内陆湖泊水质遥感反演的方法的研究44页PPT
- 格式:ppt
- 大小:8.80 MB
- 文档页数:44
利用遥感技术进行湖泊水质监测研究近年来,随着环境问题的日益突出,湖泊水质监测研究变得越来越重要。
而遥感技术则成为了湖泊水质监测的有力工具。
本文将探讨利用遥感技术进行湖泊水质监测研究的相关内容。
一、遥感技术概述遥感技术是利用航天器或无人机等遥感平台所获取的电磁辐射数据,通过对这些数据进行解译和分析,从而了解地球表面的信息。
遥感技术可以获取大范围、高精度的数据,并具有非接触式、实时性强、反复观测等优势。
二、湖泊水质监测的重要性湖泊是重要的水资源和生态系统,其水质状况直接关系到人类和生物的生存与健康。
湖泊水质监测可以帮助我们了解湖泊中的水质状况,及时掌握湖泊环境变化,为环境保护和资源管理提供参考依据。
三、遥感技术在湖泊水质监测中的应用1. 湖水表层温度监测湖泊水温是湖泊生态系统稳定与否的重要指标之一。
遥感技术可以通过获取湖水表面温度信息,进而研究湖泊的热力学过程、循环和交换变化,为湖泊生态系统研究和管理提供重要参考。
2. 悬浮物浓度监测湖泊中的悬浮物浓度是影响水质的一个重要因素。
传统的悬浮物监测方法通常需要大量人力、物力和时间成本,而利用遥感技术可以从大范围、高精度的角度对湖泊中悬浮物浓度进行快速准确的监测。
3. 水色指数监测水色指数可以反映湖泊内部的生物、化学和物理特征,是评价湖泊水质的重要指标之一。
通过遥感技术获取湖泊的水色指数数据,可以实现对湖泊水质的快速有效监测,为湖泊环境的管理和保护提供科学依据。
4. 藻华监测湖泊中的藻华是湖泊富营养化程度的重要指标之一,也是影响水质的关键因素之一。
遥感技术可以通过获取湖泊中的藻华信息,定量评估湖泊的富营养化程度,并为湖泊生态系统的管理和保护提供参考。
5. 湿地监测湿地是湖泊重要的自然保护区之一,对维持湖泊生态平衡具有重要作用。
利用遥感技术可以实现对湿地的监测,包括湿地类型、湿地面积和湿地动态变化等方面的研究,为湖泊湿地保护和生态恢复提供支持。
四、遥感技术在湖泊水质监测中的挑战与展望尽管遥感技术在湖泊水质监测中有着广泛的应用前景,但仍面临一些挑战。
遥感技术在湖泊水质监测中的应用研究一、引言湖泊作为重要的水资源和生态系统组成部分,其水质状况直接关系到周边生态环境和人类的生产生活。
传统的水质监测方法往往需要实地采样和实验室分析,不仅费时费力,而且难以实现大面积、实时的监测。
随着遥感技术的迅速发展,为湖泊水质监测提供了一种高效、全面的手段。
二、遥感技术的原理与特点遥感技术是通过传感器接收来自地表物体反射或发射的电磁波信息,进而获取目标物体的特征和状态。
在湖泊水质监测中,主要利用的是光学遥感和微波遥感。
光学遥感基于水体对不同波长光的吸收、散射和反射特性来反演水质参数。
例如,清澈的水体对蓝光的吸收较弱,反射较强,而含有大量悬浮物和藻类的水体则对绿光和红光的反射增强。
微波遥感则可以穿透云层,不受天气条件的限制,对于大面积的湖泊监测具有独特优势。
遥感技术具有大面积同步观测、时效性强、成本相对较低等特点。
它能够快速获取湖泊的空间分布信息,及时反映水质的动态变化。
三、遥感技术在湖泊水质监测中的应用(一)监测叶绿素 a 浓度叶绿素 a 是藻类的重要组成部分,其浓度可以反映湖泊中藻类的生物量。
通过遥感影像的光谱特征,可以建立叶绿素 a 浓度与反射率之间的关系模型,从而实现对其浓度的监测。
(二)监测悬浮物浓度悬浮物会影响水体的透明度和光学性质。
遥感技术可以通过分析水体的反射率来估算悬浮物的浓度,为了解湖泊的泥沙含量和浑浊度提供重要依据。
(三)监测营养盐含量如总氮、总磷等营养盐是影响湖泊水质的关键因素。
虽然遥感直接监测营养盐较为困难,但可以通过与叶绿素 a 等相关参数的关系间接推断其含量。
(四)监测水温利用热红外遥感可以获取湖泊表面的水温分布,对于研究湖泊的热交换、生态过程和水质变化具有重要意义。
(五)监测湖泊面积和水位变化通过遥感影像的解译,可以准确监测湖泊的面积和水位变化,为水资源管理和防洪减灾提供支持。
四、遥感数据的处理与分析方法(一)数据预处理包括辐射校正、几何校正、大气校正等,以消除传感器误差、地形影响和大气干扰,提高数据的质量和准确性。
遥感技术在湖泊水质监测中的应用研究一、引言湖泊作为地球上重要的水资源之一,其水质状况对于生态平衡、人类生产生活以及经济发展都具有至关重要的意义。
随着工业化和城市化进程的加速,湖泊面临着越来越多的污染威胁,如富营养化、重金属污染、有机物污染等。
传统的水质监测方法通常需要在现场采集水样,然后在实验室进行分析,这种方法不仅费时费力,而且难以实现大面积、实时、动态的监测。
遥感技术的出现为湖泊水质监测提供了一种全新的、高效的手段。
二、遥感技术概述遥感技术是一种通过非接触方式获取目标物体信息的技术手段。
它利用传感器接收来自地面物体反射或发射的电磁波信号,并对这些信号进行处理和分析,从而获取有关目标物体的特征和性质。
遥感技术具有大面积同步观测、时效性强、数据综合性高等优点,能够快速获取大范围的地表信息。
在湖泊水质监测中,常用的遥感数据源包括卫星遥感和航空遥感。
卫星遥感具有覆盖范围广、周期短等优势,可以实现对大面积湖泊的长期监测;航空遥感则具有更高的空间分辨率和灵活性,适用于对小范围湖泊或重点区域的精细监测。
三、遥感技术监测湖泊水质的原理湖泊水质参数与水体的光学特性密切相关。
不同的水质参数会导致水体对电磁波的吸收、散射和反射特性发生变化。
遥感技术正是通过探测水体的光谱特征来反演水质参数。
例如,叶绿素 a 是衡量水体富营养化程度的重要指标。
叶绿素 a 在蓝光和红光波段有较强的吸收,而在绿光波段有较强的反射。
通过分析水体在这些波段的光谱特征,可以估算叶绿素 a 的浓度。
透明度是反映水体清澈程度的参数。
透明度较低的水体对光的衰减较大,遥感传感器接收到的反射光强度较弱。
通过建立反射光强度与透明度之间的关系,可以实现对透明度的监测。
此外,总磷、总氮、化学需氧量等水质参数也与水体的光谱特征存在一定的关联,可以通过遥感技术进行监测。
四、遥感技术在湖泊水质监测中的应用(一)富营养化监测富营养化是湖泊面临的主要环境问题之一。
利用遥感技术可以快速、大面积地监测湖泊的富营养化状况。
内陆水体水质参数遥感反演集合建模方法曹引;冶运涛;赵红莉;蒋云钟;王浩;王俊锋【期刊名称】《中国环境科学》【年(卷),期】2017(037)010【摘要】以微山湖为研究对象,利用2015年6月11~13日获取的实测高光谱和水体叶绿素a浓度、总悬浮物浓度和浊度数据,构建3种水质参数遥感反演常用的经验模型和PSO-SVM模型并进行精度评价,确定参与3种水质参数集合建模的反演模型,分别利用以熵权法(EW-CM)、集对分析法(SPA-CM)为代表的确定性集合建模方法和以贝叶斯模型平均(BMA)为代表的概率性集合方法构建反演3种水质参数的EW-CM、SPA-CM和BMA集合模型.通过贝叶斯平均方法获取各模型和BMA集合模型反演3种水质参数的不确定性区间,对比3种水质参数各模型和集合模型反演结果.结果表明:(1)确定性集合模型中SPA-CM模型精度整体高于EW-CM模型;(2)BMA概率性集合模型建模精度整体上要优于SPA-CM和EW-CM集合模型,验证精度稍低于SPA-CM模型,和EW-CM模型相当;(3)概率性集合建模可以给出集合模型和各模型反演水质参数的不确定性区间;(4)确定性和概率性集合模型可以综合各模型信息,使得集合模型同时具有较高的建模和验证精度,降低单一模型反演水质参数的不确定性,并在一定程度上提高水质参数反演精度.【总页数】12页(P3940-3951)【作者】曹引;冶运涛;赵红莉;蒋云钟;王浩;王俊锋【作者单位】东华大学环境科学与工程学院,国家环境保护纺织工业污染防治工程技术中心,上海201620;中国水利水电科学研究院,流域水循环模拟与调控国家重点实验室,北京100038;中国水利水电科学研究院,流域水循环模拟与调控国家重点实验室,北京100038;中国水利水电科学研究院,流域水循环模拟与调控国家重点实验室,北京100038;中国水利水电科学研究院,流域水循环模拟与调控国家重点实验室,北京100038;东华大学环境科学与工程学院,国家环境保护纺织工业污染防治工程技术中心,上海201620;中国水利水电科学研究院,流域水循环模拟与调控国家重点实验室,北京100038;东华大学环境科学与工程学院,国家环境保护纺织工业污染防治工程技术中心,上海201620【正文语种】中文【中图分类】X832【相关文献】1.太湖水体3种典型水质参数的高光谱遥感反演 [J], 张兵;申茜;李俊生;张浩;吴迪2.内陆水体CDOM光学特性与遥感反演研究进展 [J], 宋开山;温志丹;刘阁;尚盈辛;赵莹;杜云霞3.近岸及内陆二类水体漫衰减系数的遥感反演研究进展 [J], 王积峰;况润元;袁爽4.改进SVR的内陆水体COD高光谱遥感反演 [J], 盛辉;池海旭;许明明;刘善伟;万剑华;王锦锦5.内陆水体水质参数光谱特征与定量遥感 [J], 李素菊;王学军因版权原因,仅展示原文概要,查看原文内容请购买。