2019年各区九年级上册期末试题分类汇编:相似三角形的性质-精品
- 格式:docx
- 大小:510.46 KB
- 文档页数:5
4.5 相似三角形的性质及其应用(二)1.△ABC与△DEF的相似比为1∶4,则△ABC与△DEF的周长比为(C)A. 1∶2B. 1∶3C. 1∶4D. 1∶162.已知△ABC的三边长分别为4,2,3,△ABC与△A′B′C′相似,△A′B′C′的周长为15,则△A′B′C′的最大边长为(C)A. 4B. 125C.203D. 63.如图,在△ABC中,D,E,F分别是边长AB,BC,AC的中点,则△DEF与△ABC的面积之比为(A)A. 1∶4B. 1∶3C. 1∶2D. 1∶ 2(第3题) (第4题)4.如图,D,E分别为△ABC的边长AB,AC上的中点,则△ADE与四边形BCED 的面积的比为(B)A. 1∶2B. 1∶3C. 1∶4D. 1∶15.已知△ABC∽△A′B′C′,相似比为3∶4,且两个三角形的面积之差为28 ,则△ABC 的面积为__36__.6.如图,点D ,E 分别在△ABC 的边AB ,AC 上,∠1=∠B ,AE =EC =4,BC =10,AB =12,则△ADE 的周长为10.(第6题)7.如图,在矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,AD AB =12,△CEF的面积为S 1,△AEB 的面积为S 2,求S 1S 2的值.(第7题)【解】 ∵AD AB =12,∴设AD =BC =a ,则AB =CD =2a ,∴AC =5a.∵BF ⊥AC ,四边形ABCD 为矩形, ∴易得△CBE ∽△CAB ,△AEB ∽△ABC , ∴BC 2=CE ·AC ,AB 2=AE ·AC ,∴a 2=CE ·5a ,(2a)2=AE ·5a ,∴CE =5a 5,AE =4 5a 5,∴CE AE =14.易得△CEF ∽△AEB ,∴S 1S 2=⎝ ⎛⎭⎪⎪⎫CE AE 2=116.8.如图,在△ABC 中,点D ,E ,F 分别在AB ,AC ,BC 上,DE ∥BC ,EF ∥AB.若AECE =23,S △ABC =25,求S ▱BFED.(第8题)【解】 ∵DE ∥BC ,EF ∥AB , ∴△ADE ∽△ABC ,△CEF ∽△CAB.∴S △ADE S △ABC =⎝ ⎛⎭⎪⎪⎫AE AC 2,S △CEF S △ABC =⎝ ⎛⎭⎪⎪⎫CE AC 2. ∵AECE =23,∴AE AC =25,CE AC =35. ∵S △ABC =25,∴S △ADE =4,S △CEF =9, ∴S ▱BFED =25-4-9=12.9.如图,D ,E 分别是△ABC 的边AB ,BC 上的点,DE ∥AC.若S △BDE ∶S △CDE =1∶3,则S △DOE ∶S △AOC 的值为(D)(第9题)A. 13B. 14C. 19D. 116【解】 ∵S △BDE ∶S △CDE =1∶3, ∴BE ∶EC =1∶3,∴BE ∶BC =1∶4. ∵DE ∥AC ,∴△DOE ∽△AOC ,△BDE ∽△BAC ,∴DE AC =BE BC =14,∴S △DOE ∶S △AOC =⎝ ⎛⎭⎪⎪⎫DE AC 2=116. 10.如图,把△ABC 沿AB 边平移到△A ′B ′C ′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC 面积的一半.若AB =2,则此三角形移动的距离AA ′=2-1.(第10题)【解】 设BC 与A ′C ′交于点E. 易知AC ∥A ′C ′,∴△BEA ′∽△BCA ,∴S △BEA ′∶S △BCA =A ′B 2∶AB 2=1∶2.∵AB =2,∴A ′B =1,∴AA ′=AB -A ′B =2-1.11.如图,已知△ABC 是面积为3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 交于点F ,则△AEF 的面积等于3-34(结果保留根号).(第11题)【解】 过点F 作FG ⊥AE 于点G.∵△ABC ∽△ADE ,∴S △ABC S △ADE =⎝ ⎛⎭⎪⎪⎫AB AD 2=4, ∴S △ADE =34,∴正三角形ADE 的边长为1.∵∠EAD =∠CAB =60°,∴∠EAF =∠BAD =45°,∴FG =AG.在Rt △EGF 中,设EG =x ,则易得FG =3x ,∴3x +x =1,∴x =3-12,∴FG =3-32.∴S △AEF =12AE ·FG =3-34.12.如图,已知A 是反比例函数y =6x 在第一象限分支上的一个动点,连结AO并延长交另一分支于点B ,以AB 为边向右作等边三角形ABC ,点C 在第四象限内,且随着点A 的运动,点C 的位置也在不断变化,但点C 始终在反比例函数y =kx 上运动,则k 的值是-3__6.(第12题)(第12题解)【解】 ∵反比例函数y =6x的图象关于原点对称,∴点A 与点B 关于原点对称,∴OA =OB. 连结OC ,如解图.∵△ABC 是等边三角形,OA =OB ,∴OC ⊥AB ,∠BAC =60°.∴AC =2OA.∴OC =3OA.过点A 作AE ⊥y 轴,垂足为E ,过点C 作CF ⊥y 轴,垂足为F. ∵AE ⊥OE ,CF ⊥OF ,OC ⊥OA , ∴∠AEO =∠OFC =90°, ∴∠AOE =90°-∠FOC =∠OCF , ∴△OFC ∽△AEO ,且相似比OCOA=3,∴S △OFC S △AEO =⎝ ⎛⎭⎪⎪⎫OC OA 2=3. 设点A 的坐标为(a ,b).∵点A 在双曲线y =6x 上,∴S △AEO =12ab =62,∴S △OFC =12FC ·OF =3 62.设点C 的坐标为(x ,y).∵点C 在第四象限,∴FC =x ,OF =-y.∴FC ·OF =x ·(-y)=-xy =3 6.∵点C 在双曲线y =kx上,∴k =xy =-36.(第13题)13.如图,在△ABC 中,DE ∥FG ∥BC ,并将△ABC 分成面积分别为S 1,S 2,S 3的三块.若S 1∶S 2∶S 3=1∶4∶10,BC =15,求DE ,FG 的长.【解】 ∵DE ∥FG ∥BC , ∴△ADE ∽△AFG ∽△ABC ,∴S △ADE S △ABC =⎝ ⎛⎭⎪⎪⎫DE BC 2,S △AFG S △ABC =⎝ ⎛⎭⎪⎪⎫FG BC 2, 即S 1S 1+S 2+S 3=⎝ ⎛⎭⎪⎪⎫DE 152,S 1+S 2S 1+S 2+S 3=⎝ ⎛⎭⎪⎪⎫FG 152. 设S 1=k ,则S 2=4k ,S 3=10k ,∴S 1S 1+S 2+S 3=kk +4k +10k =⎝ ⎛⎭⎪⎪⎫DE 152,S 1+S 2S 1+S 2+S 3=k +4k k +4k +10k =⎝ ⎛⎭⎪⎪⎫FG 152, ∴DE =15,FG =53.14.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的点P 处.(第14题)(1)如图①,已知折痕与边BC 相交于点O. ①求证:△OCP ∽△PDA.②若△OCP 与△PDA 的面积之比为1∶4,求边AB 的长. (2)若图①中的P 恰好是CD 边的中点,求∠OAB 的度数.(3)如图②,在(1)的条件下,擦去折痕AO 、线段OP ,连结BP.动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连结MN 交PB 于点F ,过点M 作ME ⊥BP 于点E.试问:在点M ,N 移动的过程中,线段EF 的长度是否发生变化?若发生变化,请说明理由;若不变,请求出线段EF 的长度.【解】 (1)①∵四边形ABCD 是矩形,∴AD =BC ,DC =AB ,∠DAB =∠B =∠C =∠D =90°. 由折叠的性质,得∠APO =∠B =∠C =90°, ∴∠POC =90°-∠CPO =∠APD. 又∵∠C =∠D ,∴△OCP ∽△PDA.②∵△OCP 与△PDA 的面积之比为1∶4,△OCP ∽△PDA ,∴OC PD =OP PA =CP DA =14=12,∴PD =2OC ,PA =2OP ,DA =2CP. ∵AD =8,∴CP =4,BC =8. 设OP =x ,则OB =x ,OC =8-x.在Rt △PCO 中,∵∠C =90°,CP =4,OP =x ,OC =8-x , ∴x 2=(8-x)2+42,解得x =5,∴AB =AP =2OP =10,∴边AB 的长为10. (2)∵P 是CD 边的中点,∴DP =12DC.∵DC =AB ,AB =AP ,∴DP =12AP.∵∠D =90°,∴∠DAP =30°. ∵∠DAB =90°,∠OAP =∠OAB , ∴∠OAB =30°.(3)过点M 作MQ ∥AN 交PB 于点Q. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP ,∠ABP =∠MQP , ∴∠APB =∠MQP ,∴MP =MQ. ∵ME ⊥PQ ,∴PE =QE =12PQ.∵BN =MP ,MP =MQ ,∴BN =MQ.∵MQ ∥AN ,∴∠QMF =∠BNF.又∵∠QFM =∠BFN ,QM =BN ,∴△MFQ ≌△NFB(AAS),∴QF =BF ,∴QF =12QB , ∴EF =EQ +QF =12PQ +12QB =12PB. 由(1)中的结论,得CP =4,BC =8,∠C =90°,∴PB =82+42=4 5,∴EF =12PB =2 5,∴在(1)的条件下,在点M ,N 移动的过程中,线段EF 的长度不变,为2 5.。
4.5 相似三角形的性质及其应用(2)1.已知两个相似三角形的相似比是2∶3,则它们的面积比是(A) A .4∶9 B .2∶3 C .3∶2 D .9∶42. 已知△ABC ∽△DEF ,对应边AB ∶DE =1∶2,则△ABC 和△DEF 的周长比为(A) A. 1∶2 B. 1∶4 C. 2∶1 D. 4∶13.如图,在梯形ABCD 中,AB ∥CD.如果S △ODC ∶S △BDC =1∶3,那么S △ODC ∶S △ABC 等于(B)A .1∶5B .1∶6C .1∶7D .1∶9,(第3题)) ,(第4题))4.如图,正方形ABCD 是一块绿化带,其中阴影部分的四边形EOFB ,GHMN 是正方形的花圃.一只自由飞翔的小鸟随机落在这块绿化带上,则小鸟落在花圃上的概率为(C)A.1732B.12C.1736D.17385.用3倍的放大镜照一个面积为1的三角形,放大后的三角形面积是__9__.(第6题)6. 如图,圆桌正上方的灯泡(看做一个点)发出的光线照射桌面后,在地面上形成阴影(圆形).已知桌面的直径为1.2 m ,桌面距地面1 m ,若灯泡距离地面3 m ,则地上阴影部分的面积为0.81πm 2.7.两个相似三角形的一组对应边长分别为15 cm 和27 cm ,它们的周长之差为36cm ,则较小三角形的周长是__45__cm.(第8题)8.如图,在▱ABCD 中,E 是BC 中点,F 是BE 的中点,AE 与DF 交于点H ,则S △EFH ∶S △ADH 的值是__116__.(第9题)9.如图,在△ABC 中,DE ∥BC ,AD =2BD. (1)若△ADE 的周长为6,求△ABC 的周长; (2)若S 梯形BCED =20,求S △ADE . 【解】 (1)∵DE ∥BC ,∴△ADE ∽△ABC.又∵AD =2BD ,∴AD AB =23,∴△ADE 与△ABC 的相似比为2∶3. ∵△ADE 的周长为6, ∴△ABC 的周长为9.(2)∵S △ADE S △ABC =S △ADES △ADE +S 梯形BCED =⎝ ⎛⎭⎪⎫232=49,∴S △ADES △ADE +20=49,∴S △ADE =16.(第10题)10. 如图,在一次台球比赛中,小红将球从A 处射出,经球台挡板CD 反射,恰好落入球袋B.若球台板长CD =2.4 m ,宽BD =1.5 m ,AC =0.3 m ,则点E 距点C 多远?【解】 ∵四边形ABCD 为矩形, ∴∠C =∠D =90°.根据物理中的反射规律,知∠BED =∠AEC , ∴△BDE ∽△ACE , ∴EC DE =AC BD. 代入数据,得CE2.4-CE =0.31.5,解得CE =0.4.∴点E 距点C 有0.4 m 远.11.如图,要在一个△ABC 的花坛中种植花草,工作人员沿与AB 平行的方向画一条直线,将原花坛分割出一个三角形的地块(△CDE),测出△CDE 的面积为10 m 2,CE =4 m ,BE =6 m .请你根据测得的数据计算出花坛△ABC 的面积.(第11题)【解】 ∵DE ∥AB , ∴△CDE ∽△CAB , ∴S △CDE S △CAB =⎝ ⎛⎭⎪⎫CE CB 2. ∵S △CDE =10,CE =4,EB =6,∴CB =10,∴10S △CAB =⎝ ⎛⎭⎪⎫4102=425, ∴S △CAB =1252(m 2).答:花坛△ABC 的面积是1252m 2.(第12题)12.如图,D 为△ABC 的边BC 上的一点,DE ∥AB ,DF ∥AC ,分别交AC ,AB 于点E ,F.设△CDE ,△BDF ,四边形DEAF 的面积分别为S 1,S 2,S 3,求证:S 3=2S 1S 2.【解】 设S △ABC 的面积为S. ∵DE ∥AB ,∴△EDC ∽△ABC , ∴S 1S =⎝ ⎛⎭⎪⎫CE CA 2,∴S 1S =CE CA. 同理,S 2S =DF AC. ∵DF ∥AC ,DE ∥AB ,∴四边形DEAF 为平行四边形,∴DF =AE ,∴S 2S =AE AC, ∴S 1+S 2S =CE CA +AE CA =CE +AE CA=1, ∴S 1+S 2=S ,∴(S 1+S 2)2=S ,∴S -(S 1+S 2)=2 S 1S 2,即S 3=2S 1S 2.(第13题)13.如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC ,∠ACB 的平分线CF 交AD 于点F ,点E 是AB 的中点,连结EF.(1)求证:EF ∥BC ;(2)若四边形BDFE 的面积为6,求△ABD 的面积. 【解】 (1)∵DC =AC ,CF 是∠ACB 的平分线,∴AF =DF.又∵AE =BE ,∴EF 是△ABD 的中位线, ∴EF ∥BC.(2)∵EF ∥BC ,∴△AEF ∽△ABD. ∵EF =12BD ,∴S △AEF S △ABD =14.∵S 四边形BDFE =6,∴S △AEF6+S △AEF =14,∴S △AEF =2,∴S △ABD =8.(第14题)14. 如图,在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,OD ∥AB 交BC 于点D ,OE ∥AC 交BC 于点E.求证:BC 2=DE(AB +BC +AC).【解】 ∵OD ∥AB ,∴∠ODE =∠ABC ,∠ABO =∠BOD.又∵∠ABO =∠DBO ,∴∠DBO =∠BOD.∴BD =OD. 同理,OE =CE.∵OE ∥AC ,∴∠OED =∠ACB.∴△ODE ∽△ABC ,∴OD +DE +OE AB +BC +AC =DEBC .∴BD +DE +CE AB +BC +AC =DE BC ,即BC AB +BC +CA =DE BC , ∴BC 2=DE(AB +BC +AC).。
2019-2020 年九年级数学上册期末复习专题相像三角形综合练习及答案一选择题:1. 以下说法正确的选项是()(A) 两个矩形必定相像.(B)两个菱形必定相像.(C) 两个等腰三角形必定相像.(D)两个等边三角形必定相像.2. 以下说法中正确的选项是()①在两个边数同样的多边形中,假如对应边成比率,那么这两个多边形相像;②假如两个矩形有一组邻边对应成比率,那么这两个矩形相像;③有一个角对应相等的平行四边形都相像;④有一个角对应相等的菱形都相像.A. ①②B. ②③C. ③④D.②④3.如图,菱形 ABCD中,对角线 AC、BD订交于点 O,M、N分别是边 AB、AD的中点,连结 OM、ON、 MN,则以下表达正确的选项是()A. △ AOM和△ AON都是等边三角形B.四边形MBON和四边形MODN都是菱形C.四边形MBCO和四边形NDCO都是等腰梯形D. 四边形 AMON与四边形 ABCD是位似图形4. 如图,在△ ABC中,点 D、E 分别在边AB、AC上,以下条件中不可以判断△ABC∽△ AED的是()A. ∠ AED=∠ BB. ∠ADE=∠C C.= D.=5. 以下 4× 4 的正方形网格中,小正方形的边长均为1,三角形的极点都在格点上,则与△ABC相像的三角形所在的网格图形是()A. B. C. D.6. 如图,P是△ ABC的边 AC上一点,连结 BP,以下条件中不可以判断△ABP∽△ACB的是()A. B. C. ∠ ABP=∠C D.∠ APB=∠ ABC7. 如图,在△ ABC中, DE∥ BC,DE分别与 AB、 AC订交于点D、 E, 若 AD=4, DB=2,则 AE: EC值为()C. D.8. 如图, Rt △ ABC中,∠ C=90°, D 是 AC边上一点, AB=5,AC=4,若△ ABC∽△ BDC,则 CD=()B. C. D.9. 若,且,则的值是()D.D, E, F. 已知10. 如图, AD∥ BE∥CF,直线l 1、 l 2 与这三条平行线分别交于点A,B, C和点AB=1, BC=3, DE=2,则EF 的长为 ()11.如图, P 是 Rt △ ABC斜边 AB上随意一点( A,B 两点除外),过 P 点作向来线,使截得的三角形与Rt△ ABC相像,这样的直线能够作()条条条条12. 某学习小组在议论“变化的鱼”时,知道大鱼与小鱼是位似图形( 如下图) ,则小鱼上的点 (a , b) 对应大鱼上的点() .A.(-2a,-2b)B.(-a,-2b)C.(-2b,-2a)D.(-2a,-b)13. 如图,在矩形COED中,点 D的坐标是( 1, 3),则 CE的长是()B. C.14.如下图,在正方形 ABCD中, E 是 BC的中点, F 是 CD上的一点, AE⊥ EF,以下结论:2①∠ BAE=30°;② CE=AB?CF;③ CF=FD;④△ ABE∽△ AEF.此中正确的有 ()A .1个B.2个C.3个D.4个15. 如下图,若DE∥FG∥ BC,AD=DF=FB,则 S△ADE:S四边形DFGE : S 四边形FBCG()A.2:6:9B.1:3:5C.1:3:6D.2:5:816. 如下图,一般书籍的纸张是对原纸张进行多次对折获得的,矩形ABCD沿 EF 对折后,再把矩形EFCD沿 MN对着,依此类推,若所得各样矩形都相像,那么等于()B. C.17.已知矩形 ABCD中, AB=1,在 BC上取一点 E,沿 AE 将△ ABE向上折叠,使 B 点落在 AD上的 F 点,若四形EFDC与矩形 ABCD相像,AD=()A. B. C.18. 如所示 , 已知△ ABC中 ,BC=8,BC 上的高 h=4, D BC上一点 ,EF ∥BC,交 AB于点 E,交AC于点 F( EF不 A、B), E 到 BC的距离 x.△ DEF的面 y 对于 x 的函数的象大致()A. B. C.D.19. 如,在直角梯形ABCD中, DC∥ AB,∠ DAB=90°, AC⊥BC, AC=BC,∠ ABC的均分分交 AD、 AC于点 E, F,的是()A.B.C.D.20. 相互相像的矩形,,,⋯,和点,,,,,⋯,分在直,⋯,按如所示的方式搁置.点( k> 0)和 x 上,已知点、的坐标分别为(1, 2),( 3, 4),则 Bn 的坐标是()A. B. C. D.二填空题:21. 如图,若△ADE∽△ ACB,且= , DE=10,则BC=____________.22.如图,在△ ABC中, D、 E 分别是边 AB、 AC上的点, DE∥BC, AD:DB=1: 2, S△ADE=1,则S 四边形BCED的值为 _______.23.如图,上体育课,甲、乙两名同学分别站在C、D 的地点时,乙的影子恰幸亏甲的影子里边,已知甲,乙同学相距 1 米 , 甲身高 1.8 米,乙身高 1.5 米,则甲的影长是米.24.如图 ,AB 是圆 O的直径 , 点 C在圆上 ,CD⊥ AB于点 D,DE//BC, 则图中与△ ABC相像三角形共有个.25. 如图,平行于BC的直线 DE把△ ABC分红的两部分面积相等,则=.26.如图,已知 D、 E 分别是△ ABC的边 AB和 AC上的点, DE∥BC, BE与 CD订交于点 F,假如 AE=1, CE=2,那么 EF: BF等于27.如图,上体育课,甲、乙两名同学分别站在C、D 的地点时,乙的影子恰幸亏甲的影子里边,已知甲,乙同学相距 1 米.甲身高 1.8 米,乙身高 1.5 米,则甲的影长是米.28. 如图,边长12 的正方形 ABCD中,有一个小正方形FD上.若 BF=3,则小正方形的边长为.EFGH,此中E、F、 G分别在AB、 BC、29. 在方格纸中,每个小格的极点为格点,以格点连线为边的三角形叫做格点三角形所示的 5×5 的方格纸中,作格点△ABC与△ OAB相像,(相像比不可以为1),则. 在如图C 点的坐标为30. 如图,正方形ABCD中, E 为 AB 的中点, AF⊥ DE于点 O,则=____________ .31.如图,在△ ABC中,∠C=90°,将△ ABC沿直线 MN翻折后,极点 C 恰巧落在 AB边上的点D处,已知MN∥ AB,MC=6, NC=4,则四边形MABN的面积是.32.如图,在正方形 ABCD内有一折线段,此中 AE丄 EF,EF 丄 FC,而且 AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的暗影部分的面积为.三简答题:33. 为了估量河的宽度,我们能够在河对岸的岸边选定一个目标作为点A,再在河的这一边选点 B 和点 C,使 AB⊥ BC,而后再选点E,使 EC⊥ BC,确立 BC与 AE的交点为 D,如图,测得 BD=120米, DC=60米, EC=50米,你能求出两岸之间AB的大概距离吗?34.如图, M为线段 AB的中点, AE与 BD交于点 C,∠ DME=∠ A=∠B=α,且 DM交 AC于 F,ME 交 BC于 G.(1)写出图中三对相像三角形,并证明此中的一对;(2) 连结 FG,假如α =45°, AB=4,AF=3,求FC和FG的长.35 如图,已知△ ABC中, AB=2,BC=4, D为 BC边上一点, BD=1.(1)求证:△ ABD∽△ CBA;(2)若 DE∥ AB交 AC于点 E,请再写出另一个与△ ABD相像的三角形,并直接写出 DE的长.36. 一天夜晚,李明和张龙利用灯光下的影子长来丈量一路灯 D 的高度.如图23-12 ,当李明走到点 A 处时,张龙测得李明直即刻身高AM与影子长AE正好相等;接着李明沿AC方向持续向前走,走到点 B 处时,李明直即刻身高 BN的影子恰巧是线段 AB,并测得,已知李明直即刻的身高为,求路灯的高 CD的长. ( 结果精准到 0.1m) .37. 如图, Rt △ ABC中,∠ C=90°, AC=6cm, BC=8cm,一动点1cm/s 的速度运动,另一动点Q同时从点 C 出发沿 CB边向点(1)运动几秒时,△ CPQ的面积是 8cm2?(2)运动几秒时,△ CPQ与△ ABC相像?P 从点 A 出发沿边AC向点 C 以B 以 2cm/s 的速度运动.问:38. 如图,四边形ABCD中, AC均分∠ DAB,∠ ADC=∠ACB=90°, E 为 AB的中点,2(1)求证: AC=AB?AD;(2)求证: CE∥ AD;(3)若 AD=4, AB=6,求的值.39.如图,在矩形 ABCD中, AB=12cm,BC=8cm .点 E、F、 G分别从点 A、 B、 C 三点同时出发,沿矩形的边按逆时针方向挪动。
初中数学试卷 灿若寒星整理制作4.7相似三角形的性质(1)1.下列说法:①相似三角形对应角的比等于相似比;②相似三角形对应高的比等于对应角平分线的比;③相似三角形对应中线的比等于相似比;④相似之比等于1的两个三角形全等。
其中正确的说法有( )A .1个B .2个C .3个D .4个2.如下图是一个照相机成像的示意图,如果底片AB 宽40mm ,焦距是60mm ,所拍摄的2m 外的景物的宽CD 为( )A .12mB .3mC .m 23D .m 343.如果两个相似三角形对应高的比为5:4,那么这两个相似三角形的相似比为 。
4.已知两个相似的△ABC 与△A ’B ’C ’的对应角平分线的比为5:2,若△ABC 的最短边长是20㎝,则△A ’B ’C ’的最短边长是 。
5.如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m ,CD=6m ,点P 到CD 的距离是2.7m ,则AB 与CD 间的距离是 m 。
6.两个相似三角形的对应高线之比为2:3,且第一个三角形的某一边长6,则第二个三角形中与之对应的边的长度为 。
7.如图所示,CD是Rt△ABC的斜边AB上的高。
(1)求图中有几对相似三角形;(2)若AD=9㎝,CD=6㎝,求BD;(3)若AB=25㎝,BC=15㎝,求BD。
8.如图所示,有一侦察员在距敌方200m的地方A处发现敌人的一座建筑物DE,但不知其高度,又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。
若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请写出你的推理过程。
相似三角形的性质与判定★求线段长1.(密云18期末1)如图,ABC ∆中,D 、E 分别是AB 、AC 上点,DE //BC ,AD =2,DB =1,AE =3,则EC 长( )A .23B .1C .32D .6 C2.(怀柔18期末4)如图,在△ABC 中,点D ,E 分别为边AB,AC上的点,且DE ∥BC ,若AD =4,BD =8,AE =2,则CE 的长为( )A .2B .4C .6D .8B3.(海淀18期末3)如图,线段BD ,CE 相交于点A ,DE ∥BC .若AB 4,AD 2,DE 1.5,则BC 的长为( )A .1B .2C .3D .4C4.(石景山18期末10)如图,在△ABC 中,点D 、E 分别在边AB 、AC上.若∠ADE =∠C ,AB =6,AC =4,AD =2,则EC =________.10.15.(西城18期末10) 如图,在△ABC 中,D ,E 两点分别在AB ,AC 边上,DE ∥BC ,如果23=DB AD ,AC =10,那么EC = .46.(门头沟18期末12)如图,在△ABC 中, DE 分别与AB 、AC 相交于点D 、E ,且DE ∥BC ,如果23AD DB =,那么DE BC =__________.257.(通州18期末12)如图,点D 为ABC △的AB 边上一点,2=AD ,3=DB .若ACD B ∠=∠,则.____________=AC★周长比、面积比8.(朝阳18期末5)如图,△ABC ∽△A ’B ’C ’,AD和A ’D ’分别是△ABC 和△A ’B ’C ’的高,若AD=2,A ’D ’=3,则△ABC 与△A ’B ’C ’的面积的比为( )A .4:9B .9:4C .2:3D .3:2A9.(平谷18期末4)如图,Rt△ABC 中,∠C =90°,∠A =30°,CD ⊥AB 于D ,则△CBD 与△ABC 的周长比是( )A .2B .3 C .14 D .12D10.(顺义18期末7)如图,已知△ABC ,D ,E 分别在AB ,AC 边上,且DE ∥BC ,AD =2,DB =3,△ADE 面积是4,则四边形DBCE的面积是( )A .6B .9C .21D .25C11.(海淀18期末5)如图,△OAB ∽△OCD ,OAOC 32,∠A α,∠C β,△OAB 与△OCD 的面积分别是1S 和2S ,△OAB 与△OCD 的周长分别是1C 和2C ,则下列等式一定成立的是( )A .32OBCD = B .32αβ=C .1232S S = D .1232C C =D 12.(石景山18期末9)如果两个相似三角形的周长比为3:2,那么这两个相似三角形的面积比为______.9.9:413.(大兴18期末11)若△ABC ∽△DEF ,且BC ∶EF=2∶3,则△ABC 与△DEF 的面积 比等于_________.11. 4∶9.14.(怀柔18期末10)若△ABC ∽△DEF ,且对应边BC 与EF 的比为1∶3,则△ABC 与△DEF 的面积比等于 .10.19★判定15.(西城18期末7)如图,点P 在△ABC 的边AC 上,如果添加一个条件后可以得到 △ABP ∽△ACB ,那么以下添加的条件中,不.正确的是( ). A .∠ABP =∠C B .∠APB =∠ABCC .2AB AP AC =⋅D .AB AC BP CB = D16.(丰台18期末6)如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是( )A B C DA17.(密云18期末7)如图,ABC ∆中,70A ∠=︒,AB=4,AC= 6,将ABC∆沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似...的是( )A B C DD18.(顺义18期末12)如图,标记了△ABC与△DEF边、角的一些数据,如果再添加一个条件使△ABC∽△DEF,那么这个条件可以是.(只填一个即可)12.略;19.(朝阳18期末17)小明在学习了如何证明“三边成比例的两个三角形相似”后,运用类似的思路证明了“两角分别相等的两个三角形相似”,以下是具体过程.已知:如图,在△ABC和△A'B'C'中,∠A=∠A',∠B=∠B'.求证:△ABC∽△A'B' C'.证明:在线段A'B'上截取A'D=AB,过点D作DE∥B'C',交A'C'于点E.由此得到△A'DE∽△A'B'C'.∴∠A' DE=∠B'.∵∠B=∠B',∴∠A' DE =∠B.∵∠A'=∠A,∴△A' DE≌△ABC.∴△ABC∽△A'B'C'.小明将证明的基本思路概括如下,请补充完整:(1)首先,通过作平行线,依据,可以判定所作△A' DE与;(2)然后,再依据相似三角形的对应角相等和已知条件可以证明所作△A' DE与;(3)最后,可证得△ABC∽△A'B' C'.。
1.3 相似三角形的性质一、选择题(本大题共2小题,共6分)1.(3分)如图,在ΔABC中,EF//BC,AEEB =23,四边形BCFE的面积为21,则△ABC的面积是()A. 913B. 25C. 35D. 63【答案】B;【解析】此题主要考查了相似三角形的判定与性质,利用相似三角形的性质,找出S四边形BCFE =2125S△ABC是解答该题的关键.由EF//BC可得出△AEF∽△ABC,利用相似三角形的性质可得出S△AEF=425S△ABC,结合S四边形BCFE=21即可得出关于S△ABC的一元一次方程,解之即可得出结论.解:∵EF//BC,∴△AEF∽△ABC,∴SΔAEFSΔABC =(AEAB)2=(AEAE+EB)2=425,∴S△AEF=425S△ABC.∵S四边形BCFE =SΔABC−SΔAEF=21,即2125S△ABC=21,∴SΔABC=25.故选:B.2.(3分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则ΔDEF的面积与ΔBAF的面积之比为()A. 3:4B. 9:16C. 9:1D. 3:1【答案】B;【解析】该题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.可证明ΔDFE∽ΔBFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.解:∵四边形ABCD为平行四边形,∴DC//AB,∴ΔDFE∽ΔBFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴SΔDFE:SΔBFA=9:16.故选B.二、填空题(本大题共2小题,共6分)3.(3分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为______.【答案】103;【解析】该题考查了相似三角形的判定与性质、矩形的性质以及勾股定理。
根据矩形的性质可得出AB//CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出ΔAFE∽ΔCFD,利用相似三角形的性质可得出CFAF =CDAE=2,利用勾股定理可求出AC的长度,再结合CF=CFCF+AF⋅AC,即可求出CF的长.解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB//CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴ΔAFE∽ΔCFD,∴CFAF =CDAE=2.∵AC=√AB2+BC2=5,∴CF=CFCF+AF ⋅AC=22+1×5=103.故答案为103.4.(3分)如图,已知等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第______个.【答案】5;【解析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.这道题主要考查了相似三角形的判定和性质,关键是根据相似三角形的性质及等腰三角形的性质的综合运用解答解:已知画出的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则318=x18,解得x=3,所以另一段长为18−3=15,因为15÷3=5,所以是第5张.故答案为:5.三、解答题(本大题共1小题,共8分)5.(8分)如图,AB//CD,AC与BD的交点为E,∠ABE=∠ACB.(1)求证:ΔABE∽ΔACB;(2)如果AB=6,AE=4,求AC,CD的长.【答案】证明:(1)∵∠ABE=∠ACB,∠A=∠A,∴ΔABE∽ΔACB;(2)∵ΔABE∽ΔACB,∴ABAC =AEAB,∴AB2=AC⋅AE,∵AB=6,AE=4,∴AC=AB2AE=9,∵AB//CD,∴ΔCDE∽ΔABE,∴CDAB =CEAE,∴CD=AB.CEAE =AB.(AC−AE)AE=6×54=152.;【解析】该题考查相似三角形的判定和性质,关键是根据相似三角形的判定证明ΔABE∽ΔACB,ΔCDE∽ΔABE.(1)根据相似三角形的判定证明即可;(2)利用相似三角形的性质解答即可.。
2019年全国中考试题解析版分类汇编-相似三角形判定和性质(92页)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!1.〔2017湖北荆州,7,3分〕如图,P为线段AB上一点,AD与BC交干E,∠CPD=∠A=∠B,BC交PD于E,AD交PC于G,那么图中相似三角形有〔〕A、1对B、2对C、3对D、4对考点:相似三角形的判定、专题:证明题、分析:根据题目提供的相等的角和图形中隐含的相等的角,利用两对应角对应相等的两三角形相似找到相似三角形即可、解答:解:∵∠CPD=∠A=∠B,∴△PCF∽△BCP△APG∽△BFP△APD∽△GPD应选B、点评:此题考查相似三角形的判定、识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角、2.〔2017江苏无锡,7,3分〕如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形、假设OA:OC=0B:OD,那么以下结论中一定正确的选项是〔〕A、①与②相似B、①与③相似C、①与④相似D、②与③相似考点:相似三角形的判定。
分析:由OA:OC﹣=0B:OD,利用对顶角相等相等,两三角形相似,①与③相似,问题可求、解答:证明:∵OA:OC=0B:OD,∠AOB=∠COD〔对顶角相等〕,∴①与③相似、应选B、点评:此题解答的关键是熟练记住所学的三角形相似的判定定理,此题难度不大,属于基础题、3.〔2017山西,11,2分〕如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G 、F 在BC 边上,四边形DEFG 是正方形、假设DE =2㎝,那么AC 的长为〔〕A、B 、4cm C、D、考点:三角形中位线,相似三角形的相似比专题:相似三角形分析:由题意知DE 是等腰△ABC 的中位线,所以DE ∥BC ,DE =12BC ,因为DE =2㎝,所以BC =4㎝、又DE ∥BC ,所以△ADE ∽△ABC ,且相似比为12、过点A 作AM ⊥BC 于点M 、那么MC =2㎝,由点E 是边AC 的中点,EF ∥AM ,所以FC =1㎝、在△EFC 中,因为正方形DEFG 的边长是2㎝,所以根据勾股定理得ECAC=)cm ,应选D 、 解答:D点评:此题是三角形中位线,等腰三角形的性质,勾股定理,相似三角形的相似比等的综合应用、过点A 作AM ⊥BC 于点M ,构造等腰三角形的高学生不易想到、4.〔2017陕西,9,3分〕如图,在□ABCD 中,E 、F 分别是AD 、CD 边上的点,连接BE 、AF ,他们相交于点G ,延长BE 交CD 的延长线于点H ,那么图中的相似三角形共有〔〕A 、2对B 、3对C 、4对D 、5对考点:相似三角形的判定;平行四边形的性质。
4.5 相似三角形的性质及其应用一.填空题1.(2019•奉贤区一模)联结三角形各边中点,所得的三角形的周长与原三角形周长的比是.2.(2019•南关区一模)利用标杆CD测量建筑物的高度的示意图如图所示,若标杆CD的高为1.5米,测得DE=2米,BD=18米,则建筑物的高AB为米.3.(2019•曲阜市二模)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,BD 足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为.4.(2019春•广陵区校级期末)如图,∠ACB=90°,CD是Rt△ABC斜边上的高,已知AB=25cm,BC=15cm,则BD=.5.(2019春•滨湖区期末)如图,平行四边形ABCD中,点E为BC边上一点,AE和BD交于点F,已知△ABF的面积等于6,△BEF的面积等于4,则四边形CDFE的面积等于.二.选择题(共10小题)6.(2019春•海州区校级月考)若P是Rt△ABC斜边BC上异于B,C的一点,过点P作直线截△ABC,截得的三角形与原△ABC相似,满足这样条件的直线有()条.A.1 B.2 C.3 D.47.(2018秋•嘉兴期末)如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足PM:PQ=3:2,则PM的长为()A.60mm B.mm C.20mm D.mm8.(2019•新乐市二模)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》.意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB、AD中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=()A.1.2 里B.1.5 里C.1.05 里D.1.02 里9.(2018春•南票区期末)如图,在平行四边形ABCD中,O1、O2、O3分别是对角线BD上的三点,且BO1=O1O2=O2O3=O3D,连接AO1并延长交BC于点E,连接EO3并延长交AD于点F,则AF:DF等于()A.19:2 B.9:1 C.8:1 D.7:110.(2018秋•秀洲区期末)如图,点G是△ABC的重心,下列结论中正确的个数有()①=;②=;③△EDG∽△CBG;④=.A.1个B.2个C.3个D.4个11.若△ABC∽△DEF,且S△ABC:S△DEF=3:4,则△ABC与△DEF的周长比为()A.3:4 B.4:3 C.:2 D.2:12.(2018秋•道里区期末)如图,△ABC∽△ADE,且BC=2DE,则的值为()A.B.C.D.13.(2018秋•南岗区校级月考)两个相似三角形的一组对应边的长分别是15和23,它们周长的差是40,则这两个三角形的周长分别为()A.75,115 B.60,100 C.85,125 D.45,8514.(2019•毕节市)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm215.(2018秋•襄州区期末)如图是小明设计用手电筒来测量某古城墙高度的示意图.在地面上点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=18米,那么该古城墙的高度是()A.6米B.8米C.12米D.24米三.解答题16.(2019•余杭区二模)如图,在△ABC中,AD、BE是中线,它们相交于点F,EG∥BC,交AD于点G.(1)求证:△FGE∽△FDB;(2)求的值.17.(2018秋•梁溪区校级期中)(1)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,点P是边AB上一点,若△PAD∽△CBP,请利用没有刻度的直尺和圆规,画出满足条件的所有点P;(2)在(1)的条件下,若AB=8,AD=3,BC=4,则AP的长是.18.(2018秋•德清县期末)如图,点C,D在线段AB上,CD2=AC•DB,且△PCD是等边三角形.(1)证明:△ACP∽△PDB;(2)求∠APB的度数.19.(2018秋•昌图县期末)如图,路灯(点P)距地面6m,身高1.5m的学生小明从路灯的底部点O处,沿射线OH走到距路灯底部9m的点B处,此时小明的身影为BN,接着小明走到点N处,此时的身影为AM.求学生小明的身影长度变长了多少米.(小明如图中BD、AC所示)20.(2018秋•番禺区期末)如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设EG=xmm,EF=ymm.(1)写出x与y的关系式;(2)用S表示矩形EGHF的面积,某同学说当矩形EGHF为正方形时S最大,这个说法正确吗?说明理由,并求出S的最大值.参考答案一.填空题1.(2019•奉贤区一模)联结三角形各边中点,所得的三角形的周长与原三角形周长的比是1:2.【思路点拨】根据D、E、F分别是AB、BC、AC的中点,求证△DEF∽△ABC,然后利用相似三角形周长比等于相似比,可得出答案.【答案】解:如图,∵D、E、F分别是AB、BC、AC的中点,∴DE=AC,DF=BC,EF=AB,∴DE+DF+EF=AC+BC+AB,∵△DEF∽△ABC,∴所得到的△DEF与△ABC的周长之比是:1:2.故答案为:1:2.【点睛】此题考查了相似三角形的判定与性质和三角形中位线定理的理解和掌握,解答此题的关键是利用了相似三角形周长比等于相似比.2.(2019•南关区一模)利用标杆CD测量建筑物的高度的示意图如图所示,若标杆CD的高为1.5米,测得DE=2米,BD=18米,则建筑物的高AB为15米.【思路点拨】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可.【答案】解:∵AB∥CD,∴△EBA∽△ECD,∴=,即=,∴AB=15(米).故答案为:15.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出直角三角形,难度不大.3.(2019•曲阜市二模)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,BD 足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为0.4m.【思路点拨】由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.【答案】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,∴栏杆C端应下降的垂直距离CD为0.4m.故答案为:0.4.【点睛】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.4.(2019春•广陵区校级期末)如图,∠ACB=90°,CD是Rt△ABC斜边上的高,已知AB=25cm,BC=15cm,则BD=9cm.【思路点拨】根据相似三角形的判定和性质即可得到结论.【答案】解:∵CD⊥AB,∴∠CDB=∠ACB=90°,∵∠B=∠B,∴△ACB∽△CDB,∴,∴,解得:BD=9cm,故答案为:9cm.【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.5.(2019春•滨湖区期末)如图,平行四边形ABCD中,点E为BC边上一点,AE和BD交于点F,已知△ABF的面积等于6,△BEF的面积等于4,则四边形CDFE的面积等于11.【思路点拨】利用三角形面积公式得到AF:FE=3:2,再根据平行四边形的性质得到AD∥BE,S△ABD=S△CBD,则可判断△AFD∽△EFB,利用相似的性质可计算出S△AFD=9,所以S△ABD=S△CBD=15,然后用△BCD的面积减去△BEF的面积得到四边形CDFE的面积.【答案】解:∵△ABF的面积等于6,△BEF的面积等于4,即S△ABF:S△BEF=6:4=3:2,∴AF:FE=3:2,∵四边形ABCD为平行四边形,∴AD∥BE,S△ABD=S△CBD,∴△AFD∽△EFB,∴=()2=()2=,∴S△AFD=×4=9,∴S△ABD=S△CBD=6+9=15,∴四边形CDFE的面积=15﹣4=11.故答案为11.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.二.选择题6.(2019春•海州区校级月考)若P是Rt△ABC斜边BC上异于B,C的一点,过点P作直线截△ABC,截得的三角形与原△ABC相似,满足这样条件的直线有()条.A.1 B.2 C.3 D.4【思路点拨】过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.【答案】解:由于△ABC是直角三角形,过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故选:C.【点睛】本题主要考查三角形相似判定定理及其运用.解题时运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似.7.(2018秋•嘉兴期末)如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足PM:PQ=3:2,则PM的长为()A.60mm B.mm C.20mm D.mm【思路点拨】利用相似三角形的性质构建方程即可解决问题.【答案】解:如图,设AD交PN于点K.∵PM:PQ=3:2,∴可以假设MP=3k,PQ=2k.∵四边形PQNM是矩形,∴PM∥BC,∴△APM∽△ABC,∵AD⊥BC,BC∥PM,∴AD⊥PN,∴=,∴=,解得k=20mm,∴PM=3k=60mm,故选:A.【点睛】本题考查相似三角形的应用,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.8.(2019•新乐市二模)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》.意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB、AD中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=()A.1.2 里B.1.5 里C.1.05 里D.1.02 里【思路点拨】首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.【答案】解:如图所示:∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴=,解得:FH=1.05里.故选:C.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形.9.(2018春•南票区期末)如图,在平行四边形ABCD中,O1、O2、O3分别是对角线BD上的三点,且BO1=O1O2=O2O3=O3D,连接AO1并延长交BC于点E,连接EO3并延长交AD于点F,则AF:DF等于()A.19:2 B.9:1 C.8:1 D.7:1【思路点拨】根据题意,易得△BO3E∽△DO3F和△BO1E∽△DO1A,利用相似的性质得出DF:BE的值,再求出BE:AD的值,进而求出AF:DF.【答案】解:根题意,在平行四边形ABCD中,易得△BO3E∽△DO3F∴BE:FD=3:1∵△BO1E∽△DO1A∴BE:AD=1:3∴AD:DF=9:1∴AF:DF=(AD﹣FD):DF=(9﹣1):1=8:1故选:C.【点睛】考查了平行四边形的性质,对边相等.利用相似三角形三边成比例列式,求解即可.10.(2018秋•秀洲区期末)如图,点G是△ABC的重心,下列结论中正确的个数有()①=;②=;③△EDG∽△CBG;④=.A.1个B.2个C.3个D.4个【思路点拨】根据三角形的重心的概念和性质得到AE,CD是△ABC的中线,根据三角形中位线定理得到DE∥BC,DE=BC,根据相似三角形的性质定理判断即可.【答案】解:∵点G是△ABC的重心,∴AE,CD是△ABC的中线,∴DE∥BC,DE=BC,∴△DGE∽△BGC,∴=,①正确;=,②正确;△EDG∽△CBG,③正确;=()2=,④正确,故选:D.【点睛】本题考查的是三角形的重心的概念和性质,相似三角形的判定和性质,三角形中位线定理,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.11.若△ABC∽△DEF,且S△ABC:S△DEF=3:4,则△ABC与△DEF的周长比为()A.3:4 B.4:3 C.:2 D.2:【思路点拨】由△ABC∽△DEF,S△ABC:S△DEF=3:4,根据相似三角形的面积比等于相似比的平方,即可求得答案.【答案】解:∵△ABC∽△DEF,S△ABC:S△DEF=3:4,∴△ABC与△DEF的相似比为::2,∴△ABC与△DEF的周长比为::2.故选:C.【点睛】此题考查了相似三角形的性质.注意相似三角形面积的比等于相似比的平方.12.(2018秋•道里区期末)如图,△ABC∽△ADE,且BC=2DE,则的值为()A.B.C.D.【思路点拨】根据相似三角形的性质解答即可.【答案】解:∵△ABC∽△ADE,且BC=2DE,∴,∴,故选:B.【点睛】此题考查相似三角形的性质,关键是根据相似三角形的面积之比等于相似比的平方解答.13.(2018秋•南岗区校级月考)两个相似三角形的一组对应边的长分别是15和23,它们周长的差是40,则这两个三角形的周长分别为()A.75,115 B.60,100 C.85,125 D.45,85【思路点拨】根据两个相似三角形的对应边的长,可求出它们的相似比,也就求出了它们的周长比,再根据它们的周长差为40,即可求出两三角形的周长.【答案】解:∵两相似三角形的一组对应边为15和23,∴两相似三角形的周长比为15:23,设较小的三角形的周长为15a,则较大三角形的周长为23a,依题意,有:23a﹣15a=40,a=5,∴15a=75,23a=115,因此这两个三角形的周长分别为75,115.故选:A.【点睛】本题考查对相似三角形性质的理解:相似三角形周长的比等于相似比.14.(2019•毕节市)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm2【思路点拨】设AF=x,根据正方形的性质用x表示出EF、CF,证明△AEF∽△ABC,根据相似三角形的性质求出BC,根据勾股定理列式求出x,根据三角形的面积公式、正方形的面积公式计算即可.【答案】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB2=AC2+BC2,即302=(3x)2+(6x)2,解得,x=2,∴AC=6,BC=12,∴剩余部分的面积=×12×6﹣4×4=100(cm2),故选:A.【点睛】本题考查的是相似三角形的应用、正方形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.15.(2018秋•襄州区期末)如图是小明设计用手电筒来测量某古城墙高度的示意图.在地面上点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=18米,那么该古城墙的高度是()A.6米B.8米C.12米D.24米【思路点拨】因为小明和古城墙均和地面垂直,且光线的入射角等于反射角,因此构成一组相似三角形,利用对应边成比例即可解答.【答案】解:由题意知:∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴=,∴CD==12(米).故选:C.【点睛】本题考查了相似三角形的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问.三.解答题16.(2019•余杭区二模)如图,在△ABC中,AD、BE是中线,它们相交于点F,EG∥BC,交AD于点G.(1)求证:△FGE∽△FDB;(2)求的值.【思路点拨】(1)由GE∥BC,可得出∠GEF=∠DBF,再结合对顶角相等即可得出△FGE∽△FDB;(2)根据三角形中位线定理以及中线的定义得出GE=BD、AG=DG,再利用相似三角形的性质得出DF=DG,进而即可得出=.【答案】(1)证明:∵GE∥BC,∴∠GEF=∠DBF.又∵∠GFE=∠DFB,∴△FGE∽△FDB;(2)∵AD、BE是中线,EG∥BC,∴GE为△ADC的中位线,BD=DC,∴GE=DC=BD,AG=DG.∵△FGE∽△FDB,∴==,∴DF=DG,∴==.【点睛】本题考查了相似三角形的判定与性质、三角形中线的定义以及中位线定理,解题的关键是:(1)由GE(2)根据相似三角形的性质结合中位线定理得出DF=DG、∥BC利用相似三角形的判定定理证出△EGF∽△BDF;AG=DG.17.(2018秋•梁溪区校级期中)(1)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,点P是边AB上一点,若△PAD∽△CBP,请利用没有刻度的直尺和圆规,画出满足条件的所有点P;(2)在(1)的条件下,若AB=8,AD=3,BC=4,则AP的长是2或6.【思路点拨】(1)先作CD中垂线得出CD的中点,再以中点为圆心,CD为半径作圆,与AB的交点即为所求;(2)证△APD∽△BPC得=,即=,解之可得.【答案】解:(1)如图所示,点P1和点P2即为所求.(2)∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.∴∠ADP+∠APD=90°,由(1)知,∠CPD=90°,∴∠APD+∠BPC=90°,∴∠ADP=∠BPC,∴△APD∽△BPC,∴=,即=,解得:AP=2或AP=6.故答案为:2或6.【点睛】本题主要考查作图﹣相似变换,解题的关键是掌握线段中垂线的尺规作图及圆周角定理,相似三角形的判定与性质等知识点.18.(2018秋•德清县期末)如图,点C,D在线段AB上,CD2=AC•DB,且△PCD是等边三角形.(1)证明:△ACP∽△PDB;(2)求∠APB的度数.【思路点拨】(1)根据PC=PD=CD,以及CD2=AC•DB,可得,又∠ACP=∠PDB,则△ACP∽△PDB;(2)根据(1)的结论求出∠APC+∠BPD度数,最后加上∠CPD度数即可.【答案】(本小题8分)解:(1)∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,∴∠ACP=∠PDB=120°,∵CD2=AC•DB,由PC=PD=CD可得:PC•PD=AC•DB,即,∴△ACP∽△PDB;(2)∵△ACP∽△PDB,∴∠APC=∠PBD.∵∠PDB=120°,∴∠DPB+∠DBP=60°,∴∠APC+∠BPD=60°.∴∠APB=∠CPD+∠APC+∠BPD=120°.【点睛】本题主要考查了相似三角形的判定和性质、等边三角形的判定和性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.19.(2018秋•昌图县期末)如图,路灯(点P)距地面6m,身高1.5m的学生小明从路灯的底部点O处,沿射线OH走到距路灯底部9m的点B处,此时小明的身影为BN,接着小明走到点N处,此时的身影为AM.求学生小明的身影长度变长了多少米.(小明如图中BD、AC所示)【思路点拨】根据相似三角形的性质解答即可.【答案】解:由题意知,∠PON=∠DBN=90°,△PON∽△DBN∴又∵OB=9∴BN=3,OA=12由题意知,∠POM=∠CAM=90°,△POM∽△CAM∴又∵OA=12∴AM=4,OM=16∴身影长BN=3,AM=4,AM﹣BN=4﹣3=1∴小明的身影长度变长了1米.【点睛】此题考查相似三角形的应用,关键是根据相似三角形的性质解答.20.(2018秋•番禺区期末)如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设EG=xmm,EF=ymm.(1)写出x与y的关系式;(2)用S表示矩形EGHF的面积,某同学说当矩形EGHF为正方形时S最大,这个说法正确吗?说明理由,并求出S的最大值.【思路点拨】(1)证明△AEF∽△ABC,利用相似比得到=,从而得到y与x的关系式;(2)计算矩形的面积S=xy=﹣x2+120x,则S=﹣(x﹣40)2+2400,根据二次函数的性质得到当x=40时,S有最大值2400,由于y=60,此时矩形不为正方形,所以这个同学的说法错误.【答案】解:(1)易得四边形EGDK为矩形,则KD=EG=x,∴AK=AD﹣DK=80﹣x,∵EF∥BC,∴△AEF∽△ABC,∴=,即=,∴y=﹣x+120(0<x<80);(2)这个同学的说法错误.理由如下:S=xy=﹣x2+120x=﹣(x﹣40)2+2400,当x=40时,S有最大值2400,此时y=﹣×40+120=60,即矩形EGHF的长为60mm,宽为40mm时,矩形EGHF的面积最大,最大值为2400mm2,此时矩形不为正方形,所以这个同学的说法错误.【点睛】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,用相似三角形对应边的比相等的性质求相应线段的长.也考查了二次函数的性质和矩形的性质.。
相似三角形的性质与判定
★求线段长
1.(密云18期末1)如图,ABC ∆中,D 、E 分别是AB 、AC 上点,
DE //BC ,AD =2,DB =1,AE =3,则EC 长( )
A .23
B .1
C .32
D .6 C
2.(怀柔18期末4)如图,在△ABC 中,点D ,E 分别为边AB,AC
上的点,且DE ∥BC ,若AD =4,BD =8,AE =2,则CE 的长为
( )
A .2
B .4
C .6
D .8
B
3.(海淀18期末3)如图,线段BD ,CE 相交于点A ,DE ∥BC .若AB 4,AD 2,DE 1.5,则BC 的长为( )
A .1
B .2
C .3
D .4
C
4.(石景山18期末10)如图,在△ABC 中,点D 、E 分别在边AB 、
AC
上.若∠ADE =∠C ,AB =6,AC =4,AD =2,则EC =________.
10.1
5.(西城18期末10) 如图,在△ABC 中,D ,E 两点分别在AB ,
AC 边上,DE ∥BC ,如果
2
3=DB AD ,AC =10,那么EC = .
4
6.(门头沟18期末12)如图,在△ABC 中, DE 分别与AB 、AC 相交
于点D 、E ,且DE ∥BC ,如果23AD DB =,那么DE BC =__________.
2
5
7.(通州18期末12)如图,点D 为ABC △的AB 边上一点,
2=AD ,3=DB .若ACD B ∠=∠,
则.____________=AC
★周长比、面积比
8.(朝阳18期末5)如图,△ABC ∽△A ’B ’C ’,AD
和A ’D ’分别是△ABC 和△A ’B ’C ’的高,若AD
=2,A ’D ’=3,则△ABC 与△A ’B ’C ’的面积的
比为( )
A .4:9
B .9:4
C .2:3
D .3:2
A
9.(平谷18期末4)如图,Rt△ABC 中,∠C =90°,∠A =30°,
CD ⊥AB 于D ,则△CBD 与△ABC 的周长比是( )
A .2
B .
3 C .1
4 D .12
D
10.(顺义18期末7)如图,已知△ABC ,D ,E 分别在AB ,AC 边
上,且DE ∥BC ,AD =2,DB =3,△ADE 面积是4,则四边形DBCE
的面积是( )
A .6
B .9
C .21
D .25
C
11.(海淀18期末5)如图,△OAB ∽△OCD ,OAOC 32,∠A α,∠C β,△OAB 与△OCD 的面积分别是1S 和2S ,△OAB 与△OCD 的周长分别是1C 和2C ,则下列等式一定成立的是( )
A .3
2OB
CD = B .32
αβ=
C .
1232S S = D .1232C C =
D 12.(石景山18期末9)如果两个相似三角形的周长比为3:2,那么这两个相似三角形的面积
比为______.
9.9:4
13.(大兴18期末11)若△ABC ∽△DEF ,且BC ∶EF=2∶3,则△ABC 与△DEF 的面积 比等于_________.
11. 4∶9.
14.(怀柔18期末10)若△ABC ∽△DEF ,且对应边BC 与EF 的比为1∶3,则△ABC 与△DEF 的面积比等于 .
10.19
★判定
15.(西城18期末7)如图,点P 在△ABC 的边AC 上,如果添加一个条件后可以得到 △ABP ∽△ACB ,那么以下添加的条件中,不.
正确的是( ). A .∠ABP =∠C B .∠APB =∠ABC
C .2AB AP AC =⋅
D .
AB AC BP CB = D
16.(丰台18期末6)如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC
相似的是( )
A B C D
A
17.(密云18期末7)如图,ABC ∆中,70A ∠=︒,AB=4,AC= 6,将ABC
∆沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似...
的是( )
A B C D
D
18.(顺义18期末12)如图,标记了△ABC与△DEF边、角的一些数据,如果再添加一个条件使△ABC∽△DEF,那么这个条件可以是.(只填一个即可)
12.略;
19.(朝阳18期末17)小明在学习了如何证明“三边成比例的两个三角形相似”后,运用类似的思路证明了“两角分别相等的两个三角形相似”,以下是具体过程.
已知:如图,在△ABC和△A'B'C'中,∠A=∠A',∠B=∠B'.
求证:△ABC∽△A'B' C'.
证明:在线段A'B'上截取A'D=AB,过点D作DE∥B'C',交A'C'于点E.
由此得到△A'DE∽△A'B'C'.
∴∠A' DE=∠B'.
∵∠B=∠B',
∴∠A' DE =∠B.
∵∠A'=∠A,
∴△A' DE≌△ABC.
∴△ABC∽△A'B'C'.
小明将证明的基本思路概括如下,请补充完整:
(1)首先,通过作平行线,依据,可以判定所作△A' DE与;
(2)然后,再依据相似三角形的对应角相等和已知条件可以证明所作△A' DE与
;
(3)最后,可证得△ABC∽△A'B' C'.。