八年级数学下册 1.2.2 二次根式的性质教案 浙教版
- 格式:doc
- 大小:50.00 KB
- 文档页数:8
浙教版八年级数学下全册教案(表格式)课时授课计划年月日、性质二:)课时授课计划 06 年 2 月 17 日②课时授课计划 06 年 2 月 20 日课 时 授 课 计 划06 年 2 月 21 日课时授课计划 06 年 2 月 22 日A D E BC1:0.8,滑梯CD 。
一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到A BCD课时授课计划年月日课 时 授课 计 划 年 月 日课时授课计划年月日课时授课计划年月日课时授课计划年月日课时授课计划年月日课时授课计划年月日提示:(1)若以接到台风警报开始,经B1,那么船是否受到台风影响与什么有关系?(2)当B1C1符合什么条件时,船会受到台风的影响?(3)你能用关于t的代数式表示(4)你能用一元二次方程表示船开始受台风影响的条件吗?(学生4人一组进行充分讨论并利用多媒体动画制作,易理解)第三章频数分布3.1频数(1) (2)3.1频数与频率(2) (6)3.2频率分布直方图 (8)3.3频数分布折线图 (10)3.1(1)频数和频率教学目标:1、理解频数的概念,会求频数;2、了解极差的概念、会计算极差;3、了解极差、组距、组数之间的关系,会将数据分组;4、会列频数分布表。
教学重难点:重点:本节教学的重点是频数的概念。
难点:将数据分组过程比较复杂,往往要考虑多方面的因素,是本节教学的一个难点。
教学准备:1、收集全班男女生身高的数据;2、各小组自制一个转盘(课内练习2)。
教学过程:一、课前热身以闯关的形式,先通过选拔赛,全班参与,速度最快者胜出。
共3关,3题中只有一次求助机会,可求助其他同学。
若闯过两关加个人分10分,若闯三关加个人分20分。
帮助闯关者解答一题加5分。
(人人都参与,机会属于你!)(选拔题)求数1、2、3的平均数和方差。
第1关:我们已学过哪些反映数据分布情况的特征数?第2关:平均数与方差分别反映数据的什么特征?第3关:县人民医院2006年2月份,在该院出生的20名新生婴儿的体重如下(单位:kg)4.7, 2.9, 3.2, 3.5, 3.6, 4.8, 4.3, 3.6, 3.8, 3.4,3.4, 3.5, 2.8, 3.3,4.0, 4.5, 3.6, 3.5, 3.7, 3.7。
第1章 二次根式1.1 二次根式【教学目标】知识与技能1.理解二次根式的概念。
2.使学生掌握用简单的一元一次不等式解决二次根式中字母的取值范围。
过程与方法1.经历探究二次根式意义的过程,并能观察思考得出二次根式的特点。
2.通过探究,进一步发展观察、归纳、概括等能力。
3.培养与提高灵活运用知识的能力、准确计算能力以及语言表达能力。
情感态度与价值观1.通过探究二次根式,让学生获得成功的体验,锻炼克服困难的意志,建立自信心。
2.通过探究,鼓励学生敢于发表自己的观点,尊重与理解他人的见解,从交流中获益。
3.通过对二次根式特点的归纳,提高学生的逻辑思维能力。
教学重难点重点:二次根式的概念和二次根式有意义的条件。
难点:确定较复杂的二次根式中字母的取值范围。
【教学过程】知识回顾求一求:(1)3的平方根是_____;(2)3的算术平方根是_____;(3呢?归纳:①一个正数有____个平方根,负数_____________;②一个非负数a 的算术平方根可以表示为 。
情景导入根据图1.1-1的直角三角形、正方形和圆的条件,完成以下填空:2 cm a cm图1.1-1直角三角形的斜边长是_____;正方形的边长是______;圆的半径是________。
学生写出表示算术平方根的式子。
问:你认为所得的各代数式的共同特点是什么? 学生通过观察,感知二次根式的特征,从而引出课题。
探究新知1.二次根式的概念引导学生概括二次根式的概念:像这样表示算术平方根的代数式叫做二次根式。
2.深化二次根式的概念:① 提问:9-1呢?② 表示什么意义?此算术平方根的被开方数是什么?被开 方数必须满足什么条件的二次根式才有意义?其中字母a 需满足什么条件?为什么?经学生讨论后,让学生回答,并让其他学生点评。
③ 教师总结:强调二次根式根号内字母的取值范围必须满足被开方数大于或等于0。
④ 巩固练习一: 下列式子,哪些是二次根式?3.讲解例题例1 求下列二次根式中字母a 的取值范围:(1)1+a ; (2)a 43-; (3)x - .教师提问,学生回答,教师板书解题过程。
1、1二次根式教学目标:1.经历二次根式概念的发生过程;2.了解二次根式的概念;3.理解二次根式何时有意义,何时无意义,会在简单情况下求根号内所含字母的取值范围;4.会求二次根式的值。
教学重点与难点:重点:是二次根式的概念难点:确定二次根式中字母的取值范围.设计教学程序:一、创设情境,引入课题数学是思维的体操,问题是数学的心脏。
生活屮多提炼些数学问题,我们就会学好数学这门课。
小明是个数学爱好者,喜欢编数学题。
今天他来到了一个奇异的宫殿,那里的人门口镶嵌着儿何图案。
他选择了其中三个,出了这样的三道题目。
请帮助完成。
2cm(b-3)cm2图1—1根据图1—1所示的直角三角形、正方形和等边三角形的条件,完成以下填空:玄和三和形的斜边长是正方形的边长是等边三介形的边长是让学牛在实际情境中写出表示算术平方根的式子。
问:看到这些代数式,你想到了你已经学过的哪个知识点?(简单复习平方根和算术平方根)问:你认为所得的各代数式的共同特点是什么?(学生通过观察,从小感知二次根式的特征。
鼓励学生用H己的语言总结出共同特征。
从而引出课题,教师鼓励学生人胆表述意见,然麻作适当点评,板书木课课题)。
二、新课讲授,探究新知1、二次根式的概念1)引导学生概括二次根式的定义:像巧,低这样表示的算术平方根,且根乃内含字母的代数式叫做二次根式。
为了方便,我们把一个数的算术平方根(如V3,^|)也叫做一•次根式。
2)概念深化:1.判断下列代数式是不是二次根式?(1) V32, (2) 6, (3) 7^12,(4) (5) ,v m(6) 7a2+1 , (7) V52.提问:需+ 1是不是二次根式?A/荷呢?①议一议:二次根式J市表示什么意义?此算术平方根的被开方式是什么?被开方式必须满足什么条件的二次根式才有意义?其中字母a需满足什么条件?为什么?经学生讨论后,让学生回答,并让其他的学生点评。
教师总结:强调二次根式根号内字母的収值范围必须满足被开方式大于或等于零。
浙教版八年级下数学教案课时授课计划年月日(a (a课时授课计划 06 年 2 月 17 日②课时授课计划 06 年 2 月 20 日课时授课计划 06 年 2 月 21 日AD EB C课时授课计划 06 年 2 月 22 日1:0.8,滑梯CD。
一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到师生共同分析解题思路,请学生写出解题过程。
A B CD课时授课计划年月日课时授课计划年月日课时授课计划年月日课时授课计划年月日课时授课计划年月日课时授课计划年月日课时授课计划年月日提示:(1)若以接到台风警报开始,经B1,那么船是否受到台风影响与什么有关系?(2)当B1C1符合什么条件时,船会受到台风的影响?(3)你能用关于t的代数式表示(4)你能用一元二次方程表示船开始受台风影响的条件吗?(学生4人一组进行充分讨论并利用多媒体动画制作,易理解)第三章频数分布3.1频数(1) (2)3.1频数与频率(2) (6)3.2频率分布直方图 (8)3.3频数分布折线图 (10)3.1(1)频数和频率教学目标:1、理解频数的概念,会求频数;2、了解极差的概念、会计算极差;3、了解极差、组距、组数之间的关系,会将数据分组;4、会列频数分布表。
教学重难点:重点:本节教学的重点是频数的概念。
难点:将数据分组过程比较复杂,往往要考虑多方面的因素,是本节教学的一个难点。
教学准备:1、收集全班男女生身高的数据;2、各小组自制一个转盘(课内练习2)。
教学过程:一、课前热身以闯关的形式,先通过选拔赛,全班参与,速度最快者胜出。
共3关,3题中只有一次求助机会,可求助其他同学。
若闯过两关加个人分10分,若闯三关加个人分20分。
帮助闯关者解答一题加5分。
(人人都参与,机会属于你!)(选拔题)求数1、2、3的平均数和方差。
第1关:我们已学过哪些反映数据分布情况的特征数?第2关:平均数与方差分别反映数据的什么特征?第3关:县人民医院2006年2月份,在该院出生的20名新生婴儿的体重如下(单位:kg) 4.7, 2.9, 3.2, 3.5, 3.6, 4.8, 4.3, 3.6, 3.8, 3.4,3.4, 3.5, 2.8, 3.3,4.0, 4.5, 3.6, 3.5, 3.7, 3.7。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校1、1二次根式教学目标:1.经历二次根式概念的发生过程;2.了解二次根式的概念;3.理解二次根式何时有意义,何时无意义,会在简单情况下求根号内所含字母的取值范围;4.会求二次根式的值。
教学重点与难点:重点:是二次根式的概念难点:确定二次根式中字母的取值范围.设计教学程序:一、创设情境,引入课题数学是思维的体操,问题是数学的心脏。
生活中多提炼些数学问题,我们就会学好数学这门课。
小明是个数学爱好者,喜欢编数学题。
今天他来到了一个奇异的宫殿,那里的大门口镶嵌着几何图案。
他选择了其中三个,出了这样的三道题目。
请帮助完成。
根据图1—1所示的直角三角形、正方形和等边三角形的条件,完成以下填空:直角三角形的斜边长是____________;正方形的边长是____________;等边三角形的边长是_________。
让学生在实际情境中写出表示算术平方根的式子。
问:看到这些代数式,你想到了你已经学过的哪个知识点?(简单复习平方根和算术平方根)问:你认为所得的各代数式的共同特点是什么?(学生通过观察,从中感知二次根式的特征。
鼓励学生用自己的语言总结出共同特征。
从而引出课题,教师鼓励学生大胆表述意见,然后作适当点评,板书本课课题)。
二、新课讲授,探究新知1、二次根式的概念1这样表示的算术平方根,2cmacm 图1—12)概念深化:1. 判断下列代数式是不是二次根式?2.1呢?①表示什么意义?此算术平方根的被开方式是什么?被开方式必须满足什么条件的二次根式才有意义?其中字母a 需满足什么条件?为什么?经学生讨论后,让学生回答,并让其他的学生点评。
教师总结:强调二次根式根号内字母的取值范围必须满足被开方式大于或等于零。
2、 讲解例题例1 求下列二次根式中字母a 的取值范围:(1)1+a , (2(3)按教师提问,学生回答,教师板书解题过程交替进行的方式教学,问题设计:① 被开方式需满足什么?② 由此可得怎样的不等式?③ 第(1)(2)两题可以转化为解怎样的不等式?第(3)题不解不等式就能确定a 的取值范围吗?解:(1) 由a+1≥ 0 , 得 a ≥ -1∴字母a 的取值范围是大于或等于-1的实数。
第一章 二次根式 教案复习目标1、能够比较熟练应用二次根式的性质进行化简.2、能过比较熟练进行二次根式的运算.3、会运用二次根式的性质及运算解决简单的实际问题.重点难点重点:二次根式的性质的应用,二次根式的运算,二次根式的应用.复习引入本章知识梳理教学过程复习引入的代数式叫做二次根式.(即一个的算术平方根叫做二次根式)强调:二次根式被开方数不小于02.二次根式的性质:=2)a ((a ≥0),=2a =⎪⎩⎪⎨⎧<≥0)(a 0)(a =ab (a ≥0,b ≥0)=ba (a ≥0,b >0) 3.二次根式的运算:二次根式乘法法则ab b a =⨯(a ≥0,b ≥0)二次根式除法法则ab b a=(a ≥0,b >0)二次根式的加减:类似于合并同类项,把相同二次根式的项合并.二次根式的混合运算:原来学习的运算律(结合律、交换律、分配律)仍然适用,原来所学的乘法公式(如22222b 2ab a )b a (;b a b)-b)(a (a +±=±-=+)仍然适用.内容组织例1 求下列二次根式中字母的取值X 围(1)x x --+315;(2)22)-(x ; 说明:二次根式被开方数不小于0,所以求二次根式中字母的取值X 围常转化为不等式(组)练习:求下列二次根式中字母的取值X 围(1)5a ;(2)a-12 例2 化简: (1)4101.2⨯;(2)22)34()32(+ 说明:应用二次根式的性质进行化简例3、计算:(1))10331(101.22352⨯-⨯⨯; (2)10)580(21÷-- (3))122)(32(+-例4 解方程:06x 32=+处理:提示——这是一元一次方程,未知数的系数是二次根式,由学生叙述,教师板书.例5 在直角坐标系中,点P (1, 3)到原点的距离是_________ 例6 一个台阶如图,阶梯每一层高15cm ,宽25cm少 B说明:转化到同一平面中去(铺平——平面展开图),应用两点之间线段最短;铺平后楼梯的平面展开图是什么图形?就可根据什么求出AB 的长?课堂小结 1.()(),结果正确的是化简22x x -+(参考:D ) A. 2x 2.x,x 2-=则x 的取值X 围是.(参考:x ≤0) 3.2x x 2-x x -=成立的条件是( ) (参考:D )02-x x .A ≥)(2.x B ≠)(0.x C ≥)(2 (D).x 〉 说明:注意二次根式中字母的取值条件..10.422的值,求,小数部分是的整数部分是已知b a b a +提示:估计根号10约是几点几?(即根号10在3~4之间)整数部分是3,那小数部分是多少呢?(准确地说根号10减去3)然后由学生去算.86423333,,,的值将根号内的3换成其他正数,结果怎样?你能从计算中发现什么运算规律?(请用文字描述或用字母标示出来)布置作业A。
第1章 二次根式1.1 二次根式【教学目标】知识与技能1.理解二次根式的概念。
2.使学生掌握用简单的一元一次不等式解决二次根式中字母的取值范围。
过程与方法1.经历探究二次根式意义的过程,并能观察思考得出二次根式的特点。
2.通过探究,进一步发展观察、归纳、概括等能力。
3.培养与提高灵活运用知识的能力、准确计算能力以及语言表达能力。
情感态度与价值观1.通过探究二次根式,让学生获得成功的体验,锻炼克服困难的意志,建立自信心。
2.通过探究,鼓励学生敢于发表自己的观点,尊重与理解他人的见解,从交流中获益。
3.通过对二次根式特点的归纳,提高学生的逻辑思维能力。
教学重难点重点:二次根式的概念和二次根式有意义的条件。
难点:确定较复杂的二次根式中字母的取值范围。
【教学过程】知识回顾求一求:(1)3的平方根是_____;(2)3的算术平方根是_____;(3呢?归纳:①一个正数有____个平方根,负数_____________;②一个非负数a 的算术平方根可以表示为 。
情景导入根据图1.1-1的直角三角形、正方形和圆的条件,完成以下填空:2 cm a cm图1.1-1直角三角形的斜边长是_____;正方形的边长是______;圆的半径是________。
学生写出表示算术平方根的式子。
问:你认为所得的各代数式的共同特点是什么? 学生通过观察,感知二次根式的特征,从而引出课题。
探究新知1.二次根式的概念引导学生概括二次根式的概念:像这样表示算术平方根的代数式叫做二次根式。
2.深化二次根式的概念:① 提问:9-1呢?② 表示什么意义?此算术平方根的被开方数是什么?被开 方数必须满足什么条件的二次根式才有意义?其中字母a 需满足什么条件?为什么?经学生讨论后,让学生回答,并让其他学生点评。
③ 教师总结:强调二次根式根号内字母的取值范围必须满足被开方数大于或等于0。
④ 巩固练习一: 下列式子,哪些是二次根式?3.讲解例题例1 求下列二次根式中字母a 的取值范围:(1)1+a ; (2)a 43-; (3)x - .教师提问,学生回答,教师板书解题过程。