柯西不等式 排序不等式及
- 格式:pptx
- 大小:1.14 MB
- 文档页数:35
排序、均值、柯西不等式及其应用(不等式 (拓展5)排序不等式、均值不等式、柯西不等式是不等式证明的基本工具,三者各有所长,这里我们先简单回顾一下三个不等式,然后结合具体题目谈谈它们在不等式证明中的应用。
①排序不等式:(i)对于两个有序数组1212,n n a a a b b b ≤≤≤≤≤≤ 及则112211221211n ni j i j in bn n n n a b a b a b a b a b a b a b a b a b -+++≥+++≥+++ (同序)(乱序)(反序) 其中12,,,n i i i 与12,,,n j j j 是1,2, n 的任意两个排列,当且仅当12n a a a === 或12n b b b === 时式中等号成立.(ii) 设120n a a a <≤≤≤ ,12,n b b b <≤≤≤ 0而12,,,n i i i 是1,2,,n 的一个排列,则 112121121212i i i nn n n bb b b b b bbb nn n a a a a a a a a a -≤≤当且仅当12n a a a === 或12n b b b === 时式中等号成立.(iii)设有n 组非负数,每组n 个数,它们满足:120k k kn a a a ≤≤≤≤ (1,2,,)k m = ,那么,从每一组中各取出一个数作积,再从剩下的每一组中各取一个作积,直到n 次取完为止,然后将这些“积”相加,则所得的诸和中,以112111222212m m n n mn I a a a a a a a a a =+++ 为最大.(iv)设120,n a a a <≤≤≤ 12,n b b b <≤≤≤ 0则≤≤当且仅当12n a a a === ,且12n b b b === 时取等号.②平均值不等式:设12,,n a a a 是n 个正实数,则有12n a a a n+++≥ 当且仅当12n a a a === 时取等号.幂平均值不等式:设0αβ<≤,n N +∈,12,,,n a a a R +∈,则121211n n a a a a a a n n αααβββαβ⎛⎫⎛⎫++++++≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭当且仅当12n a a a === 时取等号. 加权幂平均值不等式 设12,,,n p p p R +∈,0αβ<≤,n N +∈,12,,,n a a a R +∈,则12121112121212n nn n n n p a p a p a p a p a p a p p p p p p αααβββαβ⎛⎫⎛⎫++++++≤ ⎪ ⎪ ⎪ ⎪++++++⎝⎭⎝⎭当且仅当12n a a a === 时取等号.③柯西不等式:222222211221212)()()n n n n a b a b a b a a a b b b +++≤++++++ (当且仅当(1,2,,)i i a kb i n == 时取等号. 推论1设12,,,n a a a R +∈,则21212111()()n na a a n a a a ++++++≥ . 推论2设12,,,n a a a R +∈,则12222212nn a a a a a a n n ++++++⎛⎫≤⎪⎝⎭. 1、设a 、b 、c 为正数,求4936()()a b c a b c++++的最小值。
第二讲 均值、柯西、排序不等式及其应用【说明】:1.在复旦大学近三年自主招生试题中,不等式题目占12%,其中绝大多数涉及到不等式的证明;2.交大(“华约”)试题中,不等式部分通常占10%-15%,其中涉及到一些考纲之外的特殊不等式。
【知识导入】:1.两个重要的不等式(二元均值不等式):①),(222R b a ab b a ∈≥+,当且仅当b a =时等号成立。
②),(2*R b a ab ba ∈≥+,当且仅当b a =时等号成立。
2.最值定理:若P xy S y x R y x ==+∈+,,,,则:①如果P 是定值, 那么当y x =时,S 的值最小; ②如果S 是定值, 那么当y x =时,P 的值最大。
注意: ①前提:“一正、二定、三相等”,如果没有满足前提,则应根据题目创设情境;还要注意选择恰当的公式;②“和定 积最大,积定 和最小”,可用来求最值;③均值不等式具有放缩功能,如果有多处用到,请注意每处取等的条件是否一致。
【知识拓展】1.均值不等式:设123,,,n a a a a 是n个正实数,记n Q =12n n a a a A n +++= ,n G =,12111n nn H a a a =+++ ,则n n n n Q A G H ≥≥≥,其中等号成立的条件是12n a a a === 。
,,,n n n n Q A G H 分别称为平方平均、算术平均、几何平均、调和平均。
2.柯西不等式:柯西不等式的二维形式:若d c b a ,,,都是实数,则2222()()()a b c d ac bd ++≥+,当且仅当bc ad =时,等号成立。
柯西不等式的一般形式:设n a a a a ,...,,,321,n b b b b ,...,,,321是实数,则222112222122221)...()...).(...(n n n n b a b a b a b b b a a a +++≥++++++,当且仅当0=i b),...,2,1(n i =或存在一个数k ,使得i i kb a =),...,2,1(n i =时,等号成立。
2.3~2.4 平均值不等式(选学)最大值与最小值问题,优化的数学模型[对应学生用书P33][读教材·填要点]1.平均值不等式(1)定理1(平均值不等式): 设a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥ na 1a 2…a n ,等号成立⇔a 1=a 2=…=a n .①推论1:设a 1,a 2,…,a n 为n 个正数,且a 1a 2…a n =1,则a 1+a 2+…+a n ≥n . 且等号成立⇔a 1=a 2=…=a n =1.②推论2:设C 为常数,且a 1,a 2,…,a n 为n 个正数;则当a 1+a 2+…+a n =nC 时,a 1a 2…a n ≤C n ,且等号成立⇔a 1=a 2=…=a n . (2)定理2:设a 1,a 2,…,a n 为n 个正数,则na 1a 2…a n ≥n1a 1+1a 2+…+1a n,等号成立⇔a 1=a 2=…=a n . (3)定理3:设a 1,a 2,…,a n 为正数,则a 1+a 2+…+a n n ≥≥n1a 1+1a 2+…+1a n,等号成立⇔a 1=a 2=…=a n .推论:设a 1,a 2,…,a n 为n 个正数,则 (a 1+a 2+…+a n )(1a 1+1a 2+…+1a n)≥n 2.2.最值问题设D 为f (x )的定义域,如果存在x 0∈D ,使得f (x )≤f (x 0)(f (x )≥f (x 0)),x ∈D , 则称f (x 0)为f (x )在D 上的最大(小)值,x 0称为f (x )在D 上的最大(小)值点,寻求函数的最大(小)值及最大(小)值问题统称为最值问题.[小问题·大思维]1.利用基本不等式a +b2≥ab 求最值的条件是什么?提示:“一正、二定、三相等”,即:(1)各项或各因式为正;(2)和或积为定值;(3)各项或各因式能取得相等的值.2.应用三个正数的算术—几何平均不等式,求最值应注意什么?提示:三个正数的和为定值,积有最大值;积为定值,和有最小值.当且仅当三个正数相等时取得.[对应学生用书P34][例1] 已知x >0,y >0,且1x +9y=1,求x +y 的最小值.[思路点拨] 本题考查基本不等式的应用,解答本题可灵活使用“1”的代换或对条件进行必要的变形,然后再利用基本不等式求得和的最小值.[精解详析] 法一:∵x >0,y >0,1x +9y=1,∴x +y =(1x +9y )(x +y )=y x +9xy+10≥6+10=16. 当且仅当y x =9x y ,又1x +9y=1, 即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.(1)运用不等式求最大值、最小值,用到两个结论,简述为:“和定积最大”与“积定和最小”.(2)运用定理求最值时:必须做到“一正,二定,三相等”.1.求函数f (x )=-2x 2+x -3x(x >0)的最大值及此时x 的值.解:f (x )=1-⎝ ⎛⎭⎪⎫2x +3x .因为x >0,所以2x +3x≥26,得-⎝ ⎛⎭⎪⎫2x +3x ≤-26,因此f (x )≤1-26,当且仅当2x =3x ,即x 2=32时,式子中的等号成立.由于x >0,因而x =62时,等号成立. 因此f (x )max =1-26,此时x =62.[例2] 已知x 为正实数,求函数y =x (1-x 2)的最大值.[思路点拨] 本题考查三个正数的算术—几何平均不等式在求最值中的应用.解答本题要根据需要拼凑出利用其算术—几何平均不等式的条件,然后再求解.[精解详析] ∵y =x (1-x 2),∴y 2=x 2(1-x 2)2=2x 2(1-x 2)(1-x 2)·12.∵2x 2+(1-x 2)+(1-x 2)=2, ∴y 2≤12⎝ ⎛⎭⎪⎫2x 2+1-x 2+1-x 233=427.当且仅当2x 2=1-x 2=1-x 2,即x =33时取“=”号. ∴y ≤239.∴y 的最大值为239.(1)利用三个正数的算术—几何平均不等式定理求最值,可简记为“积定和最小,和定积最大”.(2)应用算术—几何平均不等式定理,要注意三个条件即“一正二定三相等”同时具备时,函数方可取得最值.其中定值条件决定着平均不等式应用的可行性,获得定值需要一定的技巧,如:配系数、拆项、分离常数、平方变形等.(3)当不具备使用平均不等式定理的条件时,求函数的最值可考虑利用函数的单调性.2.已知x 为正实数,求函数y =x 2·(1-x )的最大值. 解:y =x 2(1-x )=x ·x (1-x ) =x ·x ·(2-2x )×12≤12⎝ ⎛⎭⎪⎫x +x +2-2x 33=12×827=427. 当且仅当x =2-2x ,即x =23时取等号.此时,y max =427.[例3] 已知圆锥的底面半径为R ,高为H ,求圆锥的内接圆柱体的高h 为何值时,圆柱的体积最大?并求出这个最大的体积.[思路点拨] 本题考查算术—几何平均不等式在实际问题中的应用,解答本题需要作出圆锥、圆柱的轴截面,利用相似三角形建立各元素之间的关系,然后利用算术—几何平均不等式求最大值.[精解详析]设圆柱体的底面半径为r ,如图,由相似三角形的性质可得H -h H =rR,∴r =R H(H -h ).∴V 圆柱=πr 2h =πR 2H2(H -h )2h (0<h <H ).根据平均不等式可得V 圆柱=4πR 2H 2·H -h 2·H -h 2·h ≤4πR 2H 2⎝ ⎛⎭⎪⎫H 33=427πR 2H . 当且仅当H -h2=h ,即h =13H 时,V 圆柱最大=427πR 2H .(1)在解求最值应用题时,先必须确定好目标函数,再用“平均值不等式”求最值. (2)在确定目标函数时,必须使函数成为一元函数,即只能含一个变量,否则是无法求最值的.3.如图(1)所示,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,如图(2)所示,求这个正六棱柱容器容积的最大值.解:设正六棱柱容器底面边长为x (x >0),高为h , 如图可知2h +3x =3,即h =32(1-x ), 所以V =S 底·h =6×34x 2·h=332x 2·32·(1-x )=23×332×x 2×x 2×(1-x )≤9×⎝ ⎛⎭⎪⎪⎫x 2+x2+1-x 33 =13. 当且仅当x 2=1-x ,即x =23时,等号成立.所以当底面边长为23时,正六棱柱容器容积最大值为13.[对应学生用书P35]一、选择题1.函数y =3x +12x2(x >0)的最小值是( )A .6B .6 6C .9D .12解析:y =3x +12x 2=3x 2+3x 2+12x 2≥333x 2·3x 2·12x 2=9,当且仅当3x 2=12x 2,即x =2时取等号.答案:C2.已知x +2y +3z =6,则2x+4y+8z的最小值为( ) A .336 B .2 2 C .12D .1235解析:∵2x>0,4y>0,8z>0,∴2x +4y +8z =2x +22y +23z ≥332x ·22y ·23z=332x +2y +3z =3×4=12. 当且仅当2x=22y=23z,即x =2y =3z ,即x =2,y =1,z =23时取等号.答案:C3.设x ,y 为正实数,且满足x +4y =40,则lg x +lg y 的最大值是( ) A .40 B .10 C .4D .2解析:因为x ,y 为正实数,∴4xy ≤x +4y2.∴xy ≤x +4y4=10.∴xy ≤100.∴lg x +lg y =lg xy ≤lg100=2. 答案:D4.已知x ∈R +,有不等式:x +1x≥2x ·1x =2,x +4x 2=x 2+x 2+4x 2≥33x 2·x 2·4x2=3,….启发我们可以推广结论为:x +axn ≥n +1(n ∈N +),则a 的值为( )A .n nB .2nC .n 2D .2n +1解析:x +a x n =···n xn nx x x a++++n n n x相乘个 ≥(n +1)···n xn nn n n x∙∙∙∙相乘个 =(n +1)n +1an n,由推广结论知ann =1,∴a =n n. 答案:A 二、填空题5.设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2·⎝ ⎛⎭⎪⎫1x2+4y 2的最小值为______.解析:⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=1+4+4x 2y 2+1x 2y 2≥1+4+2·4x 2y 2·1x 2y2=9,当且仅当4x 2y 2=1x 2y2时等号成立,即|xy |=22时等号成立. 答案:96.若x ,y ∈R +且xy =1,则⎝ ⎛⎭⎪⎫x y +y ⎝ ⎛⎭⎪⎫y x+x 的最小值是________.解析:∵x >0,y >0,xy =1,∴⎝ ⎛⎭⎪⎫x y +y ⎝ ⎛⎭⎪⎫y x +x =1+x 2y +y 2x +xy≥1+33x 2y 2=4,当且仅当x 2y =y 2x=xy ,即x =y =1时取等号. 答案:47.对于x ∈⎝ ⎛⎭⎪⎫0,π2,不等式1sin 2x +p cos 2x ≥16恒成立,则正数p 的取值范围为________. 解析:令t =sin 2x ,则cos 2x =1-t .又x ∈⎝⎛⎭⎪⎫0,π2,∴t ∈(0,1). 不等式1sin 2x +p cos 2x ≥16可化为 p ≥⎝⎛⎭⎪⎫16-1t (1-t ),而y =⎝ ⎛⎭⎪⎫16-1t (1-t )=17-⎝ ⎛⎭⎪⎫1t +16t ≤17-2 1t·16t =9,当1t =16t ,即t =14时取等号, 因此原不等式恒成立,只需p ≥9. 答案: [9,+∞)8.设三角形三边长为3,4,5,P 是三角形内的一点,则P 到这三角形三边距离乘积的最大值是________.解析:设P 到长度为3,4,5的三角形三边的距离分别是x ,y ,z ,三角形的面积为S .则S =12(3x +4y +5z ),又∵32+42=52,∴这个直角三角形的面积S =12×3×4=6.∴3x +4y +5z =2×6=12.∴333x ·4y ·5z ≤3x +4y +5z =12. ∴(xyz )max =1615.当且仅当x =43,y =1,z =45时等号成立.答案:1615三、解答题9.已知a ,b ,x ,y 均为正实数,x ,y 为变数,a ,b 为常数,且a +b =10,a x +b y=1,x +y 的最小值为18,求a ,b .解:∵x +y =(x +y )⎝ ⎛⎭⎪⎫a x +b y =a +b +bx y +ay x≥a +b +2ab =(a +b )2,当且仅当bx y =ayx时取等号. 又(x +y )min =(a +b )2=18, 即a +b +2ab =18 ① 又a +b =10②由①②可得⎩⎪⎨⎪⎧a =2b =8或⎩⎪⎨⎪⎧a =8b =2.10.已知某轮船速度为每小时10千米,燃料费为每小时30元,其余费用(不随速度变化)为每小时480元,设轮船的燃料费用与其速度的立方成正比,问轮船航行的速度为每小时多少千米时,每千米航行费用总和为最小.解:设船速为V 千米/小时,燃料费为A 元/小时.则依题意有 A =k ·V 3,且有30=k ·103,∴k =3100.∴A =3100V 3.设每千米的航行费用为R ,需时间为1V小时,∴R =1V ⎝ ⎛⎭⎪⎫3100V 3+480=3100V 2+480V =3100V 2+240V +240V ≥333100V 2·240V · 240V =36.当且仅当3100V 2=240V,即V =20时取最小值.答:轮船航行速度为20千米/小时时,每千米航行费用总和最小.11.如图所示,在一张半径是2米的圆桌的正中央上空挂一盏电灯.大家知道,灯挂得太高了,桌子边缘处的亮度就小;挂得太低,桌子的边缘处仍然是不亮的.由物理学知道,桌子边缘一点处的照亮度E 和电灯射到桌子边缘的光线与桌子的夹角θ的正弦成正比,而和这一点到光源的距离r 的平方成反比.即E =k sin θr2. 这里k 是一个和灯光强度有关的常数.那么究竟应该怎样选择灯的高度h ,才能使桌子边缘处最亮?解:∵r =2cos θ,∴E =k ·sin θcos 2θ4(0<θ<π2),∴E 2=k 216·sin 2θ·cos 4θ=k 232·(2sin 2θ)·cos 2θ·cos 2θ ≤k 232·⎝ ⎛⎭⎪⎫2sin 2θ+cos 2θ+cos 2θ33=k 2108, 当且仅当2sin 2θ=cos 2θ即tan 2θ=12,tan θ=22时取等号,∴h =2tan θ=2,即h =2米时,E 最大.。
第2章 柯西不等式与排序不等式及其应用[自我校对]①向量 ②代数可证明一些简单不等式.【例1】 已知a ,b ,c 是实数,且a +b +c =1,求证:13a +1+13b +1+13c +1≤4 3. [精彩点拨] 设m =(13a +1,13b +1,13c +1),n =(1,1,1),利用柯西不等式的向量形式证明,或把式子左边补上系数1,直接利用柯西不等式求解.[规范解答] 法一:因为a ,b ,c 是实数,且a +b +c =1,令m =(13a +1,13b +1,13c +1),n =(1,1,1).则|m ·n |2=(13a +1+13b +1+13c +1)2, |m |2·|n |2=3[(13a +1)+(13b +1)+(13c +1)] =3[13(a +b +c )+3]=48. ∵|m ·n |2≤|m |2·|n |2,∴(13a +1)+13b +1+13c +1)2≤48, ∴13a +1+13b +1+13c +1≤4 3.法二:由柯西不等式得(13a +1+13b +1+13c +1)2≤(12+12+12)[(13a +1)+(13b +1)+(13c +1)]=3[13(a +b +c )+3]=48,∴13a +1+13b +1+13c +1≤4 3.1.设正数a ,b ,c 满足abc =a +b +c ,求证:ab +4bc +9ac ≥36,并给出等号成立的条件.[证明] 由abc =a +b +c ,得1ab +1bc +1ca=1.由柯西不等式,得(ab +4bc +9ac )⎝⎛⎭⎪⎫1ab +1bc +1ca ≥(1+2+3)2,所以ab +4bc +9ac ≥36,当且仅当a =2,b =3,c =1时,等号成立.应从所要证的式子的结构观察分析,再给出适当的数组.【例2】 已知a ,b ,c 为正数,求证:a +b +c ≤a 2+b 22c +b 2+c 22a +c 2+a 22b.[精彩点拨] 不妨设a ≥b ≥c >0,则a 2≥b 2≥c 2,1c ≥1b ≥1a,根据不等式的特点,利用排序不等式证明.[规范解答] 由于不等式关于a ,b ,c 对称, 可设a ≥b ≥c >0.于是a 2≥b 2≥c 2,1c ≥1b ≥1a.由排序不等式,得反序和≤乱序和,即a 2·1a +b 2·1b +c 2·1c ≤a 2·1b +b 2·1c +c 2·1a,及a 2·1a +b 2·1b +c 2·1c ≤a 2·1c +b 2·1a +c 2·1b.以上两个同向不等式相加再除以2,即得原不等式.2.在△ABC 中,h a ,h b ,h c 为边长a ,b ,c 的高, 求证:a sin A +b sin B +c sin C ≥h a +h b +h c . [证明] 不妨设a >b >c ,则对应的角A >B >C ,A ,B ,C ∈(0,π),∴sin A >sin B >sin C . 由排序原理得a sin A +b sin B +c sin C ≥a sin B +b sin C +c sin A .在△ABC 中,a sin B =h c ,b sin C =h a ,c sin A =h b , ∴a sin A +b sin B +c sin C ≥h a +h b +h c .们通过不等式求最值提供了新的有力工具,但一定要注意取等号的条件能否满足.【例3】 已知实数x ,y ,z 满足x 2+4y 2+9z 2=a (a >0),且x +y +z 的最大值是7,求a 的值.[精彩点拨] 由x 2+4y 2+9z 2=x 2+(2y )2+(3z )2,x +y +z =x +12·2y +13·3z ,联想到柯西不等式求解.[规范解答] 由柯西不等式: [x 2+(2y )2+(3z )2]⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫132≥⎝ ⎛⎭⎪⎫x +12×2y +13×3z 2.因为x 2+4y 2+9z 2=a (a >0),所以4936a ≥(x +y +z )2,即-7a 6≤x +y +z ≤7a 6.因为x +y +z 的最大值是7, 所以7a 6=7,得a =36.当x =367,y =97,z =47时,x +y +z 取最大值,所以a =36.3.求实数x ,y 的值,使得(y -1)2+(x +y -3)2+(2x +y -6)2达到最小值. [解] 由柯西不等式,得(12+22+12)×[(y -1)2+(3-x -y )2+(2x +y -6)2] ≥[1×(y -1)+2×(3-x -y )+1×(2x +y -6)]2=1, 即(y -1)2+(x +y -3)2+(2x +y -6)2≥16,当且仅当y -11=3-x -y 2=2x +y -61,即x =52,y =56时,上式取等号.故x =52,y =56时,(y -1)2+(x +y -3)2+(2x +y -6)2达到最小值.【例4】 已知正实数x 1,x 2,…,x n 满足x 1+x 2+…+x n =P ,P 为定值,求F =x 21x 2+x 22x 3+…+x 2n -1x n +x 2n x 1的最小值. [精彩点拨] 不妨设0<x 1≤x 2≤…≤x n ,利用排序不等式求解. [规范解答] 不妨设0<x 1≤x 2≤…≤x n , 则1x 1≥1x 2≥…≥1x n>0,且0<x 21≤x 22≤…≤x 2n .∵1x 2,1x 3,…,1x n ,1x 1为序列⎩⎨⎧⎭⎬⎫1x i (i =1,2,3,…,n )的一个排列,根据排序不等式,得F=x21x2+x22x3+…+x2n-1x n+x2nx1≥x21·1x1+x22·1x2+…+x2n·1x n=x1+x2+…+x n=P(定值),当且仅当x1=x2=…=x n时等号成立,∴F=x21x2+x22x3+…+x2n-1x n+x2nx1的最小值为P.4.设x1,x2,…,x n取不同的正整数,则m=x112+x222+…+x nn2的最小值是( ) A.1B.2C.1+12+13+…+1nD.1+122+132+…+1n2[解析]设a1,a2,…,a n是x1,x2,…,x n的一个排列,且满足a1<a2<…<a n,故a1≥1,a2≥2,…,a n≥n.又因为1>122>132>…>1n2,所以x11+x222+x332+…+x nn2≥a1+a222+a332+…+a nn2≥1×1+2×122+3×132+…+n×1n2=1+12+13+…+1n.[答案] C在利用平均值不等式求函数最值时.一定要满足下列三个条件:(1)各项均为正数.(2)“和”或“积”为定值.(3)等号一定能取到,这三个条件缺一不可.2.解决实际问题由于受算术平均与几何平均定理求最值的约束条件的限制,在求最值时常常需要对解析式进行合理的变形.对于一些分式结构的函数,当分子中变量的次数不小于分母中变量的次数时,通常采用分离变量(或常数)的方法,拼凑出和的形式,若积为定值则可用平均值不等式求解.【例5】某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.[精彩点拨] (1)设每件定价为t 元,表示总收入,根据题意列不等式求解.(2)利用销售收入≥原收入+总投入,列出不等式,由题意x >25,此时不等式求解.[规范解答] (1)设每件定价为t 元, 依题意,有⎝⎛⎭⎪⎫8-t -25t ×0.2t ≥25×8, 整理得t 2-65t +1 000≤0, 解得25≤t ≤40.∴要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2150x ×16x =10(当且仅当x =30时,等号成立),∴a ≥10.2. 当该商品明年的销售量a 至少达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.5.若a >b >0,则a 2+1b (a -b )的最小值为( )A .2B .3C .4D .5 [解析] 依题意得a -b >0,所以a 2+1b (a -b )≥a 2+1⎣⎢⎡⎦⎥⎤b +(a -b )22=a 2+4a2≥2a 2·4a2=4,当且仅当⎩⎪⎨⎪⎧b =a -b >0,a 2=4a 2,即a =2,b =22时取等号,因此a 2+1b (a -b )的最小值是4,选C.[答案] C思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题.本章常把要证明的不等式通过换元或配凑等整体应用,把命题转化为柯西不等式或排序不等式的形式加以解决.【例6】 已知a ,b ,c 为正数,求证:a b +c +b c +a +ca +b ≥32.[精彩点拨] 将不等式的左边进行变形,再利用柯西不等式证明. [规范解答] 左端变形ab +c+1+bc +a+1+ca +b+1=(a +b +c )⎝⎛⎭⎪⎫1b +c +1c +a +1a +b ,∴只需证此式≥92即可.∵ab +c +bc +a +ca +b+3=⎝⎛⎭⎪⎫a b +c +1+⎝ ⎛⎭⎪⎫b a +c +1+⎝ ⎛⎭⎪⎫c a +b +1=(a +b +c )⎝⎛⎭⎪⎫1b +c +1c +a +1a +b=12[(b +c )+(c +a )+(a +b )]⎝ ⎛⎭⎪⎫1b +c +1c +a +1a +b≥12(1+1+1)2=92, ∴ab +c +ba +c+ca +b ≥92-3=32.6.已知a ,b ,c 为正数,求证:2(a 3+b 3+c 3)≥a 2(b +c )+b 2(a +c )+c 2(a +b ). [证明] 不妨设0≤a ≤b ≤c ,则a 2≤b 2≤c 2, 由排序不等式,得a 2a +b 2b +c 2c ≥a 2b +b 2c +c 2a ,a 2a +b 2b +c 2c ≥a 2c +b 2a +c 2b .以上两式相加,得2(a 3+b 3+c 3)≥a 2(b +c )+b 2(a +c )+c 2(a +b ).1.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .9[解析] 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴⎩⎪⎨⎪⎧ab =(-2)2,a -2=2b ,∴⎩⎪⎨⎪⎧a =4,b =1,∴p =5,q =4,∴p +q =9.[答案] D2.设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则 m 2+n 2的最小值为________. [解析] 根据柯西不等式(ma +nb )2≤(a 2+b 2)(m 2+n 2),得25≤5(m 2+n 2),m 2+n 2≥5,m 2+n 2的最小值为 5.[答案]53.已知x >0,y >0,证明:(1+x +y 2)·(1+x 2+y )≥9xy .[证明] 因为x >0,y >0,所以1+x +y 2≥33xy 2>0,1+x 2+y ≥33x 2y >0, 故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy . 4.若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.[解] (1)由ab =1a +1b≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.5.已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4. (1)求a +b +c 的值; (2)求14a 2+19b 2+c 2的最小值.[解] (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c , 当且仅当-a ≤x ≤b 时,等号成立. 又a >0,b >0,所以|a +b |=a +b , 所以f (x )的最小值为a +b +c .又已知f (x )的最小值为4,所以a +b +c =4. (2)由(1)知a +b +c =4,由柯西不等式,得⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1)≥⎝ ⎛⎭⎪⎫a 2×2+b 3×3+c ×12=(a +b +c )2=16, 即14a 2+19b 2+c 2≥87. 当且仅当12a 2=13b 3=c 1,即a =87,b =187,c =27时等号成立,故14a 2+19b 2+c 2的最小值是87.。