423-=≠-,方程组无解;③35≠-方程组有唯一解. 【答案】①123369-==-,方程组有无穷多组解;②213423-=≠-,方程组无解;③3535≠-方程组有唯一解.二、含字母系数的一次方程组1.根据方程解的具体数值来确定 【例3】 已知12x y =⎧⎨=⎩与3x y m =⎧⎨=⎩都是方程x y n +=的解,求m 与n 的值.【解析】12x y =⎧⎨=⎩是方程x y n +=的解可得3n =,则原方程为3x y +=,3x y m =⎧⎨=⎩是方程3x y +=的解可得33m +=,0m =. 【答案】0m =,3n =.【例4】 方程6ax by +=有两组解是22x y =⎧⎨=-⎩与18x y =-⎧⎨=-⎩,求2a b +的值.【解析】将22x y =⎧⎨=-⎩与18x y =-⎧⎨=-⎩代入6ax by +=可得22686a b a b -=⎧⎨--=⎩,解得21a b =⎧⎨=-⎩,20a b +=【答案】0【例5】 如果二元一次方程20mx ny ++=有两个解是22x y =⎧⎨=⎩与11x y =⎧⎨=-⎩,那么下列各组中,仍是这个方程的解的是( ) A .35x y =⎧⎨=⎩B .62x y =⎧⎨=⎩C .53x y =⎧⎨=⎩D .26x y =⎧⎨=⎩【解析】将22x y =⎧⎨=⎩与11x y =⎧⎨=-⎩代入20mx ny ++=可得3212m n ⎧=-⎪⎪⎨⎪=⎪⎩,原方程为312022x y -++=,检验选A .【答案】A【例6】 写出一个以12x y =-⎧⎨=⎩为解的二元一次方程组 .【解析】此题答案不唯一,满足条件即可. 【答案】13x y x y +=⎧⎨-=-⎩【例7】 写出一个以23x y =⎧⎨=⎩为解的二元一次方程组 .【解析】本题答案不唯一,满足条件即可.【答案】51x y y x +=⎧⎨-=⎩【例8】 已知43x y =-⎧⎨=⎩是方程组12ax y x by +=-⎧⎨-=⎩的解,则6()a b += .【解析】根据题意可得:431432a b -+=-⎧⎨--=⎩,由431a -+=-得:1a =,由432b --=得:2b =-,6()1a b +=.【答案】1【例9】 已知12x y =-⎧⎨=⎩是方程组12x ay bx y +=-⎧⎨-=⎩的解,则a b += .【解析】将12x y =-⎧⎨=⎩代入12x ay bx y +=-⎧⎨-=⎩可得0a =,4b =-,那么0(4)4a b +=+-=-.【答案】4-【例10】 已知21x y =⎧⎨=⎩是方程组2(1)21x m y nx y +-=⎧⎨+=⎩的解,求()m n +的值.【解析】把2,1x y ==代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得()22112211m n ⎧⨯+-⨯=⎪⎨+=⎪⎩ 由①得1m =- 由②得0n =所以当1m =-,0n =时,1m n +=-.【答案】1-【例11】 已知方程组2421mx y n x ny m +=⎧⎨-=-⎩的解是11x y =⎧⎨=-⎩,求m 、n 的值.【解析】将11x y =⎧⎨=-⎩代入2421mx y n x ny m +=⎧⎨-=-⎩可得2421m nn m -=⎧⎨+=-⎩,解得31m n =⎧⎨=⎩.【答案】31m n =⎧⎨=⎩【例12】 关于x ,y 的方程组3205319mx ny mx ny +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,求m ,n 的值.【解析】将11x y =⎧⎨=-⎩代入3205319mx ny mx ny +=⎧⎨-=⎩可得3205319m n m n -=⎧⎨+=⎩,解得23m n =⎧⎨=⎩【答案】23m n =⎧⎨=⎩【例13】若方程组26ax yx by+=⎧⎨+=⎩的解是12xy=⎧⎨=-⎩,则a b+=.【解析】略【答案】0a b+=【例14】若方程组2x y bx by a+=⎧⎨-=⎩的解是1xy=⎧⎨=⎩,那么a b-=.【解析】略【答案】1【例15】若关于x y,的方程组2x y mx my n-=⎧⎨+=⎩的解是21xy=⎧⎨=⎩,则m n-为()A.1 B.3 C.5 D.2 【解析】略【答案】D【例16】明明和亮亮二人解关于x、y的方程组278mx bycx y+=⎧⎨-=⎩,明明正确地解得32xy=⎧⎨=-⎩,而亮亮因把c看错了,解得22xy=-⎧⎨=⎩.请问:亮亮把c看成了多少?【解析】根据题意,分别把32xy=⎧⎨=-⎩和22xy=-⎧⎨=⎩代入方程2mx by+=,得322222m bm b-=⎧⎨-+=⎩,解得45mb=⎧⎨=⎩把3x=,2y=-代入方程78cx y-=,得2c=-.假设亮亮把c看成了d,把2x=-,2y=代入方程78dx y-=,得11d=-.【答案】11-【例17】已知方程组278ax bymx y+=⎧⎨-=⎩的解应为32xy=⎧⎨=-⎩,由于粗心,把m看错后,解方程组得22xy=-⎧⎨=⎩,则a b m⋅⋅的值是.【解析】将32xy=⎧⎨=-⎩,22xy=-⎧⎨=⎩代入2ax by+=可得222322a ba b-+=⎧⎨-=⎩,解得45ab=⎧⎨=⎩32x y =⎧⎨=-⎩代入78mx y-=可得2m=-,45(2)40a b m⋅⋅=⨯⨯-=-【例18】 孔明同学在解方程组2y kx by x=+⎧⎨=-⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为12x y =-⎧⎨=⎩,又已知13k b =+,则b 的正确值应该是 .【解析】把12x y =-⎧⎨=⎩代入6y kx =+可得4k =把4k =代入得11b =-【答案】11-【例19】 已知甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩,如果甲看错了方程①中的a ,得方程组的解为31x y =-⎧⎨=⎩,而乙看错方程②中的b ,得到方程组的解是54x y =⎧⎨=⎩,请求120082009()10a b +-的值. 【解析】把31x y =-⎧⎨=⎩代入42x by -=-,可得10b =-把54x y =⎧⎨=⎩代入515ax y +=可得1a =-把1a =-, 10b =-代入20082009()2a += 【答案】2【例20】 甲、乙两人同时解方程组85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①中的m ,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②的n ,得到的解是25x y =⎧⎨=⎩,试求正确m n ,的值. 【解析】由题意得:425258m n m n -=⎧⎨+=-⎩解方程组可得:382112m n ⎧=⎪⎪⎨⎪=-⎪⎩【答案】382112m n ⎧=⎪⎪⎨⎪=-⎪⎩【例21】 小刚在解方程组278ax by cx y +=⎧⎨-=⎩时,本应解出32x y =⎧⎨=-⎩由于看错了系数c ,而得到的解为22x y =-⎧⎨=⎩求a b c ++的值.【解析】由题意得:322222a b a b -=⎧⎨-+=⎩解得:45a b =⎧⎨=⎩把32x y =⎧⎨=-⎩代入方程78cx y -=得:2c =-∴7a b c ++=【答案】72.根据方程解的数量关系来确定【例22】 关于x ,y 的二元一次方程组42132x y mx y -=⎧⎪⎨+=⎪⎩的解中x 与y 的值相等,试求m 的值.【解析】根据题意可得x y =,代入方程组可得42132x x mx x -=⎧⎪⎨+=⎪⎩,解得122x m ⎧=⎪⎨⎪=⎩. 【答案】2【例23】 若方程组435(1)8x y kx k y +=⎧⎨--=⎩的解中x 比y 的相反数大1,求k 的值.【解析】根据题意可得1x y =-+,代入方程组可得4(1)35(1)(1)8y y k y k y -++=⎧⎨-+--=⎩,解得13y k =-⎧⎨=⎩.【答案】3【例24】 若关于x y ,的二元一次方程组2351x y mx y m +=⎧⎨+=-⎩的解x 与y 的差是7,求m 的值.【解析】解方程组2351x y m x y m +=⎧⎨+=-⎩的解为:3221x m y m =--⎧⎨=+⎩代入7x y -=得:2m =-【例25】 当1x =时,关于x ,y 的二元一次方程组331ax y x by -=⎧⎨-=-⎩解中的两个数互为相反数,求a ,b .【解析】x ,y 互为相反数,当1x =,则1y =-,代入方程组可得2a =,4b =-. 【答案】2a =,4b =-.【例26】 二元一次方程组31242x y x ay +=⎧⎨+=⎩的解中x 与y 互为相反数,求a 的值.【解析】∵x 与y 互为相反数 ∴0x y +=解0312x y x y +=⎧⎨+=⎩得:66x y =⎧⎨=-⎩把方程组的解代入412x ay +=得2a =【答案】2【例27】 k 为何值时,关于x y ,的方程组35223x y k x y k-=+⎧⎨-=⎩的解的和为20.【解析】这是含有字母的二元一次方程组,求解此类题需将字母看作常数求解方程组的解,然后再根据题目条件求出字母的值.解:解方程组35223x y k x y k -=+⎧⎨-=⎩得:264x k y k =-⎧⎨=-⎩又因为:20x y +=,即:31020k -=所以:10k =.【答案】10【例28】 已知方程组325(1)7x y kx k y -=⎧⎨+-=⎩的解x y ,,其和1x y +=,求k 的值. 【解析】解3251x y x y -=⎧⎨+=⎩得:25y =-因为(1)7kx k y +-=,所以7kx ky y +-= 所以()7k x y y +-= 把21,5x y y +==-代入()7k x y y +-=得:335k =【答案】335【例29】 已知方程组3542x y m x y m +=-⎧⎨+=⎩中未知数和等于1-,则m = .【解析】方程组可以简化为3241y m y m -+=-⎧⎨-+=⎩;解之得到3m =-.【答案】3-3.根据方程解的个数情况来确定【例30】 m ,n 取何值时,方程组2354x y x my n +=⎧⎨+=⎩(1)有唯一解?(2)没有解?(3)有无穷多组解? 【解析】由①可得253x y =-③,代入②可得(6)10m y n -=-④当60m -≠时,④有惟一解,进而原方程组有惟一一组解;当60m -=时,100n -≠时,④无解,进而原方程组无解;当60m -=时,100n -=时,④无穷个解,进而原方程有无穷组解.【答案】(1)当60m -≠时,原方程组有惟一一组解;(2)当60m -=时,100n -≠时,原方程组无解; (3)当60m -=时,100n -=时,原方程有无穷组解.【例31】 已知关于x 、y 的方程组2122(1)3ax y ax a y +=+⎧⎨+-=⎩,分别求出当a 为何值时,方程组的解为:(1)惟一一组解;(2)无解;(3)有无穷多组解.【解析】由已知方程组可得:(2)(1)(2)(2)2(2)(1)2a a x a a a a y a -+=-+⎧⎨-+=-⎩,(1)当(2)(1)0a a -+≠,即2a ≠且1a ≠-时,方程有惟一解,方程组也有惟一解;(2)当(2)(1)0a a -+=,且(2)(2)a a -+与2a -中至少有一个不为零时,方程无解,因此当1a =-时,原方程无解;(3)当(2)(1)(2)(2)20a a a a a -+=-+=-=,即2a =时,原方程组有无穷多组解.【答案】(1)当2a ≠且1a ≠-时,方程组有惟一解;(2)当1a =-时,原方程无解;(3)当2a =时,原方程组有无穷多组解.【例32】 选择一组a ,c 值使方程组572x y ax y c +=⎧⎨+=⎩,①有无数多解;②无解;③有唯一的解.【解析】略【答案】①当10a =,14c =时,方程组有无数多解;②当10a =,14c ≠时,方程组无解; ③当10a ≠时,方程组有唯一的解.【例33】 当m n ,为何值时,方程组(21)4mx y nm x y -=-⎧⎨--=-⎩(1)无解;(2)惟一解;(3)有无穷多解.【解析】②-①,得(1)4m x n -=-(1)当1040m n -=-≠,,即14m n =≠,时,原方程组无解; (2)当10m -≠,即1m ≠时,原方程组有惟一解; (3)当10m -=,40n -=时,即14m n ==,时,原方程组有无穷多个解.【答案】(1)当14m n =≠,时,原方程组无解; (2)当1m ≠时,原方程组有惟一解; (3)当14m n ==,时,原方程组有无穷多个解.【例34】 当m n ,为何值时,关于x y ,的方程组2235mx y nx y n -=⎧⎨+=+⎩(1)有唯一解;(2)有无数解;(3)无解.【解析】(1)由223m ≠-,得:43m ≠-. ∴当43m ≠-,n 为一切有理数时,方程组有唯一解.(2)由2235m n n =-=+,得4,23m n =-=-. ∴当4,23m n =-=-时,方程组有无数解.(3)由2235m n n =-≠+,得4,23m n =-≠-. ∴当4,23m n =-≠-时,方程组无解.【答案】(1)当43m ≠-,n 为一切有理数时,方程组有唯一解.(2)当4,23m n =-=-时,方程组有无数解.(3)当4,23m n =-≠-时,方程组无解.【例35】k 为何值时,方程组22342kx y x y +=⎧⎨-=⎩无解?【解析】根据12a a =12b b ≠12c c 时,方程组无解,所以32k =- 【答案】32-【例36】 若关于xy 的方程组322(1)mx y x m y m+=⎧⎨+-=⎩有无穷多组解,求m 的值.【解析】∵方程组有无穷多组解 ∴2m =31m -=2m 解得:2m =(舍),2m =- ∴m 的值是2-.【答案】2-【例37】 已知方程组354x my x ny +=⎧⎨+=⎩无解,m 和n 是绝对值小于10的整数,求m 和n 的值.【解析】因为方程组无解,所以3m n =,45m n ≠.因为||3||10m n =<,所以101033n -<<,即3n =-,2-,1-,0,1,2,3;相应的9m =-,6-,3-,0,3,6,9,所以(m ,n )=(9-,3-),(6-,2-),(3-,1-),(0,0),(3,1),(6,2),(9,3).【答案】(m ,n )=(9-,3-),(6-,2-),(3-,1-),(0,0),(3,1),(6,2),(9,3).【例38】 如果关于x 、y 的方程组3921ax y x y +=⎧⎨-=⎩无解,那么a = .【解析】注意方程组无解的条件,根据111222a b c a b c =≠时,方程组无解可得出a 的值. 【答案】6-【例39】 m ,n 取何值时,方程2354x y x my n +=⎧⎨+=⎩有无穷多组解?没有解?有唯一解? 【解析】由方程组可得:(6)10m y n -=-,当60m -=,100n -=时,即6m =,10n =方程组有无穷多组解;当60m -=,100n -≠时,即6m =,10n ≠方程组无解; 当60m -≠,100n -≠时,即6m ≠,10n ≠方程组有唯一解.【答案】6m =,10n =方程组有无穷多组解;6m =,10n ≠方程组无解; 6m ≠,10n ≠方程组有唯一解.4.根据方程同解的情况来确定【例40】 已知方程组2564x y ax by +=-⎧⎨-=-⎩和方程组35168x y bx ay -=⎧⎨+=-⎩的解相同,求3(2)a b +的值.【解析】由已知,两个方程组有相同的解,所以方程256x y +=-和3516x y -=有相同的解,故将此两个方程联立,通过解此方程组就可求出两个方程组的解,又因为此解满足方程4ax by -=-和8bx ay +=-,故可得关于,a b 的二元一次方程组,通过解该方程组就可求出,a b 的值,从而可求3(2)a b +的值.解:将256x y +=-和3516x y -=联立,得2563516x y x y +=-⎧⎨-=⎩①+②,得510x =,∴2x =把2x =代入①,得2256y ⨯+=-,∴2y =-. ∴22x y =⎧⎨=-⎩.将22x y =⎧⎨=-⎩.代入方程4ax by -=-和8bx ay +=-,得224228a b b a +=-⎧⎨-=-⎩,即24a b a b +=-⎧⎨-=⎩解得13a b =⎧⎨=-⎩.当1,3a b ==-时,333(2)(23)(1)1a b +=-=-=-故代数式3(2)a b +的值为-1.解决此题的关键是深刻理解二元一次方程组的解的概念,二元一次方程组的解就是方程组中两个二元一次方程的公共解.【答案】1-【例41】 关于x y ,的方程组354522x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,则()b a -= .【解析】本题注意方程组的重新组合,把只含有x y ,的方程放在一起组成方程组可解出x y ,的值.再把x y ,的值代入含有a b ,的方程可得到关于a b ,的方程组.可求得12x y =⎧⎨=-⎩,进而求得23a b =⎧⎨=⎩.所以()8b a -=-.【答案】8-【例42】 已知方程组5354x y ax y +=⎧⎨+=⎩与2551x y x by -=⎧⎨+=⎩有相同的解,求a b ,的值. 【解析】解方程组5325x y x y +=⎧⎨-=⎩得:12x y =⎧⎨=-⎩把12x y ==-,分别代入方程5451ax y x by +=+=,可得:142a b ==, 【答案】142a b ==,【例43】 已知x ,y 的方程组241ax by x y +=⎧⎨+=⎩与3(1)3x y bx a y -=⎧⎨+-=⎩的解相同,求a ,b 值.【解析】联立1x y +=与3x y -=可得21x y =⎧⎨=-⎩,将其代入其它两个方程24(1)3ax by bx a y +=⎧⎨+-=⎩,解得64a b =⎧⎨=⎩.【答案】64a b =⎧⎨=⎩【例44】 如果二元一次方程组4x y ax y a +=⎧⎨-=⎩的解是二元一次方程3528x y a --=的一个解,那么a 的值是?【解析】解方程组⎧⎨⎩2a =【答案】2【例45】 已知关于x y ,的方程组239x y mx y m +=⎧⎨-=⎩的解也是方程3217x y +=的解,求m .【解析】解方程组23,9x y m x y m +=⎧⎨-=⎩得:72x my m =⎧⎨=-⎩把72x my m =⎧⎨=-⎩代入3217x y +=得:1m =【答案】1【例46】 若关于x y ,的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为?【解析】由方程①+②可得:7x k =①-②可得:2y k =-把7x k =,2y k =-代入方程236x y +=得:34k =【答案】34【例47】 已知关于x ,y 的二元一次方程(1)(2)520a x a y a -+++-=,当a 每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解. 【解析】解法一:由于a 取不同的值,方程都有一个相同的解,所以可以取1a =,1a =-代入原方程,可以得到方程组:330270y x y +=⎧⎨-++=⎩,解得公共解为:31x y =⎧⎨=-⎩;解法二:方程有一个公共解,说明方程有一种形式,关于a 的方程有无数解,将方程变形得:(2)(25)0a x y x y +----=,此方程有无数解,故:20250x y x y +-=⎧⎨--=⎩,解得公共解为:31x y =⎧⎨=-⎩. 【答案】31x y =⎧⎨=-⎩5【例48】 a 【解析】把a 作为已知数,解这个方程组得31325312a x a y -⎧=⎪⎪⎨-⎪=⎪⎩ ∵00x y >⎧⎨>⎩,∴3130253102aa -⎧>⎪⎪⎨-⎪>⎪⎩解不等式组得313315a a ⎧<⎪⎪⎨⎪>⎪⎩,解集是6111053a <<【答案】111053a <<【例49】 m 取何整数值时,方程组2441x my x y +=⎧⎨+=⎩的解x y ,都是整数? 【解析】把m 作为已知数,解方程组得81828x m y m ⎧=-⎪⎪-⎨⎪=⎪-⎩∵x 是整数,∴8m -取8的约数1248±±±±,,,. ∵y 是整数,∴8m -取2的约数12±±,. 取它们的公共部分,812m -=±±,. 解得97106m =,,,. 经检验97106m =,,,时,方程组的解都是整数. 【答案】97106m =,,,【例50】 已知方程组51x my x y +=⎧⎨+=⎩有正整数解,那么正整数m 的值为 .【解析】消去x 得到方程(1)6m y +=,解得61y m =+. 因此12m +=或13m +=;故1m =或2m =.【答案】1m =或2m =【例51】 要使方程组⎧⎨⎩有正整数解,求整数a 的值.【解析】解方程组2x x ⎧⎨-⎩∵∴4a +的值可以为:124816,,,,∴a 的值为:320412--,,,,. 【答案】320412--,,,,【例52】 已知m 为正整数,二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,即x y ,均为整数,则2m = .【解析】消去y 得到(3)10m x +=;因为方程有整数解,故10(3)3x m m =≠-+,代入第二个方程得到153y m =+; 为使103m +为整数,且m 是正整数,只能取2m =或7; 为使153m +为整数,且m 是正整数,只能取2m =或12; 为使103m +和153m +都是整数,且m 是正整数,取2m =,则24m =. 【答案】4【例53】 已知关于x y ,的方程组: 1 1 1 x by y ax bx ay -=⎧⎪-=⎨⎪+=⎩有解,试证明:221a b ab a b ++++=. 【答案】由①+②×b ,得(1)1ab x b -=+,由①×a +②,得(1)1ab y a -=+.当1ab =时,(1)1ab y a -=+无解,即方程组无解;当1ab ≠时,则11bx ab +=-,11a y ab+=-,代入③化简即可得到221a b ab a b ++++=.。
含参二元一次方程解法
二元一次方程的解法是通过联立方程和解方程的方法来确定未知数的值。
以下是一种常见的解法:
1. 首先,根据已知条件列出两个方程,形式为ax+by=c。
其中,
a、b、c是已知的常数。
2. 对两个方程进行合理的运算,将其中一个方程的未知数表示为另一个方程的未知数的函数。
3. 将上一步得到的表达式代入另一个方程中,消去其中一个未知数,将方程化简为只含有一个未知数的方程。
4. 解这个仅含有一个未知数的方程,得到该未知数的值。
5. 将得到的未知数的值代入任意一个原始方程中,计算另一个未知数的值。
6. 最后,将得到的两个未知数的值表示为一个有序对,即为二元一次方程的解。
通过以上步骤,可以求解二元一次方程的解。
需要注意的是,有时方程组可能无解或有无穷多个解。