福建省厦门市湖滨中学2018_2019学年高二数学3月月考试题文 (1)
- 格式:doc
- 大小:545.50 KB
- 文档页数:17
福建省厦门市湖滨中学2018-2019学年高一数学3月月考试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题(每小题5分,共60分)1.在中,,则等于()A. B. C.3 D.2.在中,,,分别是三个内角、、的对边,,,,则()A. B.或 C. D.或3.已知等差数列的前项和为,若,,则该数列的公差为( )A.-2 B.2 C.-3 D.34.已知数列的通项,则其前项和取得最大值时的值为()A.1 B.7或8 C.8 D.75.若三个实数a,b,c成等比数列,其中,,则b=()A.2 B.-2 C.±2 D.46.数列的前项和为,且,,则等于()A. B. C. D.7.在中,,,,则A.4 B.2 C.4或2 D.8.如图,一座建筑物AB的高为 (30-10)m,在该建筑物的正东方向有一个通信塔CD.在它们之间的地面上点M(B,M,D三点共线)处测得楼顶A,塔顶C的仰角分别是15°和60°,在楼顶A处测得塔顶C的仰角为30°,则通信塔CD的高为 ()A.30 m B.60 m C.30m D.40m9.在等差数列中,,则数列的前9项和等于A.126 B.130 C.147 D.21010.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌” 就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第个儿子的年龄为,则( )A.23 B.32 C.35 D.3811.若一个等差数列的第二项为5,最后4项的和为48,且所有项的和为63,则这个数列有()A.5项 B.6项 C.7项 D.8项12.在中,角的对边分别为,.则的最大值为( ) A.1 B.2 C. D.二、填空题(每小题5分,共20分)13.若的三边长为2,3,4,则的最大角的余弦值为______.14.在等差数列中,已知,则______.15.中,角所对的边分别为,已知,则_____.16.在数列中,,,则数列的通项______三、解答题(共70分)17(10分).在中,角所对的边分别为.已知.(1)求的值;(2)求的面积.18(12分).已知等差数列满足.(1)求的通项公式;(2)设等比数列满足,求的前项和.19(12分).在中,内角A,B,C所对的边分别为a,b,c已知.(1)求角C的大小(2)若,的面积为,求的周长.20(12分).已知数列是等比数列,公比,若,.(1)求的通项公式;(2)设,求数列的前项和.21(12分).如右图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为nmile,在A 处看灯塔C在货轮的北偏西30°,距离为n mile,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求:(1)A处与D处的距离;(2)灯塔C与D处的距离.22(12分).数列的前项和为,满足,等比数列满足.(1)求数列的通项公式;(2)若,求数列的前项和.湖滨中学高一月考数学参考答案1.D【解析】【分析】根据已知条件,利用正弦定理列方程,解方程求得的值.【详解】由正弦定理得,即,解得.【点睛】本小题主要考查利用正弦定理解三角形,属于基础题.题目是已知两角以及其中一角的对边,常用的是利用正弦定理来解三角形.如果已知条件是两边以及它们的夹角,则考虑用余弦定理来解三角形.如果已知条件是三边,则考虑用余弦定理来解三角形.如果已知两边以及一边的对角,则考虑用正弦定理来解三角形,此时要注意解的个数.2.D【解析】【分析】利用正弦定理列方程,解方程求得的值,根据特殊角的三角函数值求得的大小.【详解】由正弦定理得,解得,故或,所以选D.【点睛】本小题主要考查利用正弦定理解三角形,考查特殊角的三角函数值,属于基础题.3.B【解析】【分析】利用等差数列的通项公式与求和公式即可得出.【详解】由题意可得:5d=25,解得d=2.故选:B.【点睛】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.4.D【解析】【分析】求出使的的最大值即可求解。
2024年福建省厦门一中中考数学质检试卷(3月份)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.目前代表华为手机最强芯片的麒麟990处理器采用工艺制程,数用科学记数法表示为()A. B. C. D.2.如图是由长方体和圆柱体组成的几何体,则它的左视图是()A.B.C.D.3.下列算式,能按照“底数不变,指数相乘”计算的是()A. B. C. D.4.如图,在中,,,D、E分别为AB、AC的中点,则DE的长为()A.2B.3C.4D.5.下表是某社团20名成员的年龄分布统计表,数据不小心被撕掉一块,仍能够分析得出关于这20名成员年龄的统计量是()A.平均数B.方差C.中位数D.众数6.如图,中,,,将绕点C顺时针旋转得对应,连接BE,则的大小为()A.B.C.D.7.如图,四边形ABCD内接于,的半径为4,,则的长是()A.B.C.D.8.已知点,,在同一个函数图象上,则这个函数图象可能是()A. B.C. D.9.小明按照以下步骤画线段AB的三等分点:画法图形以A为端点画一条射线;用圆规在射线上依次截取3条等长线段AC、CD、DE,连接BE;过点C、D分别画BE的平行线,交线段AB于点M、、N就是线段AB的三等分点.这一画图过程体现的数学依据是()A.两直线平行,同位角相等B.两条平行线之间的距离处处相等C.垂直于同一条直线的两条直线平行D.两条直线被一组平行线所截,所得的对应线段成比例10.抛物线与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点,为图形G上两点,若,则m的取值范围是()A.或B.C. D.二、填空题:本题共6小题,每小题4分,共24分。
11.因式分解:__________.12.二次函数的图象的的对称轴是直线______.13.某校为了解该校1200名学生参加家务劳动的情况,随机抽取40名学生,调查了他们的周家务劳动时间并制作成频数分布直方图如图,那么估计该校周家务劳动时间不少于2小时的学生大约有______名.14.某手表厂抽查了10只手表的日走时误差,数据如表所示单位::日走时误差0123只数3421则这10只手表的平均日走时误差是______15.如图,在中,,,,AB的垂直平分线DE交AB于点D,交BC于点E,则CE的长等于______.16.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,,垂足为若双曲线经过点D,则的值为______.三、解答题:本题共9小题,共86分。
厦门市三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 下列命题中正确的是( )A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=2. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为453. 定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( ) A .在[﹣7,0]上是增函数,且最大值是6 B .在[﹣7,0]上是增函数,且最小值是6 C .在[﹣7,0]上是减函数,且最小值是6 D .在[﹣7,0]上是减函数,且最大值是6 4. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 5. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A .2+B .1+C .D .6. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)7.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a为无理数,则在过点P(a,﹣)的所有直线中()A.有无穷多条直线,每条直线上至少存在两个有理点B.恰有n(n≥2)条直线,每条直线上至少存在两个有理点C.有且仅有一条直线至少过两个有理点D.每条直线至多过一个有理点8.已知条件p:|x+1|≤2,条件q:x≤a,且p是q的充分不必要条件,则a的取值范围是()A.a≥1 B.a≤1 C.a≥﹣1 D.a≤﹣39.若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞)C.(2,+∞)D.(﹣1,0)10.已知2,0()2,0ax x xf xx x⎧+>=⎨-≤⎩,若不等式(2)()f x f x-≥对一切x R∈恒成立,则a的最大值为()A.716-B.916-C.12-D.14-11.设S n为等比数列{a n}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=()A.3 B.4 C.5 D.612.等差数列{a n}中,a2=3,a3+a4=9 则a1a6的值为()A.14 B.18 C.21 D.27二、填空题13.已知α为钝角,sin(+α)=,则sin(﹣α)=.14.已知数列{a n}满足a n+1=e+a n(n∈N*,e=2.71828)且a3=4e,则a2015=.15.函数()x f x xe =在点()()1,1f 处的切线的斜率是 .16.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .17.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)18.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111]三、解答题19.(本小题满分12分)已知两点)0,1(1-F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若22211PQ F P F Q =+,求直线m 的方程.20.已知向量=(,1),=(cos ,),记f (x )=.(1)求函数f (x )的最小正周期和单调递增区间;(2)将函数y=f (x )的图象向右平移个单位得到y=g (x )的图象,讨论函数y=g (x )﹣k 在的零点个数.21.在平面直角坐标系xOy中,点P(x,y)满足=3,其中=(2x+3,y),=(2x﹣﹣3,3y).(1)求点P的轨迹方程;(2)过点F(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程.22.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取7080100位,得到数据如表:70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.2.072 2.7063.841 5.024(参考公式:,其中n=a+b+c+d)23.已知命题p:不等式|x﹣1|>m﹣1的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.24.设函数f(x)=ae x(x+1)(其中e=2.71828…),g(x)=x2+bx+2,已知它们在x=0处有相同的切线.(Ⅰ)求函数f(x),g(x)的解析式;(Ⅱ)求函数f(x)在[t,t+1](t>﹣3)上的最小值;(Ⅲ)若对∀x≥﹣2,kf(x)≥g(x)恒成立,求实数k的取值范围.厦门市三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:A .未注明a ,b ,c ,d ∈R . B .实数是复数,实数能比较大小.C .∵=,则z 1=z 2,正确;D .z 1与z 2的模相等,符合条件的z 1,z 2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确. 故选:C .2. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键. 3. 【答案】D【解析】解:∵函数在[0,7]上是增函数,在[7,+∞)上是减函数, ∴函数f (x )在x=7时,函数取得最大值f (7)=6, ∵函数f (x )是偶函数,∴在[﹣7,0]上是减函数,且最大值是6, 故选:D4. 【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A.5.【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD的面积为,故选:A.6.【答案】A【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选A.【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.7.【答案】C【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),由于也在此直线上,所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;当x 1≠x 2时,直线的斜率存在,且有,又x 2﹣a 为无理数,而为有理数,所以只能是,且y 2﹣y 1=0,即;所以满足条件的直线只有一条,且直线方程是;所以,正确的选项为C . 故选:C .【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.8. 【答案】A【解析】解:由|x+1|≤2得﹣3≤x ≤1,即p :﹣3≤x ≤1, 若p 是q 的充分不必要条件, 则a ≥1, 故选:A .【点评】本题主要考查充分条件和必要条件的判断,比较基础.9. 【答案】C【解析】解:由题,f (x )的定义域为(0,+∞),f ′(x )=2x ﹣2﹣,令2x ﹣2﹣>0,整理得x 2﹣x ﹣2>0,解得x >2或x <﹣1,结合函数的定义域知,f ′(x )>0的解集为(2,+∞). 故选:C .10.【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C .11.【答案】B【解析】解:∵S n为等比数列{a n}的前n项和,3S3=a4﹣2,3S2=a3﹣2,两式相减得3a3=a4﹣a3,a4=4a3,∴公比q=4.故选:B.12.【答案】A【解析】解:由等差数列的通项公式可得,a3+a4=2a1+5d=9,a1+d=3解方程可得,a1=2,d=1∴a1a6=2×7=14故选:A【点评】本题主要考查了等差数列的通项公式的简单应用,属于基础试题二、填空题13.【答案】﹣.【解析】解:∵sin(+α)=,∴cos(﹣α)=cos[﹣(+α)]=sin(+α)=,∵α为钝角,即<α<π,∴<﹣,∴sin(﹣α)<0,∴sin(﹣α)=﹣=﹣=﹣,故答案为:﹣.【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.14.【答案】 2016 .【解析】解:由a n+1=e+a n ,得a n+1﹣a n =e , ∴数列{a n }是以e 为公差的等差数列, 则a 1=a 3﹣2e=4e ﹣2e=2e ,∴a 2015=a 1+2014e=2e+2014e=2016e . 故答案为:2016e .【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.15.【答案】2e 【解析】 试题分析:()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .考点:利用导数求曲线上某点切线斜率. 16.【答案】 6 .【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S ,不满足判断框中的条件;∴判断框中的条件为i <6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题17.【答案】 3.3【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.设BC=x,则根据题意=,AB=x,在AE=AB﹣BE=x﹣1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3.【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.-18.【答案】[]1,1【解析】考点:函数的定义域.三、解答题19.【答案】【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.(II )①若m 为直线1=x ,代入13422=+y x 得23±=y ,即)23 , 1(P ,)23 , 1(-Q直接计算知29PQ =,225||||2121=+Q F P F ,22211PQ F PF Q ?,1=x 不符合题意 ; ②若直线m 的斜率为k ,直线m 的方程为(1)y k x =-由⎪⎩⎪⎨⎧-==+)1(13422x k y y x 得0)124(8)43(2222=-+-+k x k x k 设11(,)P x y ,22(,)Q x y ,则2221438k k x x +=+,222143124k k x x +-=⋅由22211PQ F P F Q =+得,110F P FQ ? 即0)1)(1(2121=+++y y x x ,0)1()1()1)(1(2121=-⋅-+++x k x k x x0)1())(1()1(2212212=+++-++k x x k x x k代入得0438)1()143124)(1(222222=+⋅-+++-+k k k k k k ,即0972=-k 解得773±=k ,直线m 的方程为)1(773-±=x y20.【答案】【解析】解:(1)∵向量=(,1),=(cos,),记f (x )=.∴f (x )=cos+=sin+cos+=sin(+)+,∴最小正周期T==4π,2kπ﹣≤+≤2kπ+,则4kπ﹣≤x≤4kπ+,k∈Z.故函数f(x)的单调递增区间是[4kπ﹣,4kπ+],k∈Z;(2))∵将函数y=f(x)=sin(+)+的图象向右平移个单位得到函数解析式为:y=g(x)=sin[(x﹣+)]+=sin(﹣)+,∴则y=g(x)﹣k=sin(x﹣)+﹣k,∵x∈[0,],可得:﹣≤x﹣≤π,∴﹣≤sin(x﹣)≤1,∴0≤sin(x﹣)+≤,∴若函数y=g(x)﹣k在[0,]上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,∴实数k的取值范围是[0,].∴当k<0或k>时,函数y=g(x)﹣k在的零点个数是0;当0≤k<1时,函数y=g(x)﹣k在的零点个数是2;当k=0或k=时,函数y=g(x)﹣k在的零点个数是1.【点评】本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零点的判断方法,考查计算能力.21.【答案】【解析】解:(1)由题意,=(2x+3)(2x﹣3)+3y2=3,可化为4x2+3y2=12,即:;∴点P的轨迹方程为;(2)①当直线l的斜率不存在时,|AB|=4,不合要求,舍去;②当直线l的斜率存在时,设方程为y=kx+1,A(x1,y1),B(x2,y2),代入椭圆方程可得:(4+3k2)x2+6kx﹣9=0,∴x1+x2=,x1x2=,∴|AB|=•|x1﹣x2|==,∴k=±,∴直线l的方程y=±x+1.【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题.22.【答案】【解析】解:(Ⅰ)由已知得该市70后“生二胎”的概率为=,且X~B(3,),P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,0 1 2 3∴E(X)=3×=2.(Ⅱ)假设生二胎与年龄无关,K2==≈3.030>2.706,所以有90%以上的把握认为“生二胎与年龄有关”.23.【答案】【解析】解:不等式|x﹣1|>m﹣1的解集为R,须m﹣1<0,即p是真命题,m<1f(x)=﹣(5﹣2m)x是减函数,须5﹣2m>1即q是真命题,m<2,由于p或q为真命题,p且q为假命题,故p、q中一个真,另一个为假命题因此,1≤m<2.【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.24.【答案】【解析】解:(Ⅰ)f'(x)=ae x(x+2),g'(x)=2x+b﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由题意,两函数在x=0处有相同的切线.∴f'(0)=2a,g'(0)=b,∴2a=b,f(0)=a=g(0)=2,∴a=2,b=4,∴f(x)=2e x(x+1),g(x)=x2+4x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)f'(x)=2e x(x+2),由f'(x)>0得x>﹣2,由f'(x)<0得x<﹣2,∴f(x)在(﹣2,+∞)单调递增,在(﹣∞,﹣2)单调递减.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵t>﹣3,∴t+1>﹣2①当﹣3<t<﹣2时,f(x)在[t,﹣2]单调递减,[﹣2,t+1]单调递增,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当t≥﹣2时,f(x)在[t,t+1]单调递增,∴;∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)令F(x)=kf(x)﹣g(x)=2ke x(x+1)﹣x2﹣4x﹣2,由题意当x≥﹣2,F(x)min≥0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵∀x≥﹣2,kf(x)≥g(x)恒成立,∴F(0)=2k﹣2≥0,∴k≥1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣F'(x)=2ke x(x+1)+2ke x﹣2x﹣4=2(x+2)(ke x﹣1),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵x≥﹣2,由F'(x)>0得,∴;由F'(x)<0得∴F(x)在单调递减,在单调递增﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①当,即k>e2时,F(x)在[﹣2,+∞)单调递增,,不满足F(x)min≥0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当,即k=e2时,由①知,,满足F(x)min≥0.﹣﹣﹣﹣﹣﹣﹣③当,即1≤k<e2时,F(x)在单调递减,在单调递增,满足F(x)min≥0.综上所述,满足题意的k的取值范围为[1,e2].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查导数的几何意义,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.。
湖滨区外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4 B.1[8 C .31[,)162 D .3[,3)82. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013B .2014 C .2015 D .20161111] 3. 设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)的值为( )A .1B .3C .5D .不确定4. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .240 5. 如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y= C .y=(x 2﹣2x )e xD .y=6. 定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣>0的解集为( ) A .(2,+∞)B .(0,2)C .(0,4)D .(4,+∞)7. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 8. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=09. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=x ﹣1 B .y=lnx C .y=x 3 D .y=|x| 10.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断. 【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.11.如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A .B .C .D .12.已知圆O 的半径为1,,PA PB 为该圆的两条切线,,A B 为两切点,那么PA PB ∙ 的最小值为A 、4-B 、3-C 、4-+D 、3-+二、填空题13.在△ABC 中,a=4,b=5,c=6,则= .14.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .15.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .16.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 .17.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 . 18.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.三、解答题19.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b +=>>的两个焦点,(1,2P 是椭圆上1122|,||PF F F PF 成等差数列.(1)求椭圆C 的标准方程;、(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.20.已知函数g (x )=f (x )+﹣bx ,函数f (x )=x+alnx 在x=1处的切线l 与直线x+2y=0垂直.(1)求实数a 的值;(2)若函数g (x )存在单调递减区间,求实数b 的取值范围;(3)设x 1、x 2(x 1<x 2)是函数g (x )的两个极值点,若b ,求g (x 1)﹣g (x 2)的最小值.21.已知函数f(x)=x3+ax+2.(Ⅰ)求证:曲线=f(x)在点(1,f(1))处的切线在y轴上的截距为定值;(Ⅱ)若x≥0时,不等式xe x+m[f′(x)﹣a]≥m2x恒成立,求实数m的取值范围.22.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1的直角坐标方程与曲线C2的普通方程;(Ⅱ)试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.23.已知等边三角形PAB的边长为2,四边形ABCD为矩形,AD=4,平面PAB⊥平面ABCD,E,F,G分别是线段AB,CD,PD上的点.(1)如图1,若G为线段PD的中点,BE=DF=,证明:PB∥平面EFG;(2)如图2,若E,F分别是线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下面两个条件,并说明理由.①点H到点F的距离与点H到直线AB的距离之差大于4;②GH⊥PD.24.已知函数f(x)=xlnx,求函数f(x)的最小值.湖滨区外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C 【解析】试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则314t <<,由1324x +=,可得14x =,由213x =,可得x =12111,422x x ≤<≤≤,即221143x ≤≤,则()212123133,162x f x x x ⎡⎫=⋅∈⎪⎢⎣⎭.故本题答案选C.考点:数形结合.【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.2. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)3. 【答案】B【解析】解:∵f (1988)=asin (1988π+α)+bcos (1998π+β)+4=asin α+bcos β+4=3,∴asin α+bcos β=﹣1,故f (2008)=asin (2008π+α)+bcos (2008π+β)+4=asin α+bcos β+4=﹣1+4=3,故选:B .【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.4. 【答案】B 【解析】 试题分析:8058631=⨯⨯⨯=V ,故选B. 考点:1.三视图;2.几何体的体积. 5. 【答案】 C【解析】解:A 中,∵y=2x ﹣x 2﹣1,当x 趋向于﹣∞时,函数y=2x 的值趋向于0,y=x 2+1的值趋向+∞, ∴函数y=2x ﹣x 2﹣1的值小于0,∴A 中的函数不满足条件;B 中,∵y=sinx 是周期函数,∴函数y=的图象是以x 轴为中心的波浪线,∴B 中的函数不满足条件;C 中,∵函数y=x 2﹣2x=(x ﹣1)2﹣1,当x <0或x >2时,y >0,当0<x <2时,y <0; 且y=e x>0恒成立,∴y=(x 2﹣2x )e x的图象在x 趋向于﹣∞时,y >0,0<x <2时,y <0,在x 趋向于+∞时,y 趋向于+∞;∴C 中的函数满足条件;D 中,y=的定义域是(0,1)∪(1,+∞),且在x ∈(0,1)时,lnx <0,∴y=<0,∴D 中函数不满足条件.故选:C .【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.6. 【答案】B【解析】解:定义在(0,+∞)上的函数f (x )满足:<0.∵f (2)=4,则2f (2)=8, f (x )﹣>0化简得,当x <2时,⇒成立.故得x <2,∵定义在(0,+∞)上.∴不等式f (x )﹣>0的解集为(0,2). 故选B .【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.7. 【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用. 8. 【答案】C【解析】解:圆x 2+y 2﹣2x+4y=0化为:圆(x ﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l 将圆 x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,∴直线l 的方程是:y+2=﹣(x ﹣1),2x+y=0,即x+y+1=0,2x+y=0.故选:C .【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.9. 【答案】D【解析】解:选项A :y=在(0,+∞)上单调递减,不正确;选项B :定义域为(0,+∞),不关于原点对称,故y=lnx 为非奇非偶函数,不正确;选项C :记f (x )=x 3,∵f (﹣x )=(﹣x )3=﹣x 3,∴f (﹣x )=﹣f (x ),故f (x )是奇函数,又∵y=x 3区间(0,+∞)上单调递增,符合条件,正确;选项D :记f (x )=|x|,∵f (﹣x )=|﹣x|=|x|,∴f (x )≠﹣f (x ),故y=|x|不是奇函数,不正确. 故选D10.【答案】B【解析】解:根据y=sinx 图象知该函数在(0,+∞)不具有单调性;y=lg2x =xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B 正确; 根据y=lnx 的图象,该函数非奇非偶;根据单调性定义知y=﹣x 3在(0,+∞)上单调递减. 故选B .【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.11.【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C .【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.12.【答案】D.【解析】设PO t =,向量PA 与PB 的夹角为θ,PA PB ==,1sin2t θ=,222cos 12sin 12t θθ=-=-,∴222cos (1)(1)(1)PA PB PA PB t t t θ==-->,2223(1)PA PB t t t∴=+->,依不等式PA PB ∴的最小值为223-.二、填空题13.【答案】 1 .【解析】解:∵△ABC 中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.【点评】本题考查余弦定理,考查学生的计算能力,比较基础.14.【答案】 0.3 .【解析】离散型随机变量的期望与方差. 【专题】计算题;概率与统计.【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P (550<ξ<600).【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,∴正态分布曲线的对称轴为x=500, ∵P (400<ξ<450)=0.3, ∴根据对称性,可得P (550<ξ<600)=0.3.故答案为:0.3.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.15.【答案】.【解析】解:∵=1﹣bi ,∴a=(1+i )(1﹣bi )=1+b+(1﹣b )i ,∴,解得b=1,a=2.∴|a﹣bi|=|2﹣i|=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.16.【答案】(﹣1,﹣]∪[,).【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(﹣1,﹣]∪[,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.17.【答案】+=1.【解析】解:设动圆圆心为B ,半径为r ,圆B 与圆C 的切点为D ,∵圆C :(x+4)2+y 2=100的圆心为C (﹣4,0),半径R=10,∴由动圆B 与圆C 相内切,可得|CB|=R ﹣r=10﹣|BD|, ∵圆B 经过点A (4,0),∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10, ∵|AC|=8<10,∴点B 的轨迹是以A 、C 为焦点的椭圆,设方程为(a >b >0),可得2a=10,c=4,∴a=5,b 2=a 2﹣c 2=9,得该椭圆的方程为+=1.故答案为: +=1.18.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.三、解答题19.【答案】【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用.下面证明54m =时,716QA QB ⋅=-恒成立. 当直线l 的斜率为0时,结论成立;当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,()11,A x y ,()22,B x y ,由1x ty =+及2212x y +=,得22(2)210t y ty ++-=, 所以0∆>,∴12122221,22t y y y y t t +=-=-++. 111x ty =+,221x ty =+,∴112212125511(,)(,)()()4444x y x y ty ty y y -⋅-=--+=2(1)t +121211()416y y t y y -++=22222211212217(1)242162(2)1616t t t t t t t t --+-++⋅+=+=-+++.综上所述,在x 轴上存在点5(,0)4Q 使得716QA QB ⋅=-恒成立. 20.【答案】【解析】解:(1)∵f (x )=x+alnx ,∴f ′(x )=1+,∵f (x )在x=1处的切线l 与直线x+2y=0垂直, ∴k=f ′(x )|x=1=1+a=2, 解得a=1.(2)∵g (x )=lnx+x 2﹣(b ﹣1)x ,∴g ′(x )=+x ﹣(b ﹣1)=,x >0,由题意知g ′(x )<0在(0,+∞)上有解,即x++1﹣b <0有解, ∵定义域x >0,∴x+≥2, x+<b ﹣1有解,只需要x+的最小值小于b ﹣1, ∴2<b ﹣1,解得实数b 的取值范围是{b|b >3}.(3)∵g (x )=lnx+x 2﹣(b ﹣1)x ,∴g ′(x )=+x ﹣(b ﹣1)=,x >0,由题意知g ′(x )<0在(0,+∞)上有解, x 1+x 2=b ﹣1,x 1x 2=1,∵x >0,设μ(x )=x 2﹣(b ﹣1)x+1,则μ(0)=[ln (x 1+x 12﹣(b ﹣1)x 1]﹣[lnx 2+x 22﹣(b ﹣1)x 2]=ln +(x 12﹣x 22)﹣(b ﹣1)(x 1﹣x 2)=ln+(x 12﹣x 22)﹣(x 1+x 2)(x 1﹣x 2)=ln﹣(﹣),∵0<x1<x2,∴设t=,0<t<1,令h(t)=lnt﹣(t﹣),0<t<1,则h′(t)=﹣(1+)=<0,∴h(t)在(0,1)上单调递减,又∵b≥,∴(b﹣1)2≥,由x1+x2=b﹣1,x1x2=1,可得t+≥,∵0<t<1,∴由4t2﹣17t+4=(4t﹣1)(t﹣4)≥0得0<t≤,∴h(t)≥h()=ln﹣(﹣4)=﹣2ln2,故g(x1)﹣g(x2)的最小值为﹣2ln2.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值,考查函数的最小值的求法,解题时要认真审题,注意函数的单调性的合理运用.21.【答案】【解析】(Ⅰ)证明:f(x)的导数f′(x)=x2+a,即有f(1)=a+,f′(1)=1+a,则切线方程为y﹣(a+)=(1+a)(x﹣1),令x=0,得y=为定值;(Ⅱ)解:由xe x+m[f′(x)﹣a]≥m2x对x≥0时恒成立,得xe x+mx2﹣m2x≥0对x≥0时恒成立,即e x+mx﹣m2≥0对x≥0时恒成立,则(e x+mx﹣m2)min≥0,记g(x)=e x+mx﹣m2,g′(x)=e x+m,由x≥0,e x≥1,若m≥﹣1,g′(x)≥0,g(x)在[0,+∞)上为增函数,∴,则有﹣1≤m≤1,若m<﹣1,则当x∈(0,ln(﹣m))时,g′(x)<0,g(x)为减函数,则当x∈(ln(﹣m),+∞)时,g′(x)>0,g(x)为增函数,∴,∴1﹣ln(﹣m)+m≥0,令﹣m=t,则t+lnt﹣1≤0(t>1),φ(t)=t+lnt﹣1,显然是增函数,由t>1,φ(t)>φ(1)=0,则t>1即m<﹣1,不合题意.综上,实数m的取值范围是﹣1≤m≤1.【点评】本题为导数与不等式的综合,主要考查导数的应用,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力、化归与转化思想.22.【答案】【解析】解:(Ⅰ)由曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,可得它的直角坐标方程为x+y=1,根据曲线C2的参数方程为(θ为参数),可得它的普通方程为+y2=1.(Ⅱ)把曲线C1与C2是联立方程组,化简可得5x2﹣8x=0,显然△=64>0,故曲线C1与C2是相交于两个点.解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.23.【答案】【解析】(1)证明:依题意,E,F分别为线段BA、DC的三等分点,取CF的中点为K,连结PK,BK,则GF为△DPK的中位线,∴PK∥GF,∵PK⊄平面EFG,∴PK∥平面EFG,∴四边形EBKF为平行四边形,∴BK∥EF,∵BK⊄平面EFG,∴BK∥平面EFG,∵PK∩BK=K,∴平面EFG∥平面PKB,又∵PB⊂平面PKB,∴PB∥平面EFG.(2)解:连结PE,则PE⊥AB,∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PE⊂平面PAB,PE⊥平面ABCD,分别以EB,EF,EP为x轴,y轴,z轴,建立空间直角坐标系,∴P(0,0,),D(﹣1,4,0),=(﹣1,4,﹣),∵P(0,0,),D(﹣1,4,0),=(﹣1,4,﹣),∵==(﹣,,﹣),∴G(﹣,,),设点H(x,y,0),且﹣1≤x≤1,0≤y≤4,依题意得:,∴x2>16y,(﹣1≤x≤1),(i)又=(x+,y﹣,﹣),∵GH⊥PD,∴,∴﹣x﹣+4y﹣,即y=,(ii)把(ii)代入(i),得:3x2﹣12x﹣44>0,解得x>2+或x<2﹣,∵满足条件的点H必在矩形ABCD内,则有﹣1≤x≤1,∴矩形ABCD内不能找到点H,使之同时满足①点H到点F的距离与点H到直线AB的距离之差大于4,②GH⊥PD.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.24.【答案】【解析】解:函数的定义域为(0,+∞)求导函数,可得f′(x)=1+lnx令f′(x)=1+lnx=0,可得∴0<x<时,f′(x)<0,x>时,f′(x)>0∴时,函数取得极小值,也是函数的最小值∴f(x)min===﹣.【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题.。
厦门外国语学校高二10月考试理科数学试题(考试时间:120分钟试卷总分:150分)注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的校名、姓名、准考证号填写在答题卷的相应位置上.3.全部答案在答题卡上完成,答在本卷上无效.第I卷(选择题 60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡...的相应位置填涂.1.在△ABC,若,则△ABC是( )A. 直角三角形B. 等腰三角形 C. 等腰或直角三角形 D. 钝角三角形2.在△ABC中,根据下列条件解三角形,则其中有两个解的是()A. b=10,A=45°,C=75° B. a= 7,b=5,A=80°C. a=60,b=48,C=60° D.a=14,b=16,A=45°3.若等比数列的前n项和,则a的值为( )A. -4B. -1C. 0D. 14.等差数列的前项和为,,且,则的公差()A. 1B. 2C. 3D. 45.△ABC的内角A,B,C的对边为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c= ,C=()A.B.C.D.6.等差数列的前项和为,且 ,则()A.B.C.D. 47.已知等差数列的前项为且,则( )A.90B.100C.110D.1208.已知三个数成等比数列,它们的积为27,它们的平方和为91,则这三个数的和为()A. 13B. -7 C. -7或13 D. 无法求解9.已知△ABC的外接圆的圆心为O,半径为1,若,则△AOC的面积为( )A.B.C.D.10.A在塔底D的正西面,在A处测得塔顶C的仰角为45°,B在塔底D的南偏东60°处,在塔顶C 处测得到B的俯角为30°,AB间距84米,则塔高为()A. 24米 B. 米C. 米D. 36米11.在四边形ABCD中,∠A=60°,∠B=60°,∠C=105°,BC=1,则AB的取值范围()A. (1,2)B. (2﹣,1)C. (2﹣,2+ )D. (1,2+ )12.已知成等比数列,且.若,则()A. B. C.D.第Ⅱ卷(非选择题 90分)二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卷的相应位置.13.在等差数列中,,则 ________.14.已知等差数列的公差为,前项和为,满足,,则当取得最小值时,的值为________.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北的方向上,行驶600m后到达B处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.16.在△ABC中,cos∠ABC= ,AB=2,点D在AC上,AD=2DC,BD= ,△ABC的面积为________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,且 =0.(Ⅰ)求角B的大小;(Ⅱ)若b= ,a+c=4,求△ABC的面积.18.已知数列的前n项和,(1)求数列的通项(2)求数列的前n项和.19.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(1)若c= ,△ABC的面积为,求△ABC的周长;(2)若c= ,求△ABC的周长的取值范围.20.已知等差数列{a n}中,a2=6,a3+a6=27.(1)求数列{a n}的通项公式;(2)记数列{a n}的前n项和为S n,且T n= ,若对于一切正整数n,总有T n≤m成立,求实数m的取值范围.21.如图,A、B是海面上位于东西方向相距海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号.位于B点南偏西60°且与B相距20 海里的C点的救援船立即前往营救,其航行速度为30海里/小时。
厦门市一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0.其中正确结论的序号是( ) A .①③ B .①④C .②③D .②④2. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .43. 已知直线 a 平面α,直线b ⊆平面α,则( )A .a bB .与异面C .与相交D .与无公共点4. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( ) A . B .12 C .12- D .2-5. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .36. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.7. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定8. 用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( ) A .1B .7C .﹣7D .﹣59. 设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是( ) A .﹣13 B .6 C .79 D .3710.已知平面α、β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.为使m∥β,应选择下面四个选项中的()A.①④B.①⑤C.②⑤D.③⑤11.5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为()A.35B.C.D.5312.已知点F是抛物线y2=4x的焦点,点P在该抛物线上,且点P的横坐标是2,则|PF|=()A.2 B.3 C.4 D.5二、填空题13.曲线C是平面内到直线l1:x=﹣1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:①曲线C过点(﹣1,1);②曲线C关于点(﹣1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④设p1为曲线C上任意一点,则点P1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.14.已知集合{}B x x x R=-∈|12,≤≤,则A∪B=▲.A x x x R|03,=<∈≤,{}15.抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=.16.设p:f(x)=e x+lnx+2x2+mx+1在(0,+∞)上单调递增,q:m≥﹣5,则p是q的条件.17.设MP和OM分别是角的正弦线和余弦线,则给出的以下不等式:①MP<OM<0;②OM<0<MP;③OM<MP<0;④MP<0<OM,其中正确的是(把所有正确的序号都填上).18.已知函数f(x)=cosxsinx,给出下列四个结论:①若f(x1)=﹣f(x2),则x1=﹣x2;②f(x)的最小正周期是2π;③f(x)在区间[﹣,]上是增函数;④f(x)的图象关于直线x=对称.其中正确的结论是.三、解答题19.已知命题p :x 2﹣3x+2>0;命题q :0<x <a .若p 是q 的必要而不充分条件,求实数a 的取值范围.20.(本小题满分12分)已知1()2ln ()f x x a x a R x=--∈. (Ⅰ)当3a =时,求()f x 的单调区间;(Ⅱ)设()()2ln g x f x x a x =-+,且()g x 有两个极值点,其中1[0,1]x ∈,求12()()g x g x -的最小值. 【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力.21.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为1()16t ay -=(a 为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。
2017-2018学年福建省厦门市湖滨中学高二(上)期中数学试卷一、选择题(每题5分,共60分)1.(5分)不等式(x+1)(x+2)≤0的解集为()A.{x|x≥﹣1或x≤﹣2}B.{x|﹣2≤x≤﹣1}C.{x|1≤x≤2}D.{x|x≥﹣1或x<﹣2}2.(5分)已知各项均为正数的等比数列{a n},a1•a9=16,则a2•a5•a8的值()A.16 B.32 C.48 D.643.(5分)已知x>0,函数y=+x的最小值是()A.6 B.5 C.4 D.34.(5分)在△ABC中,a=15,b=10,A=60°,则cosB=()A.B.C.D.5.(5分)已知点(3,1)和(4,6)在直线3x﹣2y+a=0的两侧,则a的取值范围是()A.a>0 B.a<﹣7 C.﹣7<a<0 D.a>0或a<﹣76.(5分)等差数列{a n}的前n项和为S n,若a5+a6=18,则S10的值为()A.35 B.54 C.72 D.907.(5分)在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔(古称浮屠),本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出的结果是()A.6 B.5 C.4 D.38.(5分)△ABC的三边分别为a,b,c,且a=1,B=45°,S△ABC=2,则△ABC的外接圆的直径为()A.5 B.C.D.9.(5分)在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形 D.等腰或直角三角形10.(5分)正项等比数列{a n}中,S n为其前n项和,若S3=3,S9=39,则S6为()A.21 B.18 C.15 D.1211.(5分)在△ABC中,角A,B,C所对边长分别为a,b,c,若a2+b2=2c2,则cosC的最小值为()A.B.C.D.12.(5分)设x,y满足条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则的最小值为()A.4 B.6 C.12 D.24二、填空题(每小题5分,共20分)13.(5分)已知实数x,y满足约束条件,则目标函数z=3x+y的最小值为.14.(5分)等比数列{a n}的前n项和S n=3n+t,则t+a3的值为.15.(5分)数列{a n}满足,则a10=.16.(5分)若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m的范围是.三、计算题(第19题10分,其余题每题12分,共70分)17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足.(Ⅰ)若,求角A的大小;(Ⅱ)若△ABC的面积等于,求a,b的值.18.(12分)在等差数列{a n}中,a2=6,S4=20.(1)求数列{a n}的通项公式;(2)设b n=(n∈N*),T n=b1+b2+…+b n(n∈N*),求证:T n<1.19.(10分)若不等式(1﹣a)x2﹣4x+6>0的解集是{x|﹣3<x<1}.(1)解不等式2x2+(2﹣a)x﹣a>0(2)b为何值时,ax2+bx+3≥0的解集为R.20.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.21.(12分)如图,某观测站C在城A的南偏西20°方向上,从城A出发有一条公路,走向是南偏东40°.在C处测得距离C为31千米的公路上的B处有一辆车正沿着公路向城A驶去.该车行驶了20千米后到达D处停下,此时测得C、D 两处距离为21千米.(1)求cos∠CDB的值;(2)此车在D处停下时距城A多少千米?22.(12分)已知数列{a n}是首项为a1=,公比q=的等比数列,设b n+2=3a n(n∈N*),数列{c n}满足c n=a n•b n.(1)求证:{b n}是等差数列;(2)求数列{c n}的前n项和S n;(3)若c n≤m2+m﹣1对一切正整数n恒成立,求实数m的取值范围.2017-2018学年福建省厦门市湖滨中学高二(上)期中数学试卷参考答案与试题解析一、选择题(每题5分,共60分)1.(5分)不等式(x+1)(x+2)≤0的解集为()A.{x|x≥﹣1或x≤﹣2}B.{x|﹣2≤x≤﹣1}C.{x|1≤x≤2}D.{x|x≥﹣1或x<﹣2}【解答】解:∵(x+1)(x+2)≤0,∴,或,解得﹣2≤x≤﹣1.故选:B.2.(5分)已知各项均为正数的等比数列{a n},a1•a9=16,则a2•a5•a8的值()A.16 B.32 C.48 D.64【解答】解:由等比数列的性质可得a1•a9==16,∵a n>0∴a5=4∴a2•a5•a8==64故选:D.3.(5分)已知x>0,函数y=+x的最小值是()A.6 B.5 C.4 D.3【解答】解:∵x>0,函数≥2=4,当且仅当x=,x=2时,等号成立,故函数的最小值是4,故选:C.4.(5分)在△ABC中,a=15,b=10,A=60°,则cosB=()A.B.C.D.【解答】解:由正弦定理可得,∴sinB=.∵a>b,A=60°,∴A>B,∴=.故选:C.5.(5分)已知点(3,1)和(4,6)在直线3x﹣2y+a=0的两侧,则a的取值范围是()A.a>0 B.a<﹣7 C.﹣7<a<0 D.a>0或a<﹣7【解答】解:∵点(3,1)和(4,6)在直线3x﹣2y+a=0的两侧,∴两点对应坐标对应式子3x﹣2y+a的符号相反,即(9﹣2+a)(12﹣12+a)<0,即a(a+7)<0,∴﹣7<a<0,即实数a的取值范围是﹣7<a<0,故选:C.6.(5分)等差数列{a n}的前n项和为S n,若a5+a6=18,则S10的值为()A.35 B.54 C.72 D.90【解答】解:∵a5+a6=18,则S10==5(a5+a6)=5×18=90.故选:D.7.(5分)在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔(古称浮屠),本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出的结果是()A.6 B.5 C.4 D.3【解答】解:设塔顶的a1盏灯,由题意{a n}是公比为2的等比数列,∴S 7==381,解得a1=3.故选:D.8.(5分)△ABC的三边分别为a,b,c,且a=1,B=45°,S△ABC=2,则△ABC的外接圆的直径为()A.5 B.C.D.=2,【解答】解:∵a=1,B=45°,S△ABC∴由三角形的面积公式得:S=acsinB=×1×c×=2,∴c=4,又a=1,cosB=,根据余弦定理得:b2=1+32﹣8=25,解得b=5.∴△ABC的外接圆的直径为==故选:B.9.(5分)在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形 D.等腰或直角三角形【解答】解:在△ABC中,∵b=asinC,c=acosB,故由正弦定理可得sinB=sinAsinC,sinC=sinAsinB,∴sinB=sinAsinAsinB,∴sinA=1,∴A=.∴sinC=sinAsinB 即sinC=sinB,∴由正弦定理可得c=b,故△ABC的形状为等腰直角三角形,故选:C.10.(5分)正项等比数列{a n}中,S n为其前n项和,若S3=3,S9=39,则S6为()A.21 B.18 C.15 D.12【解答】解:正项等比数列{a n}中,设S6=x,∵S3=3,S9=39,∴(x﹣3)2=3×(39﹣x),解得x=12,或x=﹣9(舍).故S6为12.故选:D.11.(5分)在△ABC中,角A,B,C所对边长分别为a,b,c,若a2+b2=2c2,则cosC的最小值为()A.B.C.D.【解答】解:因为a2+b2=2c2,所以由余弦定理可知,c2=2abcosC,cosC==.故选:C.12.(5分)设x,y满足条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则的最小值为()A.4 B.6 C.12 D.24【解答】解:作出不等式组对应的平面区域如图:平移直线y=﹣x+,由图象知当直线经过点A时,y=﹣x+时,直线的截距最大,此时z最大为12,由得,即A(4,6),此时4a+6b=12,即+=1,∴=()(+)=1+1++≥2+2=4,当且仅当=,即9b2=4a2,时取等号,则的最小值为4,故选:A.二、填空题(每小题5分,共20分)13.(5分)已知实数x,y满足约束条件,则目标函数z=3x+y的最小值为8.【解答】解:由约束条件,作出可行域如图,联立,解得A(2,2),化目标函数z=3x+y为y=﹣3x+z,由图可知,当直线y=﹣3x+z过点A时,直线在y轴上的截距最小,z有最小值为8.故答案为:8.14.(5分)等比数列{a n}的前n项和S n=3n+t,则t+a3的值为17.【解答】解:由题意可得a1=S1=3+t,a2=S2﹣S1=6,a3=S3﹣S2=18,由等比数列可得36=(3+t)•18,解得t=﹣1,∴t+a3=﹣1+18=17.故答案为17.15.(5分)数列{a n}满足,则a10=.【解答】解:根据题意,数列{a n}满足﹣=1,又由a1=3,则=,则数列{}是以=为首项,公差为1的等差数列,则=+(n﹣1)=,则a n=,当n=10时,有a10=;故答案为:.16.(5分)若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m的范围是m>2.【解答】解:设三内角分别为A,B,C,设C为钝角,则2B=A+C,∴B=60°,A+C=120°.由正弦定理可得,根据题意可得m==.由于0<sinA<,0<sinC<1,∴m>=2,故答案为m>2.三、计算题(第19题10分,其余题每题12分,共70分)17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足.(Ⅰ)若,求角A的大小;(Ⅱ)若△ABC的面积等于,求a,b的值.【解答】解:(Ⅰ)△ABC中,c=2,C=,a=,由正弦定理得,=,∴sinA==;又0<A<,∴A=.(Ⅱ)△ABC的面积为S=absinC=ab×=,解得ab=4;①由余弦定理得a2+b2﹣2abcosC=c2,即a2+b2﹣ab=4;②由①②组成方程组,解得a=b=2.18.(12分)在等差数列{a n}中,a2=6,S4=20.(1)求数列{a n}的通项公式;(2)设b n=(n∈N*),T n=b1+b2+…+b n(n∈N*),求证:T n<1.【解答】解:(1)设{a n}的公差为d,由题意得,解得,得:a n=8﹣2(n﹣1)=10﹣2n.(2)证明:b n===﹣.∴T n=b1+b2+…+b n=1﹣++…+=1﹣<1.19.(10分)若不等式(1﹣a)x2﹣4x+6>0的解集是{x|﹣3<x<1}.(1)解不等式2x2+(2﹣a)x﹣a>0(2)b为何值时,ax2+bx+3≥0的解集为R.【解答】解:(1)由题意知,1﹣a<0,且﹣3和1是方程(1﹣a)x2﹣4x+6=0的两根,∴,解得a=3.∴不等式2x2+(2﹣a)x﹣a>0即为2x2﹣x﹣3>0,解得x<﹣1或x>.∴所求不等式的解集为{x|x<﹣1或x>};(2)ax2+bx+3≥0即为3x2+bx+3≥0,若此不等式的解集为R,则b2﹣4×3×3≤0,∴﹣6≤b≤6.20.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.21.(12分)如图,某观测站C在城A的南偏西20°方向上,从城A出发有一条公路,走向是南偏东40°.在C处测得距离C为31千米的公路上的B处有一辆车正沿着公路向城A驶去.该车行驶了20千米后到达D处停下,此时测得C、D 两处距离为21千米.(1)求cos∠CDB的值;(2)此车在D处停下时距城A多少千米?【解答】解:(1)在△CDB中,由余弦定理得:cos∠CDB===﹣.(5分)(2)sin∠ACD=sin(∠CDB﹣60°)=sin∠CDBcos60°﹣cos∠CDBsin60°=,(7分)由正弦定理得:AD===15,(9分)∴此车在D处停下时距城A处15千米.(10分)22.(12分)已知数列{a n}是首项为a1=,公比q=的等比数列,设b n+2=3a n(n∈N*),数列{c n}满足c n=a n•b n.(1)求证:{b n}是等差数列;(2)求数列{c n}的前n项和S n;(3)若c n≤m2+m﹣1对一切正整数n恒成立,求实数m的取值范围.【解答】证明:(1)由题意得,a n==,又b n+2=3a n(n∈N*),则b n+2=3=3n,所以b n=3n﹣2,即b n+1﹣b n=3,且b1=1,所以{b n}是为1为首项,3为公差的等差数列;解:(2)由(1)得,a n=,b n=3n﹣2所以c n=a n•b n=,则S n=①,S n=②,①﹣②得,S n===,所以S n=,(3)由(2)得,c n=,c n+1﹣c n=﹣=,所以当n=1时,c2=c1=,当n≥2时,c2=c1>c3>c4>c5>…>c n,则当n=1或2时,c n的最大值是,因为c n≤m2+m﹣1对一切正整数n恒成立,所以≤m2+m﹣1,即m2+4m﹣5≥0,解得m≥1或m≤﹣5,故实数m的取值范围是m≥1或m≤﹣5.。
- 1 - 福建省厦门市湖滨中学2018-2019学年高二数学3月月考试题 文 第一卷(客观题) 一、选择题 1.(5.0分)已知i是虚数单位,若复数,则复数|z|=( ) A. B. C.3 D.5 2.(5.0分)用反证法证明命题:“若a, b,c为不全相等的实数,且a+b+c=0,则a,b,c至少有一个负数”,假设原命题不成立的内容是( )
A.a,b,c都大于0 B.a,b,c都是非负数 C.a,b,c至多两个负数 D.a,b,c至多一个负数 3.(5.0分)已知命题p:∀x∈R,x2+x+1≤0,则( ) A.p是真命题,¬p:∃,使得 B.p是真命题,¬p:∀x∈R,使得x2+x+1>0 C.p是假命题,¬p:∃,使得 D.p是假命题,¬p:∀x∈R,使得 - 2 -
4.(5.0分)函数的导函数为,若,则下列等式正确的是( ) A. B. C. D. 5.(5.0分)2016法国欧洲杯比赛于6月中旬揭开战幕,随机询问100人是否喜欢足球,得到如下的列联表:
参考公式,(其中) 临界值表:
参照临界值表,下列结论正确的是( ) A.有95%的把握认为“喜欢足球与性别相关” B.有95%的把握认为“喜欢足球与性别无关” C.在犯错误的概率不超过2.5%的前提下,认为“喜欢足球与性别无关” - 3 -
D.在犯错误的概率不超过2.5%的前提下,认为“喜欢足球与性别有关” 6.(5.0分)下列选项中,与其他三个选项所蕴含的数学推理不同的是( ) A.独脚难行,孤掌难鸣 B.前人栽树,后人乘凉 C.物以类聚,人以群分 D.飘风不终朝,骤雨不终日 7.(5.0分)以下是解决数学问题的思维过程的流程图:
在此流程图中,①、②两条流程线与“推理与证明”中的思维方法匹配正确的是( ) A.①—综合法,②—分析法 B.①—分析法,②—综合法 C.①—综合法,②—反证法 D.①—分析法,②—反证法 8.(5.0分)有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( )
A.甲 B.乙 C.丙 - 4 -
D.丁 9.(5.0分)观察下列数的排列规律:回答第23个数是( ) A. B. C. D. 10.(5.0分)函数的大致图象是( )
A.B.
C.D. 11.(5.0分)已知函数的图像如图所示(其中是定义域为R函数的导函数),则以下说法错误的是( )
A. B.当时, 函数取得极大值 C.方程与均有三个实数根 D.当时,函数取得极小值 - 5 -
12.(5.0分)已知抛物线的焦点F和点为抛物线上一点,则的最小值是( )
A.16 B.12 C.9 D.6 第二卷(主观题) 二、填空题 13.(5.0分)在数列1,1,2,3,5,8,13,x,34,55……中的x的值是__________.
14.(5.0分)焦点为且与双曲线有相同的渐近线的双曲线方程是__________. 15.(5.0分)若函数,则__________. 16.(5.0分)已知点P是椭圆D:上的一点,为椭圆的左、右焦点,若,且的面积为,则椭圆的离心率是__________. 三、解答题 17.(10.0分)已知,且,求复数.
18.(12.0分)已知函数. - 6 -
(1)若函数在点处的切线方程为,求的值; (2)求函数的极值.
19.(12.0分)网购已成为当今消费者喜欢的购物方式,某机构对A、B、C、D四家同类运动服装网店的关注人数x(千人)与其商品销售件数y(百件)进行统计对比,得到表格:
由散点图得知,可以用回归直线方程y=bx+a来近似刻画它们之间的关系. (1)求y与x的回归直线方程; (2)在(1)的回归模型中,请用说明,销售件数的差异有多大程度是由关注人数引起的?(精确到0.01)
参考公式::;; 参考数据:. 20.(12.0分)椭圆C:过点,且直线l过椭圆C的上顶点和左焦点,椭圆中心到直线l的距离等于焦距长的. - 7 -
(1)求椭圆C的方程; (2)若一条与坐标轴不平行且不过原点的直线交椭圆Г于不同的两点M、N,点P为线段MN的中点,求证:直线MN与直线OP不垂直.
21.(12.0分)抛物线的焦点为F,直线y=4与抛物线和y轴分别交于点P、Q,且.
(1)求抛物线的方程; (2)过点F作互相垂直的两直线分别交抛物线于点A、B、C、D,求四边形ACBD面积的最小值.
22.(12.0分)已知函数,的图象在点处的切线为. (1)求函数的解析式; (2)若对任意的恒成立,求实数的取值范围. - 8 -
答案解析 第一卷(客观题) 一、选择题 1.(5.0分) 【解析】由复数,所以. 【答案】B 2.(5.0分) 【解析】解:“a,b,c中至少有一个负数”的否定为“a,b,c都是非负数”,由用反证法证明数学命题的方法可得,应假设“a,b,c都是非负数”,所以B选项是正确的.
解析 用反证法证明数学命题时,应先假设结论的否定成立. 【答案】B 3.(5.0分) 【解析】【解答】解:命题是全称命题, ∵判别式△=1﹣4=﹣3<0, ∴∀x∈R,,故命题p是假命题, ∵命题是全称命题则命题的否定是¬p:,使得, 故选:C. 【答案】C 4.(5.0分) - 9 -
【解析】解:,,若,,,,所以D选项是正确的.
解析 根据基本导数公式求导,再根据各选项可知若,则,判断即可. 【答案】D 5.(5.0分) 【解析】解:由题意, 由于, 有95%把握认为“喜欢足球与性别相关”. 所以A选项是正确的.
解析 根据条件求出观测值,同所给的临界值进行比较,根据,即可得到结论. 【答案】A 6.(5.0分) 【解析】解:由题意,根据归纳推理是由特殊到一般的推理过程,可得A,C,D是归纳推理,B是演绎推理,所以B选项是正确的.
解析 利用归纳推理、演绎推理的定义,即可得出结论. 【答案】B 7.(5.0分) 【解析】本题主要考查综合法和分析法的概念。 一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法,即为由已知推出可知内容,流程线①。一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论 - 10 -
归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)。这种证明的方法叫做分析法,即为由未知推出需知的内容,流程线②。
故本题正确答案为A。 【答案】A 8.(5.0分) 【解析】本题主要考查反证法。 若甲获奖,则四人所说的话都是假的,故甲未获奖; 若乙获奖,则甲、乙、丁的话是真的,丙的话是假的,故乙未获奖; 若丙获奖,则甲、丙的话是真的,乙、丁的话是假的,故是丙获奖; 若丁获奖,则乙的话是真的,甲、丙、丁的话是假的,故丁未获奖。 故本题正确答案为C。 【答案】C 9.(5.0分) 【解析】解:观察前几个式子的变化规律,发现每一个分式的分子分别是:1,1,2,1,2,3,1,2,3,4,项数分别为:1,2,3,4,由于
第23个是:所以D选项是正确的. 解析 解答此类的方法是从特殊的前几个式子进行分析找出规律.观察前几个式子的变化规律,发现每一个分式的分子分别是:1,1,2,1,2,3,1,2,3,4,从中找规律性即可.本题考查的知识点是归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
【答案】D - 11 -
10.(5.0分) 【解析】解:,其定义域为,由得,;得,;,在上单调递增,在上单调递减;时,取到极大值.又,函数的图象在x轴下方,可排除A,C,D.所以B选项是正确的.
解析 先求导,从而可求得函数的单调区间与极值,问题即可解决.本题考查函数的图象,是以考查函数的图象为载体考查导数及其应用,注重考查学生分析转化解决问题的能力,属于基础题.
【答案】B 11.(5.0分) 【解析】试题解析:A由函数图象可知, 成立 B.当时, ;当时, ,故时,有极大值 C. ,故 有两个根,故错误 D.当时, ;当x>1时, ,故时,有极小值 考点:本题考查导数应用 点评:解决本题的关键是函数的单调性和导数的关系
【答案】C 12.(5.0分) 【解析】提示1:根据抛物线的标准方程 求出焦点坐标和准线方程,利用抛物线的定义可得|PA|+|PF|=|PA|+|PM|≥|AM|,故|AM|(A到准线的距离)为所求. 提示2:本题考查抛物线的定义、标准方程,以及简单性质的应用,得到|PA|+|PF|=|PA|+|PM|≥|AM|,是解题的关键.解:抛物线 的标准方程为 ,p=2,焦点F(0,1),准线方程为y=-1. 设p到准线的距离为PM,(即PM垂直于准线,M为垂足), 则|PA|+|PF|=|PA|+|PM|≥|AM|=9,(当且仅当P、A、M共线时取等号).故选C.
【答案】C