高一数学下册过关检测试题9
- 格式:doc
- 大小:172.00 KB
- 文档页数:5
函数的单调性的应用基础巩固 站起来,拿得到!1.已知函数y=ax 2+bx+c(a<0)图象的对称轴为直线x=3,则下列关系式中,不正确的是( ) A.f(6)<f(4) B.f(2)<f(15) C.f(3+2)=f(3-2) D.f(0)<f(7)答案:D解析:依题意,函数y=ax 2+bx+c 在(-∞,3)内递增,在[3,+∞]内递减,故f(0)=f(6)>f(7). 2.设f(x)为定义在A 上的减函数,且f(x)>0,则下列函数:(1)y=3-2 004f(x);(2)y=1+)(1002x f ; (3)y=f 2(x);④y=2 005+f(x).其中为增函数的个数是( )A.1B.2C.3D.4答案:B 解法一:令f(x)=x 1(x>0),则(1)y=3-2 004f(x)=3-x2004;(2)y=1+)(1002x f =1+1 002x;(3)y=f 2(x)=21x ;(4)y=2 005+x 1在(0,+∞)上为增函数的是(1)(2),故正确命题的个数为2.解法二:利用单调函数的定义判断.3.函数f(x)在定义域上单调递减,且过点(-3,2)和(1,-2),则使|f(x)|<2的自变量x 的取值范围是( )A.(-3,+∞)B.(-3,1)C.(-∞,1)D.(-∞,+∞) 答案:B解析:|f(x)|<2⇔-2<f(x)<2⇔f(1)<f(x)<f(-3),又f(x)单调递减,故-3<x<1.4.已知函数f(x)=x 2-6x+7的图象如图所示,下列四个命题中正确的命题个数为( )(1)函数在(-∞,1]上单调递减(2)函数的单调递减区间为(-∞,1] (3)函数在[3,4]上单调递增 (4)函数的单调递增区间为[3,4]A.1B.2C.3D.4 答案:B 解析:由图形知(1)(3)正确;函数的单调递增区间为[3,+∞),递减区间为(-∞,3],故(2)(3)错误.5.若函数f(x)=ax 2+2x+5在(2,+∞)上是单调递减的,则a 的取值范围是______________.答案:a ≤-21 解析:若a=0,则f(x)=2x+5,与已知矛盾,∴a ≠0.这时,f(x)=ax 2+2x+5=a(x+a 1)2+5-a 1,对称轴为x=-a 1,由题设知⎪⎩⎪⎨⎧≤-<,21,0aa ,解得a ≤-21.6.已知f(x)在R 上满足f(-x)+f(x)=0,且在[0,+∞]上为增函数,若f(21)=1,则-1<f(2x+1)≤0的解集为__________________. 答案:(-43,-21] 解析:由f(-x)+f(x)=0⇒f(0)=0,f(-21)=-1,故由-1<f(2x+1)≤0⇒f(-21)<f(2x+1)≤f(0),可证f(x)在R 上为增函数,故-21<2x+1≤0⇒-43<x ≤-21. 7.已知f(x)是定义在(0,+∞)上的增函数,且f(yx)=f(x)-f(y),f(2)=1,解不等式f(x)-f(31-x )≤2. 解:2=f(2)+f(2),而f(y x )=f(x)-f(y)可以变形为f(y)+f(yx)=f(x). 令y=2,yx=2,即x=2y=4, 则有f(2)+f(2)=f(4),∴2=f(4). ∴f(x)-f(31-x )≤2可以变形为f [x(x-3)]≤f(4). 又∵f(x)是定义在(0,+∞)上的增函数,∴⎪⎩⎪⎨⎧>->≤-.03,0,4)3(x x x x 解得3<x ≤4. ∴原不等式的解集为{x|3<x ≤4}. 能力提升 踮起脚,抓得住!8.函数y=-|x-1|(x+5)的单调增区间为( )A.(-∞,-2]B.[-2,+∞)C.[-2,1)D.[1,+∞) 答案:C解析:y=-|x-1|(x+5)=⎪⎩⎪⎨⎧<-+=+-≥++-=+--,1,9)2()5)(1(,1,9)2()5)(1(22x x x x x x x x 由图形易知选C.9.已知函数f(x)在定义域[a,b ]上是单调函数,函数值域为[-3,5],则以下说法正确的是( )A.若f(a)f(b)<0,则存在x 1∈[a,b ],使f(x 1)=0B.f(x)在区间[a,b ]上有最大值f(b)=5C.f(x)在区间[a,b ]上有最小值f(a)=-3D.f(x)在区间[a,b ]上有最大值不是f(b),最小值也不是f(a) 答案:A解析:若函数单调递增,则排除D,若函数单调递减,则排除B 、C,由此知选A.10.y=f(x)在[0,+∞]上为减函数,则f(π)、f(3)、f(4)的大小关系为_______________. 答案:f(3)>f(π)>f(4) 解析:0<3<π<4<+∞,且函数f(x)的减区间为[0,+∞],∴f(3)>f(π)>f(4).11.函数y=-x 2-10x+11在区间[-1,2]上的最小值是________________. 答案:-13解析:因为y=-x 2-10x+11=-(x+5)2+36,根据二次函数的性质可知函数在[-1,2]上是减函数,故函数的最小值是f(2)=-22-10×2+11=-13.12.已知函数f(x)的定义域为(-1,1),求满足下列条件的实数a 的取值范围: (1)f(x)在定义域内单调递减;(2)f(1-a)<f(a 2-1).解:∵f(1-a)<f(a 2-1),又f(x)在定义域(-1,1)内单调递减,则⎪⎩⎪⎨⎧<<-<<<<⇒⎪⎩⎪⎨⎧->-<-<-<-<-12,20,201111111122a a a a a a a或-2<a<0⇒0<a<1.故a 的取值范围为{a|0<a<1}.13.设函数y=f(x)(x ∈R 且x ≠0)对任意非零实数x 、y 都有f(xy)=f(x)+f(y)成立. (1)求证:f(1)=f(-1)=0且f(x1)=-f(x)(x ≠0); (2)判断f(x)与f(-x)的关系;(3)若f(x)在(0,+∞)上单调递增,解不等式f(x1)-f(2x-1)≥0. (1)证明:令x=y=1,则f(1)=f(1)+f(1)得f(1)=0.再令x=y=-1,则f(1)=f(-1)+f(-1)得f(-1)=0. 对任意x ≠0,有f(x)+f(x1)=f(1)=0, ∴f(x1)=-f(x). (2)解:对任意x ∈R 且x ≠0,有f(-x)+f(-1)=f(x), ∴f(-x)=f(x).(3)解:∵f(x)在(0,+∞)上单调递增,则f(x)在(-∞,0)上单调递减,则f(x1)=-f(x),则-f(x)-f(2x-1)≥0⇒f(x)+f(2x-1)≤0,即f [x(2x-1)]≤0⇒0<|x(2x-1)|≤1,解得-21≤x ≤1且x ≠0,x ≠21.拓展应用 跳一跳,够得着!14.(四川成都模拟)已知f(x)是R 上的增函数,若令F(x)=f(1-x)-f(1+x),则F(x)是R 上的( )A.增函数B.减函数C.先减后增的函数D.先增后减的函数 答案:B解析:取f(x)=x,则F(x)=(1-x)-(1+x)=-2x 为减函数.15.函数y=f(x)是定义在R 上的减函数,则y=f(|x+2|)的单调减区间是____________________. 答案:[-2,+∞)解析:∵y=f(u)在R 上递减,u=|x+2|在[-2,+∞)上递增,在(-∞,-2]上递减,∴y=f(|x+2|)在[-2,+∞)上递减.16.已知函数f(x)对任意x 、y ∈R ,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-32. (1)求证:f(x)是R 上的减函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明:令x=y=0,f(0)=0,令y=-x 可得f(-x)=-f(x). 在R 上任取x 1>x 2,则f(x 1)-f(x 2)=f(x 1)+f(-x 2)=f(x 1-x 2). ∵x 1>x 2, ∴x 1-x 2>0.又∵x>0时f(x)<0, ∴f(x 1-x 2)<0, 即f(x 1)-f(x 2)>0.由定义可知f(x)在R 上为单调递减函数. (2)解:∵f(x)在R 上是减函数, ∴f(x)在[-3,3]上也是减函数. ∴f(-3)最大,f(3)最小.f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=3×(-32)=-2.∴f(-3)=-f(3)=2,即f(x)在[-3,3]上最大值为2,最小值为-2.。
2024年苏教版高一数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、下面给出了关于复数的三种类比推理:其中类比错误的是()①复数的乘法运算法则可以类比多项式的乘法运算法则;②由向量的性质||2=2可以类比复数的性质|z|2=z2;③由向量加法的几何意义可以类比得到复数加法的几何意义.A. ②B. ①②C. ①③D. ③2、已知且四边形ABCD为平行四边形,则()A.B.C.D.3、已知复数则( )A.B.C.D.4、函数的图象大致为下图的( )5、若复数(a2-a-2)+(|a-1|-1)i(a∈R)不是纯虚数,则a的取值范围是()A. a≠-1或a≠2B. a≠-1且a≠2C. a≠-1D. a≠26、已知复数x+(y-2)i,(x,y∈R)的模为则的取值范围是()A. [-]B. (-∞,-]∪[+∞)C. [-]D. (-∞,-]∪[+∞)评卷人得分二、填空题(共6题,共12分)7、(2015•吉林校级四模)如图,在正四棱柱(底面是正方形的直棱柱)ABCD-A1B1C1D1中,E是BC的中点,F是C1D的中点,P是棱CC1所在直线上的动点.则下列四个命题:①CD⊥PE②EF∥平面ABC1③④过P可做直线与正四棱柱的各个面都成等角.其中正确命题的序号是____(写出所有正确命题的序号).8、抛物线y2=2px(p>0)上一点M到焦点F的距离等于6的坐标是____.9、已知集合A={x|x2+x+1=0,m≥0},若A∩R=∅,则m的取值范围是____.10、若函数f(x)=x2+(a+2)x+3,x∈[a,b],且满足f(x-1)=f(1+x),则a=____,b=____.11、【题文】已知命题p:x1,x2R,(f(x2)f(x1))(x2x1)≥0,则命题p的否定是____12、若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则 ______ (写出所有正确结论编号)①四面体ABCD每组对棱相互垂直。
陕西省子洲中学2024届数学高一第二学期期末达标检测试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在三角形ABC 中,2AB BC AC ===,、、A B C 点都在同一个球面上,此球面球心O 到平面ABC 的距离为263,点E 是线段OB 的中点,则点O 到平面AEC 的距离是( ) A .33B .63C .12D .12.在ABC △中,3AB =,1AC =,π6B =,则ABC △的面积是( ). A .32B .34C .32或34 D .32或3 3.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A .310B .15C .110D .1204.已知{}n a 为递增等比数列47565,6a a a a +==,则110a a +=() A .152B .5C .6D .3565.已知函数,且实数,满足,若实数是函数的一个零点,那么下列不等式中不可能成立的是( ) A .B .C .D .6.已知正方体1111ABCD A B C D -中,E 、F 分别为11A D ,1A A 的中点,则异面直线EF 和1BD 所成角的余弦值为( )A .6 B 3 C 2D 67.在ABC 中,12AN AC =,点P 是直线BN 上一点,若AP mAB AC =+,则实数m 的值是( ) A .2B .1-C .14-D .548.函数ln xy x=的图象大致为( ) A . B . C .D .9.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为(2,0)B -,若将军从山脚下的点(2,0)A 处出发,河岸线所在直线方程为3x y +=,则“将军饮马”的最短总路程为( ) A .4B .5C 26D .3210.函数()cos 2f x x x π⎛⎫=- ⎪⎝⎭是( ) A .奇函数 B .非奇非偶函数C .偶函数D .既是奇函数又是偶函数二、填空题:本大题共6小题,每小题5分,共30分。
高一下数学测试题(九)参考答案一、选择题:(本大题共12小题,每小题5分,共60分)二、填空题:(本大题共4小题,每小题5分,共20分)13. 4±|22,22x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭16. 2 三、解答题:(本大题共6小题,共70分)17.解:由题意得,α为第二象限角,又22sin cos 1αα+= ……………………2分∴3sin 5α== ……………………6分 sin 3tan cos 4ααα==- ……………………10分 18.解(1)由61)2()32(=+⋅-b a b a 解得:6134422=-⋅-b b a a将 3||,4||== 代入上式解得6-=⋅b a ……………………4分(2)21436||||cos -=⨯-==b a θ, 又],0[πθ∈ 32πθ=∴ …………8分 (3)∵133)6(242)(||222222=+-⨯+=+⋅+=+=+∴13||=+b a ……………12分19.解:①. 由根与系数的关系得:⎩⎨⎧==+)2(6tan tan )1(5tan tan βαβα ………………3分 .1615tan tan 1tan tan )tan(-=-=-+=+∴βαβαβα ………………8分 ),,0(),2,0(,),,0(,,0tan ,0tan πβαπβαπβαβα∈+∈∴∈>>且又 .43πβα=+所以 ………12分20.解析:(1) x x x b a x f 2cos 1sin 2cos )(⨯+⋅=⋅= ……………………2分x x 2cos 2sin += )42sin(2π+=x ……………………6分 (2)由(1)得)42sin(2)(π+=x x f ,令42π+=x Z ,则Z y sin 2=,其单调减区间为:23222ππππ+≤≤+k Z k ,即:2324222πππππ+≤+≤+k x k , ……………8分 解之得:858ππππ+≤≤+k x k ()f x 的单调减区间为)](85,8[Z k k k ∈++ππππ ……………………12分21.解:∵在ABC △中,4sin 5A === ……………………2分12sin 13B === ……………………4分 又A BC π++= ……………………6分∴sin sin[()]C A B π=-+ =sin()A B + ……………………8分=sin cos cos sin A B A B + ……………………10分 =453125651351365⨯+⨯= ……………………12分 22.解:(1)∵2()2sin cos 2cos 3f x x x x =+-=2sin 22cos 12x x +--=sin 2cos 22x x +- …………………… 2分)24x π+- ……………………4分∴函数()f x 的最小正周期为22T ππ== ……………5分 令222,242k x k k Z πππππ-+≤+≤+∈ 得3,88k x k k Z ππππ-+≤≤+∈ ∴函数()f x 的单调增区间为[]3,()88k k k Z ππππ-++∈ ……………………8分(2)当sin(2)14x π+=-时,函数()f x 取最小值:2;……………………10分 此时22,42x k k Z πππ+=-+∈即3,8x k k Z ππ=-+∈ ∴函数()f x 取最小值时自变量x 的集合为3{|,}8x x k k Z ππ=-+∈。
2023-2024 学年度第二学期期末质量检测高一数学参考答案与评分细则一、单项选择题:本题共8小题,每小题满分5分,共40分.题号12345678答案CDACBDDA1.【解析】由题得()()()()231151+12i i i z i i ----==-,所以z 对应的点的坐标是15,22⎛⎫-- ⎪⎝⎭,故选C .2.【解析】零向量的方向是任意的,故A 错误;相等向量要求方向相同且模长相等,共线向量不一定是相等向量,故B 错误;当0λ<,则向量a 与a λ方向相反,故C 错误;对于D :单位向量的模为1,都相等,故D 正确.3.【解析】因为1238,,,,x x x x 的平均数是10,方差是10,所以123832,32,32,,32x x x x ++++ 的平均数是310232⨯+=,方差是231090⨯=.故选A .4.【解析】【方法一】向量a 在b方向上的投影向量为()()22cos ,1,04a b b bb a a b b b⋅<>⋅===;【方法二】数形结合,由图易得选项C 正确,故选C.5.【解析】样本中高中生的人数比小学生的人数少20,所以5320543543n n -=++++,解得120n =,故选B .6.【解析】对于选项A ,易得,αβ相交或平行,故选项A 错误;对于选项B ,,m n 平行或异面,故选项B 错误;对于选项C ,当直线,m n 相交时,//αβ才成立,故选项C 错误;对于选项D ,由线面垂直的性质可知正确,故选D.7.【解析】对于选项A ,因为掷两颗骰子,两个点数可以都是偶数,也可以都是奇数,还可以一奇一偶,即一次试验,事件A 和事件B 可以都不发生,所以选项A 错误;对于选项B ,因为C D ⋂即两个点数都是偶数,即A 与C D ⋂可以同时发生,所以选项B 错误;对于选项C ,因为331()664P B ⨯==⨯,333()1664P D⨯=-=⨯,又()0P BD =,所以()()()P BD P B P D ≠,故选项C 错误;对于选项D ,因为()1P C D = ,所以C D =Ω ,因为必然事件与任意事件相互独立,所以B 与C D ⋃是相互独立事件,故选D .8.【解析】因为11AC CB =,AC BC =,取AB 中点D ,则1C DC ∠为二面角1C AB C --的平面角,所以14C DC π∠=.在1Rt C DC ∆中,可得112,CD CC C D ===,又1182V AB CD CC =⋅⋅=,解得4AB =,所以AC ==.由1111A ABC B AA C V V --=得1111133ABC AA C S h S BC ∆∆⋅=⋅,代入数据求解得到点1A 到平面1ABC的距离h =,故选A .二、多项选择题:本题共3小题,每小题满分6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.题号题9题10题11全部正确选项ABCBCAD9.【解析】依题意球的表面积为24πR ,圆柱的侧面积为22π24πR R R⨯⨯=,所以AC 选项正确;圆锥的侧面积为2πRR ⨯=,所以B 选项正确;圆锥的表面积为(2222π1π4πR R R R +=<,圆柱的表面积为2224π2π6πR R R +=,所以D 选项错误.故选ABC .10.【解析】由1i z i +=-得22z =,故选项A 错误;根据复数的运算性质,易知BC 正确;根据22z -≤的几何意义求解,点Z 在以圆心为()2,0,半径为2的圆内及圆周上,所以集合M 所构成区域的面积为4π,所以D 选项错误.故选BC .11.【解析】对于选项A ,若60A =︒,2a =,则2222cos a b c bc A =+-,即224b c bc bc =+-≥,当且仅当2b c ==时,取等号,所以1sin 2ABC S bc A ==≤△,所以ABC 故选项A正确,B 错误.对于选项C ,要使满足条件的三角形有且只有两个,则sin b A a b <<,因为4a b==,所以4sin A <πsin 0,2A A ⎛⎫∈ ⎪⎝⎭,所以03A π<<.故选项C 错误.对于选项D ,()cos cos a b c A B +=+等价于cos cos a b A B c +=+,即22222222a b b c a a c bc bc ac++-+-=+,对该等式通分得到()()()2222222ab a b a b c a b a c b +=+-++-,即2222322322a b ab ab ac a a b bc b +=+-++-,即3322220a b a b ab ac bc +++--=.这即为()()()()2220a b a ab b ab a b c a b +-+++-+=,由0a b +≠知该等式即为2220a b c +-=.从而条件等价于2220a b c +-=且1c =,从而该三角形内切圆半径)121122ABC ab S ab ab r a b c a b c a b ab ===++++++ 当且仅当2a b ==时等号成立,从而0r <≤2213πππ24S r ⎛⎫-=≤= ⎪ ⎪⎝⎭内切圆.验证知当2a b ==时,等号成立,所以该三角形的内切圆面积的最大值是3π4-,所以选项D 正确.故选AD .三、填空题:本题共3小题,每小题5分,共15分;其中第14题的第一个空2分,第二个空3分.12.71513.a b <【注:也可以是b a >,0b a ->或a 小于b 】14.2;412.【解析】已知甲、乙两人独立的解同一道题,甲,乙解对题的概率分别是23,35,恰好有1人解对题的概率是22137353515⨯+⨯=.【注:写成有限小数不给分】13.【解析】由平均数在“拖尾”的位置,可知a b <.14.【解析】(1)13E ABC ABC V S EB -∆=⋅,在ABC ∆中,由余弦定理可知,1cos 8BAC ∠=,所以sin 8BAC ∠==,所以113772413282E ABC V -=⨯⨯⨯⨯⨯=.(2)作BH AC ⊥,垂足为H ,作1111B H AC ⊥,垂足为H 1,易证棱1BB 在平面11ACC A 上的射影为1HH ,则点E 在平面11ACC A 上的射影1E 在线段1HH 上,由(1)知,1cos 8BAC ∠=,故128AH AH AB ==,解得14AH =,故BH =,则1EE =,设AF 的中点为1Q ,外接球的球心为Q ,半径为1R ,则1QQ ⊥平面11ACC A ,即11//QQ EE ,在1Rt FQQ中,222211QF R QQ ==+①,又因为222211114QE R QQ Q E ⎛⎫==-+ ⎪ ⎪⎝⎭②,由①②可得211131216QQ Q E =+,所以当11Q E 取最小值时,1QQ 最小,即1R 最小,此时111Q E HH ⊥,因为1Q 是AF 的中点,则1E 是1HH 的中点,则E 是棱1BB 的中点.因为11//AA BB ,所以直线EF 与1BB 所成角即为直线EF 与1AA 所成角.由1111cos 8A CB =∠,再由余弦定理可得1B F 因为11EB =,所以EF =11cos 4E FEB B EF =∠=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分,其中第(1)小问6分,第(2)小问7分。
炎德英才大联考2024届数学高一第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式2320x x -+<的解集为( ) A .1,2 B .()2,1-- C .()(),12,-∞+∞D .()(),21,-∞--+∞2.已知函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,将该函数的图象向左平移6π个单位后,得到的图象对应的函数为偶函数,则()f x 的图象( ) A .关于点5,012π⎛⎫⎪⎝⎭对称 B .关于直线512x π=对称 C .关于点,012π⎛⎫⎪⎝⎭对称 D .关于直线12x π=对称3.在区间[1,4]-内随机取一个实数a ,使得关于x 的方程2420x x a ++=有实数根的概率为( ) A .25B .13C .35D .234.函数sin 23y x π⎛⎫=+⎪⎝⎭的图像( ) A .关于点,06π⎛⎫⎪⎝⎭对称B .关于点,03π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称D .关于直线3x π=对称5.将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .sin(2)10y x π=-B .y =sin(2)5x π-C .y =1sin()210x π-D .1sin()220y x π=-6.某三棱锥的左视图、俯视图如图所示,则该三棱锥的体积是( )A .3B .2C .3D .17.51(1)x x++展开式中的常数项为( ) A .1B .21C .31D .518.若||1OA =,||3OB =,0OA OB ⋅=,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOB =+(,)m n R ∈,则mn的值为( ) A .13B .3C .33D .39.已知数列{a n }满足a 1=1,a n +1=pa n +q ,且a 2=3,a 4=15,则p ,q 的值为( ) A .36p q =-⎧⎨=⎩B .21p q =⎧⎨=⎩C .36p q =-⎧⎨=⎩或21p q =⎧⎨=⎩ D .以上都不对 10.若满足条件C =60°,AB =3,BC =95的△ABC 有( )个 A .0 B .1C .2D .3二、填空题:本大题共6小题,每小题5分,共30分。
福建省宁德市2020-2021学年高一数学下学期期末考试质量检测试题(含解析)一、单项选择题(共8小题,每小题5分,共40分).1.已知复数z满足z=i(1+i),则是()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i2.掷两枚质地均匀的骰子,记事件A=“第一枚出现奇数点”,事件B=“第二枚出现偶数点”,则事件A与事件B的关系为()A.A与B互斥B.A与B对立C.A与B独立D.A与B相等3.如图1、图2分别是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民旅游支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一般大D.无法确定哪一户大4.如图是正方体的平面展开图,则在这个正方体中,AM与BN所成角的大小为()A.0°B.45°C.60°D.90°5.已知m,n是两条直线.α,β是两个平面,下列说法正确的是()A.若m∥n,n∥α,则m∥αB.若α⊥β,m⊂α,则m⊥βC.若m∥α,n⊂α,则m∥n D.若m⊂α,m⊥β,则α⊥β6.已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:204 978 171 935 263 321 947 468 579 682,据此估计,该运动员三次投篮恰有两次命中的概率为()A.B.C.D.7.《史记》中讲述了田忌与齐王赛马的故事.其中,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.若双方各自拥有上等马、中等马、下等马各1匹,且双方各自随机选1匹马进行1场比赛,则田忌的马获胜的概率为()A.B.C.D.8.如图,由四个全等的直角三角形与一个小正方形拼成的一个大正方形,已知,则=()A.B.C.D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设向量,则()A.B.C.D.在上的投影向量为(1,0)10.任何一个复数z=a+bi(其中a、b∈R,i为虚数单位)都可以表示成:z=r(cosθ+i sinθ)的形式,通常称之为复数z的三角形式.法国数学家棣莫弗发现:z n=[r(cosθ+i sinθ)]n =r n(cos nθ+i sin nθ)(n∈N+),我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是()A.当时,B.C.|z4|=|z|4D.在复平面内对应的点的坐标为第三象限11.已知正四面体的外接球、内切球的球面上各有一动点M、N,若线段MN的最小值为,则()A.正四面体的外接球的表面积为96πB.正四面体的内切球的体积为C.正四面体的棱长为12D.线段MN的最大值为12.新冠肺炎期间,某社区规定:若任意连续7天,每天不超过6人体温高于37.3℃,则称没有发生群体性发热.下列连续7天体温高于37.3℃人数的统计特征数中,能判定该社区没有发生群体性发热的为()A.中位数为4,众数为3 B.均值小于1,中位数为1C.均值为2,标准差为D.均值为3,众数为4三、填空题:本题共4小题,每小题5分,共20分.13.已知z=,则|z|=.14.在△ABC中,若b=1,c=,∠C=,则a=.15.如图,桌面上放置一个装有水的圆柱形玻璃水杯,AB为杯底直径,现以点B为支点将水杯倾斜,使AB所在直线与桌面所成的角为,则圆柱母线与水面所在平面所成的角等于.16.菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则的最小值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知向量满足=(1,1),||=1.(1)若的夹角θ为,求;(2)若,求与的夹角.18.如图,在三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=1,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)若面ABB1A1⊥面ABC,AA1⊥AB,AA1=2,求几何体ABD﹣A1B1C1的体积.19.某公司生产某种产品,从生产的正品中随机抽取1000件,测得产品质量差(质量差=生产的产品质量﹣标准质量,单位mg)的样本数据统计如下:(1)求样本数据的80%分位数;(2)公司从生产的正品中按产品质量差进行分拣,若质量差在(﹣s,+s)范围内的产品为一等品,其余为二等品.其中分别为样本平均数和样本标准差,计算可得s ≈10(同一组中的数据用该组区间的中点值作代表).①若产品的质量差为62mg,试判断该产品是否属于一等品;②假如公司包装时要求,3件一等品和2件二等品装在同一个箱子中,质检员每次从箱子中摸出2件产品进行检验,求摸出2件产品中至少有1件一等品的概率.20.现给出两个条件:①2b sin A=a tan B,②a(sin A﹣sin C)=b sin B﹣c sin C,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在△ABC中,a,b,c分别为内角A,B,C所对的边,若_____.(1)求B;(2)若点D是边AC靠近A的三等分点,且BD长为1,求△ABC面积的最大值.21.甲、乙、丙三人参加一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约,乙丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙丙每人面试合格的概率都是,且三人面试是否合格互不影响.求:(1)恰有一人面试合格的概率;(2)至多一人签约的概率.22.在我国古代数学名著《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”.已知三棱锥P﹣ABC中,PA⊥平面ABC.(1)从三棱锥P﹣ABC中选择合适的两条棱填空.若⊥,则该三棱锥为“鳖臑”;(2)已知三棱锥P﹣ABC是一个“鳖臑”,且AC=1,AB=2,∠BAC=60°,①若△PAC上有一点D,如图1所示,试在平面PAC内作出一条过点D的直线l,使得l与BD垂直,说明作法,并给予证明;②若点D在线段PC上,点E在线段PB上,如图2所示,且PB⊥平面EDA,证明∠EAB是平面EAD与平面BAC的二面角的平面角.参考答案一、单项选择题(共8小题,每小题5分,共40分).1.已知复数z满足z=i(1+i),则是()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【分析】根据已知条件,结合共轭复数的概念,以及复数代数形式的乘法运算,即可求解.解:∵z=i(1+i)=﹣1+i,∴.故选:B.2.掷两枚质地均匀的骰子,记事件A=“第一枚出现奇数点”,事件B=“第二枚出现偶数点”,则事件A与事件B的关系为()A.A与B互斥B.A与B对立C.A与B独立D.A与B相等【分析】事件A与事件B能同时发生,故事件A与事件B既不是互斥事件,也不是对立事件;P(A)==,P(B)==,P(AB)==,由P(AB)=P(A)P (B),得A与B独立;事件A与事件B不相等.解:掷两枚质地均匀的骰子,记事件A=“第一枚出现奇数点”,事件B=“第二枚出现偶数点”,事件A与事件B能同时发生,故事件A与事件B既不是互斥事件,也不是对立事件,故A,B均错误;P(A)==,P(B)==,P(AB)==,∵P(AB)=P(A)P(B),A与B独立,故C正确;事件A与事件B不相等,故D错误.故选:C.3.如图1、图2分别是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民旅游支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一般大D.无法确定哪一户大【分析】由柱状图计算出乙户的旅游支出占比,再与甲的比较即可.解:由饼状图,甲户的旅游支出占25%;由柱状图,乙户的旅游支出占<25%.故选:A.4.如图是正方体的平面展开图,则在这个正方体中,AM与BN所成角的大小为()A.0°B.45°C.60°D.90°【分析】把正方体的平面展开图还原成正方体ADNE﹣CMFB,由此能求出AM与BN所成角的大小.解:如图,把正方体的平面展开图还原成正方体ADNE﹣CMFB,∵CD∥BN,CD⊥AM,∴AM⊥BN,∴在这个正方体中,AM与BN所成角的大小为90°.故选:D.5.已知m,n是两条直线.α,β是两个平面,下列说法正确的是()A.若m∥n,n∥α,则m∥αB.若α⊥β,m⊂α,则m⊥βC.若m∥α,n⊂α,则m∥n D.若m⊂α,m⊥β,则α⊥β【分析】对于A,m∥α或m⊂α;对于B,m与β相交、平行或m⊂β;对于C,m与n 平行或异面;对于D,由面面垂直的判定定理得α⊥β.解:由m,n是两条直线.α,β是两个平面,知:对于A,若m∥n,n∥α,则m∥α或m⊂α,故A错误;对于B,若α⊥β,m⊂α,则m与β相交、平行或m⊂β,故B错误;对于C,若m∥α,n⊂α,则m与n平行或异面,故C错误;对于D,若m⊂α,m⊥β,则由面面垂直的判定定理得α⊥β,故D正确.故选:D.6.已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:204 978 171 935 263 321 947 468 579 682,据此估计,该运动员三次投篮恰有两次命中的概率为()A.B.C.D.【分析】找出10组随机数中三次投篮恰有两次命中的事件,计算所求的概率值.解:根据10组随机数:204 978 171 935 263 321 947 468 579 682,表示三次投篮恰有两次命中的事件是204,171,263,共3件;所以该运动员三次投篮恰有两次命中的概率为P=.故选:B.7.《史记》中讲述了田忌与齐王赛马的故事.其中,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.若双方各自拥有上等马、中等马、下等马各1匹,且双方各自随机选1匹马进行1场比赛,则田忌的马获胜的概率为()A.B.C.D.【分析】基本事件总数n=3×3=9,利用列举法求出田忌的马获胜包含的基本事件有3种情况,由此能求出田忌的马获胜的概率.解:田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.若双方各自拥有上等马、中等马、下等马各1匹,且双方各自随机选1匹马进行1场比赛,基本事件总数n=3×3=9,分别为:田忌的上等马对阵齐王的上等马,田忌的上等马对阵齐王的中等马,田忌的上等马对阵齐王的下等马,田忌的中等马对阵齐王的上等马,田忌的中等马对阵齐王的中等马,田忌的上等马对阵齐王的下等马,田忌的下等马对阵齐王的上等马,田忌的下等马对阵齐王的中等马,田忌的下等马对阵齐王的下等马,田忌的马获胜包含的基本事件有3种情况,分别为:田忌的上等马对阵齐王的中等马,田忌的上等马对阵齐王的下等马,田忌的中等马对阵齐王的下等马,则田忌的马获胜的概率为P=.故选:C.8.如图,由四个全等的直角三角形与一个小正方形拼成的一个大正方形,已知,则=()A.B.C.D.【分析】利用平面向量的线性运算及平面向量的基本定理求解即可.解:∵=2,∴=+=+=+(﹣)=+﹣×,∴=+,∴=+.故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设向量,则()A.B.C.D.在上的投影向量为(1,0)【分析】根据平面向量数量积的运算性质逐一进行判断即可解:因为,所以=(﹣1,﹣1),对A:||=,||=,所以||=||,故A正确;对B:因为1×(﹣1)﹣(﹣1)×(﹣1)=﹣2≠0,所以与不平行,故B错误;对C:()•=﹣1+1=0,所以()⊥,故C正确;对D:在上的投影为==1,则在上的投影向量为(1,0),故D正确;故选:ACD.10.任何一个复数z=a+bi(其中a、b∈R,i为虚数单位)都可以表示成:z=r(cosθ+i sinθ)的形式,通常称之为复数z的三角形式.法国数学家棣莫弗发现:z n=[r(cosθ+i sinθ)]n =r n(cos nθ+i sin nθ)(n∈N+),我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是()A.当时,B.C.|z4|=|z|4D.在复平面内对应的点的坐标为第三象限【分析】根据已知条件,结合复数z的三角形式和共轭复数的概念,即可求解.解:对于A选项,当时,z=cos+=,,故A选项正确,对B选项,=cosπ+sinπi=﹣1,故B选项错误,对于C选项,∵z=r(cosθ+i sinθ),∴z4=r4(cos4θ+i sin4θ),则|z4|=r4,|z|4=r4,∴|z4|=|z|4,故C选项正确,对于D选项,==,即在复平面对应的点为(,)位于第四象限,故D选项错误.故选:AC.11.已知正四面体的外接球、内切球的球面上各有一动点M、N,若线段MN的最小值为,则()A.正四面体的外接球的表面积为96πB.正四面体的内切球的体积为C.正四面体的棱长为12D.线段MN的最大值为【分析】设这个四面体的棱长为a,利用分割补形法求其外接球的半径,由等体积法求其内切球半径,再由已知列式求解a,然后逐一分析四个选项得答案.解:设这个四面体的棱长为a,四面体可看作棱长为的正方体截得的,故四面体的外接球即为正方体的外接球,外接球直径为正方体体对角线长,2R外==,∴R外=a,四面体的高h=a,根据等体积法,S•h=4×S•r内,解得r内=a,依题意得R外﹣r内=a﹣a=,∴a=12,故C正确;正四面体外接球的半径,则正四面体外接球的表面积为4π×54=216π,故A错误;正四面体内切球的半径为,则内切球的体积V=×=,故B正确;线段MN的最大值为:R外+r内=,故D错误.故选:BC.12.新冠肺炎期间,某社区规定:若任意连续7天,每天不超过6人体温高于37.3℃,则称没有发生群体性发热.下列连续7天体温高于37.3℃人数的统计特征数中,能判定该社区没有发生群体性发热的为()A.中位数为4,众数为3 B.均值小于1,中位数为1C.均值为2,标准差为D.均值为3,众数为4【分析】根据题意,假设设连续7天,每天的体温高于37.3℃的人数分别为a,b,c,d,e,f,g,且0≤a≤b≤c≤d≤e≤f≤g,由此依次分析选项,可得答案.解:由题意,设连续7天,每天的体温高于37.3℃的人数分别为a,b,c,d,e,f,g,且0≤a≤b≤c≤d≤e≤f≤g,依次分析选项:对于A,a,b,c,d,e,f,g依次取3,3,3,4,5,5,7,则满足中位数为4,众数为3,但是第7天的人数为7>6,不符合题意;对于B,若g≥7,中位数为1,则有(a+b+c+d+e+f+g)>g≥1,与均值小于1矛盾,可以判定该社区没有发生群体性发热,符合题意;对于C,若均值为2,标准差为,则有(a+b+c+d+e+f+g)=2,[(a﹣2)2+…+(g﹣2)2]=3,变形可得a+b+c+d+e+f+g=14,(a﹣2)2+…+(g﹣2)2=21,若g≥7,则(g﹣2)2≥25,与标准差为矛盾,可以判定该社区没有发生群体性发热,符合题意;对于D,a,b,c,d,e,f,g依次取0,1、2,3,4,4,7,满足均值为3,众数为4,但是第7天的人数为7>6,不符合题意;故选:BC.三、填空题:本题共4小题,每小题5分,共20分.13.已知z=,则|z|= 1 .【分析】根据已知条件,运用复数的运算法则,以及复数模的公式,即可求解.解:∵z==,∴.故答案为:1.14.在△ABC中,若b=1,c=,∠C=,则a= 1 .【分析】先根据b,c,∠c,由正弦定理可得sin B,进而求得B,再根据正弦定理求得a.解:在△ABC中由正弦定理得,∴sin B=,∵b<c,故B=,则A=由正弦定理得∴a==1故答案为:115.如图,桌面上放置一个装有水的圆柱形玻璃水杯,AB为杯底直径,现以点B为支点将水杯倾斜,使AB所在直线与桌面所成的角为,则圆柱母线与水面所在平面所成的角等于.【分析】作出图形,数形结合能求出结果.解:如图,以点B为支点将水杯倾斜,使AB所在直线与桌面所成的角为,,水面所在直线EF∥桌面所在直线CD,,∴,∴圆柱母线与水面所在平面所成的角∠EFB=∠CBF=.故答案为:.16.菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则的最小值为﹣4 .【分析】设在向量方向上的投影为x,结合图形可知当N点与A点重合时x最小,所以,进而可得答案.解:设在向量方向上的投影为x,则,当x最小时,取得最小值,结合图形可知当N点与A点重合时x最小,所以=.故答案为:﹣4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知向量满足=(1,1),||=1.(1)若的夹角θ为,求;(2)若,求与的夹角.【分析】(1)根据平面向量数量积运算公式求解即可;(2)由得,进而求出,再根据平面向量夹角公式求解即可.解:(1),所以,所以,(2)因为,所以,所以,所以,所以,因为θ∈[0,π],所以.故与的夹角为.18.如图,在三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=1,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)若面ABB1A1⊥面ABC,AA1⊥AB,AA1=2,求几何体ABD﹣A1B1C1的体积.【分析】(1)连接A1C,交AC1于O,连接OD,可得OD∥A1B,再由直线与平面平行的判定得AB1∥平面ADC1;(2)由平面ABB1A1⊥平面ABC,AB⊥AA1,利用平面与平面垂直的性质可得AA1⊥平面ABC,再由已知求得三棱锥ABC﹣A1B1C1与三棱锥C1﹣ADC的体积,作差可得几何体ABD﹣A1B1C1的体积.【解答】(1)证明:连接A1C,交AC1于O,连接OD,∵OD是ΔCA1B的中位线,∴OD∥A1B,又OD⊂平面ADC1,AB1⊄平面ADC1,∴AB1∥平面ADC1;(2)解:∵平面ABB1A1⊥平面ABC,平面ABB1A1∩平面ABC=AB,AB⊥AA1,AA1⊂平面ABB1A1,∴AA1⊥平面ABC,∵AB⊥AC,AB=AC=1,且AA1=2,∴,,故.19.某公司生产某种产品,从生产的正品中随机抽取1000件,测得产品质量差(质量差=生产的产品质量﹣标准质量,单位mg)的样本数据统计如下:(1)求样本数据的80%分位数;(2)公司从生产的正品中按产品质量差进行分拣,若质量差在(﹣s,+s)范围内的产品为一等品,其余为二等品.其中分别为样本平均数和样本标准差,计算可得s ≈10(同一组中的数据用该组区间的中点值作代表).①若产品的质量差为62mg,试判断该产品是否属于一等品;②假如公司包装时要求,3件一等品和2件二等品装在同一个箱子中,质检员每次从箱子中摸出2件产品进行检验,求摸出2件产品中至少有1件一等品的概率.【分析】(1)求出频率f1=0.1,f2=0.2,f3=0.45,f4=0.2,f5=0.05,f1+f2+f3+f4=0.95;f1+f2+f3=0.75,从而80%分位数一定位于[76,86)内,由此能估计样本数据的80%分位数.(2)①求出平均数,得到,再由62∈(60,80),得该产品属于一等品.②记三件一等品为A,B,C,两件二等品为a,b,利用列举法求出摸出两件产品总基本事件共10个,法一:记A:摸出两件产品中至少有一个一等品,利用列举法求出A包含的基本事件共9个,由此能求出所求概率.法二:记事件A:摸出两件产品中至少有一个一等品,:摸出两个产品,没有一个一等品,基本事件共一个(a,b).利用对立事件概率计算公式能求出所求概率.解:(1)因为频率f1=0.1,f2=0.2,f3=0.45,f4=0.2,f5=0.05,f1+f2+f3+f4=0.95;f1+f2+f3=0.75,所以,80%分位数一定位于[76,86)内,所以=.所以估计样本数据的80%分位数约为78.5.(2)①,所以,又62∈(60,80)可知该产品属于一等品.②记三件一等品为A,B,C,两件二等品为a,b,这是古典概型,摸出两件产品总基本事件共10个,分别为:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b),方法一:记A:摸出两件产品中至少有一个一等品,A包含的基本事件共9个,分别是:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),所以.方法二:记事件A:摸出两件产品中至少有一个一等品,:摸出两个产品,没有一个一等品,基本事件共一个(a,b).所以.20.现给出两个条件:①2b sin A=a tan B,②a(sin A﹣sin C)=b sin B﹣c sin C,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在△ABC中,a,b,c分别为内角A,B,C所对的边,若_____.(1)求B;(2)若点D是边AC靠近A的三等分点,且BD长为1,求△ABC面积的最大值.【分析】(1)①根据正弦定理以及同角关系进行转化求解;②利用正弦定理和余弦定理进行转化求解即可.(2)根据点D是边AC靠近A的三等分点,方法1:根据条件得到关于a,c的关系式,然后利用基本不等式求出ac的范围,再得到面积的最大值;方法2,直接利用余弦定理,结合基本不等式进行转化求解即可.解:(1)若选①,由2b sin A=a tan B,得2 sin B sin A=由sin A≠0,sin B≠0,得因为B∈(0,π),所以B=60°.若选②,由a(sin A﹣sin C)=b sin B﹣c sin C,得a2+c2﹣b2=ac所以因为B∈(0,π),所以B=60°.(2)方法一:,,由,平方得,即,所以,所以,即,当且仅当时,取等号,所以,此时且.方法二:△ABC中,由余弦定理,可得b2=a2+c2﹣ac,由∠ADB+∠CDB=π,得cos∠ADB=﹣cos∠CDB,所以,所以,即a2+4c2+2ac=9,由基本不等式,得即,当且仅当,取等号,所以,即,所以,此时且.21.甲、乙、丙三人参加一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约,乙丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙丙每人面试合格的概率都是,且三人面试是否合格互不影响.求:(1)恰有一人面试合格的概率;(2)至多一人签约的概率.【分析】(1)利用对立事件的概率公式以及相互独立事件的概率乘法公式求解即可;(2)事件E:至多一人签约,事件F:恰好一人签约,事件G:没人签约,然后由互斥事件的加法公式得到P(E)=P(F)+P(G),再利用对立事件的概率公式以及相互独立事件的概率乘法公式分别求解P(F),P(G),即可得到答案.解:(1)记事件A:甲面试合格,事件B:乙面试合格事件C:丙面试合格事件D:恰好有一人面试合格,依题意,事件A、B、C相互独立,所以==;(2)事件E:至多一人签约,事件F:恰好一人签约,事件G:没人签约,因为F与G互斥,所以P(E)=P(F)+P(G),又==,==,,所以至多一人签约的概率为.22.在我国古代数学名著《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”.已知三棱锥P﹣ABC中,PA⊥平面ABC.(1)从三棱锥P﹣ABC中选择合适的两条棱填空.若AB⊥BC,则该三棱锥为“鳖臑”;(2)已知三棱锥P﹣ABC是一个“鳖臑”,且AC=1,AB=2,∠BAC=60°,①若△PAC上有一点D,如图1所示,试在平面PAC内作出一条过点D的直线l,使得l与BD垂直,说明作法,并给予证明;②若点D在线段PC上,点E在线段PB上,如图2所示,且PB⊥平面EDA,证明∠EAB是平面EAD与平面BAC的二面角的平面角.【分析】(1)由“鳖臑”的定义求解即可;(2)①连接CD,在△PAC内,过点D作l⊥CD,即可得l为所求直线,利用线面垂直的判定定理和性质证明l⊥平面BCD,即可证明l⊥BD;②延长ED,BC,交于点F,连接AF,利用线面垂直的判定定理证明AF⊥平面PAB,由二面角的平面角的定义即可证明.解:(1)因为PA⊥平面ABC,AB,AC,BC⊂平面ABC,则PA⊥AB,PA⊥AC,PA⊥BC,故△PAC与△PAB是两个直角三角形,当AB⊥BC时,则△BAC为直角三角形,因为PA∩AB=A,PA,AB⊂平面PAB,则BC⊥平面PAB,又PB⊂平面PAB,所以BC⊥PB,则△BPC为直角三角形,故该三棱锥为“鳖臑”;(2)①连接CD,在△PAC内,过点D作l⊥CD,即可得l为所求直线,证明如下:在△ABC中,由余弦定理可得,由勾股定理逆定理可知,BC⊥AC,又因为PA⊥底面ABC,BC⊂平面ABC,所以PA⊥BC,又PA∩AC=A,PA,AC⊂平面PAC,所以BC⊥平面PAC,又l⊂平面PAC,则l⊥BC,又l⊥CD,CD∩BC=C,CD,BC⊂平面BCD,所以l⊥平面BCD,又BD⊂平面BCD所以l⊥BD;②延长ED,BC,交于点F,连接AF,因为点F∈平面ADE,点F∈平面ABC,所以平面ADE∩平面ABC=AF,因为PA⊥底面ABC,且AF⊂平面ABC所以PA⊥AF,因为PB⊥平面EDA,AF⊂平面EDA,所以PB⊥AF,又因为PB∩PA=P,PA,PB⊂平面PAB,所以AF⊥平面PAB,所以AF⊥AE,AF⊥AB,故∠EAB是平面EAD与平面BAC所形成的二面角的平面角.21。
2021-2022学年山东省聊城市聊城第一中学高一下学期数学检测试题一、单选题 1.若复数21iz =-+,则z =( )A .2BC .1D 【答案】B【分析】根据复数的除法运算法则,结合复数模的计算公式进行求解即可. 【详解】因为22(1)11(1)(1)i z i i i i ⋅--===---+-+--,所以z ==故选:B2.在ABC 中,已知6a =,4b =,c =C =( ) A .30︒ B .45︒ C .60︒ D .120︒【答案】C【分析】利用余弦定理的推论计算cos C 的值,进而求出C 的值.【详解】因为6a =,4b =,c = 所以2223616281cos 22642a b c C ab +-+-===⨯⨯, 又()0,180C ︒∈,所以60C ︒=.故选:C .3.已知向量(1,2)a =,(1,0)b =,(3,4)c =.若λ为实数,(a λb +)∥c ,则λ=( ). A .14B .12C .1D .2【答案】B【分析】先求出a λb +的坐标,再由(a λb +)∥c ,,列方程可求得结果 【详解】因为向量(1,2)a =,(1,0)b =, 所以(1,2)(1,0)(1,2)a b λλλ+=+=+, 因为(a λb +)∥c ,(3,4)c =, 所以1234λ+=,解得12λ=,4.已知用斜二测画法画得的正方形的直观图的面积为182,那么原正方形的面积为( ) A .36 B .362C .72D .722【答案】C【分析】根据斜二测画法的原则得到直观图的对应边长关系,即可求出相应的面积. 【详解】解:设原正方形的边长为a ,根据斜二测画法的原则可知O C a ''=,1122O A OA a ''==,高122sin 452A D O A a '''=︒==, ∴对应直观图的面积为222182a ==即272a =,故原正方形的面积为72. 故选:C.5.已知点D 是ABC 所在平面上一点,且满足12BD BC =-,则AD =( )A .1122AB AC -B .1122AB AC +C .1322AB AC -+D .3122AB AC -【答案】D【分析】根据向量的加法、减法法则运算即可得到答案. 【详解】解:由题意:D 为ABC 所在平面内的一点, 12BD BC =-,所以32CD CB =所以()33312222AD AC CD AC CB AC AB AC AB AC =+=+=+-=-故选:D .6.瑞士著名数学家欧拉发现公式i cos isin x x x e =+(i 为虚数单位),它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.被誉为数学中的“天桥”.根据欧拉公式可知,2021i4πe 表示的复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】由欧拉公式并结合三角函数的诱导公式进行计算,并结合复数的几何意义进行判断即可. 【详解】∵2021i 420212021cossin i cos 505sin 505i 4444πππππe ππ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭ 22cossin i i 4422ππ=--=--, ∴2021i4πe表示的复数在复平面内对应的点22,22⎛⎫-- ⎪ ⎪⎝⎭,位于第三象限. 故选:C.7.已知点G 是三角形ABC 所在平面内一点,满足0GA GB GC ++=,则G 点是三角形ABC 的( ) A .垂心 B .内心C .外心D .重心【答案】D【分析】直接利用平面向量的线性运算和三角形重心的定义,即可判断点G 是△ABC 的重心. 【详解】因为0GA GB GC ++=,所以 GA GB GC CG +=-=.以GA 、GB 为邻边作平行四边形GADB ,连接GD 交AB 于点O .如图所示:则CG GD =,所以13GO CO =,CO 是AB 边上的中线,所以G 点是△ABC 的重心.故选:D8.在棱长为a 的正方体1111ABCD A B C D -中,E 为1AA 的中点,则过B 、1C 、E 三点的平面截正方体1111ABCD A B C D -所得的截面面积为( )A 2310 B .298aC 232 D 210 【答案】B【分析】取11A D 中点F ,连接BE 、EF 、1C F 、1BC 、1AD ,证明出1//EF BC ,故四点B 、1C 、E 、F 共面,所以过B 、1C 、E 三点的平面截正方体1111ABCD A B C D -所得的截面为等腰梯形1EFC B ,根据已知,即可求解.【详解】取11A D 中点F ,连接BE 、EF 、1C F 、1BC 、1AD ,因为11//AB C D 且11AB C D =,所以,四边形11ABC D 为平行四边形,所以,11//AD BC ,E 、F 分别为1AA 、11A D 的中点,所以,1//EF AD 且11222EF AD a ==, 所以,1//EF BC ,故B 、1C 、E 、F 四点共面,所以过B 、1C 、E 三点的平面截正方体1111ABCD A B C D -所得的截面为等腰梯形1EFC B , 其中22EF a =,12BC a =,22152BE C F AB AE a ==+=, 过点E 、F 在平面1BC FE 内分别作1BC 的垂线,垂足点分别为G 、H ,因为1BE C F =,1EBG FC H ∠=∠,12EGB FHC π∠=∠=,所以,1Rt EBG Rt FHC ≅△△,故1BG C H =,在平面1BC FE 内,因为1EG BC ⊥,1FH BC ⊥,1//EF BC , 所以,四边形EFHG 为矩形,则2GH EF ==, 所以,1122BC EF BG C H -==, 所以,梯形1BC FE 的高22225232244a a h BE BG ⎛⎫⎛⎫=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 梯形1B CFE 的面积223219228a S a ⎫=⨯=⎪⎪⎭.故选:B.9.已知非零向量a ,b ,下列说法正确的是( )A .若a b =,则a b =B .若a ,b 为单位向量,则a b =C .若a b >且a 与b 同向,则a b >D .a b a b +≥+【答案】A【分析】根据平面向量的定义依次判断选项即可得到答案.【详解】对于A ,若a b =,则两向量的大小相等,方向相同,故a b =成立,故A 对, 对于B ,若a ,b 都是单位向量,两向量的方向不定,故a b =不成立,故B 错, 对C ,因为两向量不能比较大小,故C 错,对于D ,根据平面向量的三角形法则a b a b +≤+成立,故D 错, 故选:A二、多选题10.下列命题正确的是( )A .如果一条直线上有两个点在一个平面上,那么这条直线不一定在这个平面内B .如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线C .过直线外一点,可以作无数个平面与这条直线平行D .如果一条直线平行于平面内的无数条直线,则该直线与平面平行 【答案】BC【分析】由公理1判断A ,由公理3判断B ,由空间中点、线、面的位置关系判断C 和D .【详解】由公理1可知,如果一条直线上有两个点在一个平面上,那么这条直线一定在这个平面内,故A 错误;由公理3知,如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线,故B 正确;因为过直线外一点可以作一条直线与已知直线平行,所以经过这条直线且不经过已知直线的平面都与已知直线平行,即过直线外一点,可以作无数个平面与这条直线平行,故C 正确; 一条直线平行于平面内的无数条直线,该直线与平面平行或直线在平面内,故D 错误. 故选:BC .11.已知△ABC 中,D 是BC 上的点,AD 平分BAC ∠,2BD DC =,下列结论正确的是( ) A .sin 2sin C B =B .若30B ∠=︒,则△ABC 为直角三角形C .若60BAC ∠=︒,则△ADC 为等边三角形D .若30BAD ∠=︒,则△ABD 为等腰三角形【答案】ABD【分析】由已知设22BD DC x ==,BAD CAD α∠=∠=,利用正弦定理即可判断A ; 若30B =︒,结合已知得sin 2sin 1C B ==,可求得角C ,即可判断B ;若30BAD ∠=︒,则60BAC ∠=︒,结合sin 2sin C B =,求得△ABC 的内角,即可判断CD. 【详解】解:做出图形:由已知设22BD DC x ==,BAD CAD α∠=∠=, 在△ABD ,△CAD 中,由正弦定理得sin sin AD BDB α=,sin sin AD CDC α=, 两式相除得sin 2sin C BDB CD==,所以sin 2sin C B =. 对于A ,由以上可知,A 正确;对于B ,若30B =︒,结合已知得sin 2sin 1C B ==,故90C =︒,故B 正确; 对于D ,若30BAD ∠=︒,则60BAC ∠=︒,所以120C B =︒-,代入sin 2sin C B =得()sin 1202sin B B ︒-=,即sin120cos cos120sin 2sin B B B ︒-︒=,即33cos sin 22B B =,所以3tan 3B =,所以30B =︒,90C =︒,故△ABD 为等腰三角形,△ADC 为直角三角形,故C 错误,D 正确. 故选:ABD.12.如图,在透明塑料制成的长方体1111ABCD A B C D -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,下列说法中正确的是( )A .水的部分始终呈棱柱状,没水的部分也始终成棱柱状B .水面四边形EFGH 的面积不改变C .棱11AD 始终与水面EFGH 平行 D .当1E AA ∈时,AE BF +是定值 【答案】ACD【分析】从棱柱的特征平面可判断A ;由水面四边形EFGH 的面积是改变的可判断B ;由11//////A D AD CB EH ,11A D ⊄水面EFGH ,EH ⊂水面EFGH ,可判断C ;由体积是定值,高BC 为定值,则底面积EABF 为定值,可判断D .【详解】根据面面平行性质定理,可得BC 固定时,在倾斜的过程中,始终有//////AD EH FG BC , 且平面//AEFB 平面DHGC ,故水的形状成棱柱状,没水的部分也始终成棱柱状,故A 正确; 水面四边形EFGH 的面积是改变的,故B 错误;因为11//////A D AD CB EH ,11A D ⊄水面EFGH ,EH ⊂水面EFGH , 所以11//A D 水面EFGH 正确,故C 正确;由于水的体积是定值,高不变,所以底面ABFE 面积不变, 即当E 在1AA 时,AE BF +是定值.故D 正确. 故选:ACD .三、填空题13.已知复数z 满足2z =,则34z i +-的最小值是______. 【答案】3【分析】根据绝对值不等式a b a b a b -≤+≤+,求出34z i +-的最小值即可. 【详解】∵复数z 满足2z =, ∴3434523z i i z +-≥--=-=, ∴34z i +-的最小值是3. 故答案为3.【点睛】本题主要考查了不等式的应用问题,也考查了复数的运算问题,是基础题目. 14.已知向量(),1a x =,()1,2b =-,且a b ⊥,则a b -=___________.【答案】10【分析】由垂直的坐标表示求得x ,再由模的坐标运算求解. 【详解】由a b ⊥得20a b x ⋅=-=,2x =,则(1,3)a b -=,所以221310a b -=+=.故答案为:10.15.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ=__________.21. 【分析】利用余弦定理求出BC 的数值,正弦定理推出ACB ∠的余弦值,利用()cos cos 30ACB θ=∠+︒展开求出cos θ的值.【详解】解:如图所示,在ABC 中,40AB =,20AC =,120BAC ∠=︒, 由余弦定理得2222cos1202800BC AB AC AB AC =+-⋅⋅︒=, 所以7.BC =由正弦定理得21sin sin AB ACB BAC BC ∠∠=⋅=. 由120BAC ∠=知ACB ∠为锐角,故227cos 1sin ACB ACB ∠=-∠ 故()21cos cos 30cos cos30sin sin3014ACB ACB ACB θ∠∠∠=+=-=. 21.四、双空题16.球面几何是几何学的一个重要分支,在刚海、航空、卫星定位等方面都有广泛的应用.如图,A ,B ,C 是球而上不在同一大圆(大圆是过球心的平面与球面的交线)上的三点,经过这三点中任意两点的大圆的劣弧分别为AB ,BC ,CA ,由这三条劣弧组成的图形称为球面△ABC .已知地球半径为R ,北极为点N ,P 、Q 是地球表面上的两点.①若P ,Q 在赤道上,且经度分别为东经40°和东经100°,则球面△NPQ 的面积为___________.②若26NP NQ PQ ===,则球面NPQ △的面积___________. 【答案】23R π 2R π【分析】利用PQ 所在的经度求出球面三角形PNQ 面积,再利用已知可得三角形PNQ 为等边三角形,进而可以求解.【详解】解:PQ 在赤道上,且经度分别为40︒和100︒,上半球面面积为221422R R ππ⨯⨯=,球面PNQ 面积为226023603R R ππ︒⨯=︒, 当26RNP NQ PQ ==PNQ 为等边三角形, 根据题意构造一个正四面体N PQS -,如图所示: 其中心为O ,O 是高NH 的靠近H 的四等分点, 则1cos cos 3OH OH NOP HOP OP ON ∠=-∠=-=-=-, 由余弦定理可得:22222221cos 223ON OP PN R PN NOP ON OP R +--∠===-⋅, 解得26PN ,正好为题目所给的长度, 所以球面PNQ 的面积为22144PNQS R R ππ=⨯=, 故答案为:23R π;2R π.五、解答题17.如图所示,在三棱柱111ABC A B C -中,E ,F ,G ,H 分别是AB ,AC ,11A B ,11A C 的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面1EFA ∥平面BCHG . 【答案】(1)证明详见解析 (2)证明详见解析【分析】(1)通过证明//BC GH 来证得,,,B C H G 四点共面. (2)通过面面平行的判定定理来证得平面1EFA ∥平面BCHG . 【详解】(1)由于,G H 分别是1111,A B AC 的中点,所以11//GH B C , 根据三棱柱的性质可知,11//BC B C , 所以//BC GH ,所以,,,B C H G 四点共面.(2)由于,E F 分别是,AB AC 的中点,所以//BC EF ,由于EF ⊂/平面BCHG ,BC ⊂平面BCHG ,所以//EF 平面BCHG .根据三棱柱的性质可知11//,AG BE AG BE =, 所以四边形1BEA G 是平行四边形,所以1//A E BG ,由于1A E ⊂/平面BCHG ,BG ⊂平面BCHG ,所以1//A E 平面BCHG . 由于11,,EF A E E EF A E ⋂=⊂平面1EFA ,所以平面1EFA ∥平面BCHG .18.已知复数()()2204332i z a a a a =-++-+(i 为虚数单位,a R ∈)为纯虚数,0z 和实数b 是关于x 的方程()232i 6i 0x x -++=的两个根.(1)求a ,b 的值;(2)若复数z 满足i z a b =+,说明在复平面内z 对应的点Z 的集合是什么图形?并求该图形的面积.【答案】(1)3a =,3b =;(2)在复平面内z 对应的点Z的集合是以原点为圆心,以为圆,18S π=.【分析】(1)根据纯虚数的定义求得a ,再根据0z 和实数b 是关于x 的方程()232i 6i 0x x -++=的两个根结合韦达定理即可求得b ;(2)设()i,,z x y x y R =+∈,根据i z a b =+,即可求得在复平面内z 对应的点Z 的轨迹,从而得出答案.【详解】解:(1)∵复数()()2204332i z a a a a =-++-+(i 为虚数单位,a R ∈)为纯虚数,∴22430320a a a a ⎧-+=⎨-+≠⎩,解得3a =, ∴02i z =,由韦达定理可得,0032i 6i z b z b +=+⎧⎨=⎩,解得3b =; (2)∵复数z 满足i z a b =+,∴z =设()i,,z x y x y R =+∈,则有2218x y +=,∴在复平面内z 对应的点Z的集合是以原点为圆心,以为∴218S πr π==.19.已知ABC的面积为①、条件②这两个条件中选择一个作为已知,求:条件①6a =,1cos 3=-C ;条件②:A C =,7cos 9B =-. (1)b 和c 的值.(2)sin()A B -的值.【答案】(1)若选①:2b =,c =②:8b =,c =(2)若选①;若选②:2327-.【分析】若选择条件①:(1)利用同角三角函数基本关系式可求sin C 的值,利用三角形的面积公式可求a ,b 的值,进而根据余弦定理可求c 的值.(2)由正弦定理可求sin A ,sin B 的值,利用同角三角函数基本关系式可求cos A ,cos B 的值,进而根据两角差的正弦公式即可求解sin()A B -的值.若选择条件②:(1)由题意可得a c =,利用同角三角函数基本关系式可求sin B ,利用三角形的面积公式可求a ,c 的值,根据余弦定理可求b 的值.(2)由正弦定理可求sin A ,利用同角三角函数基本关系式可求cos A ,利用两角差的正弦公式即可求解sin()A B -的值.【详解】(1)若选择条件①:在ABC 中,∵1cos 3=-C ,∴(,)2C ππ∈,sin C∵1sin 2S ab C ==6a =,∴2b =,由余弦定理,2222cos 48c a b ab C =+-=, ∴c =若选择条件②:在ABC 中,∵A C =,∴a c =.∵7cos 9B =-,∴(,)2B ππ∈,sin B ==,∵211sin 22S ac B c ===∴a c ==由余弦定理,2222cos 64b a c ac B =+-=,∴8b =;(2)若选择条件①:由正弦定理sin sin sin a b c A B C ==,可得62sin sin A B =,∴sin A =sin B , ∵,(0,)2A B π∈,∴cos Acos B ,∴sin()sin cos cos sin A B A B A B -=-. 若选择条件②: 由正弦定理得sin sin a b A B =,∴1sin sin 3aA B b ==, ∵(0,)2A π∈,∴cos 3A ==∴1723sin()sin cos cos sin ()3927A B A B A B -=-=⨯-=-. 20.已知向量a 与b 的夹角为34πθ=,且3a =,22b =. (1)若2ka b +与34a b +共线,求k ;(2)求a 与a b +的夹角的余弦值.【答案】(1)32;(2. 【分析】(1)可设()234ka b a b λ+=+,可得出关于λ、k 的方程组,解出这两个未知数即可得解;(2)计算出()a a b ⋅+、a b +的值,利用平面向量的数量积可求得a 与a b +的夹角的余弦值.【详解】(1)若2ka b +与34a b +共线,则存在λ,使得()234ka b a b λ+=+即()()3240k a b λλ-+-=, 又因为向量a 与b 不共线,所以30240k λλ-=⎧⎨-=⎩,解得1232k λ⎧=⎪⎪⎨⎪=⎪⎩,所以32k =; (2)cos 36a b a b θ⎛⋅=⋅=⨯=- ⎝⎭, 222912a b a a b b +=+⋅+=- ()296cos ,35a ab a a ba ab a a b a a b ⋅++⋅-<+>====⋅++21.如图一个透明的球形装饰品内放置了两个具有公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知大圆锥轴截面是等边三角形,设球的半径为R ,圆锥底面半径为r .(1)试确定R 与r 的关系;(2)若小圆锥、大圆锥的侧面积为1S 、2S ,球的表面积为3S ,求123::S S S ;(3)求出两个圆锥的总体积(即体积之和)与球的体积之比.【答案】(1)3R r =;(2)123::3S S S =;(3)3:8. 【分析】(1)根据题意分析出△ABC 为直角三角形,及30ABC ∠=︒,进而得到答案;(2)由题意,求出大小圆锥的母线长,进而算出它们的侧面积,再求出球的表面积,最后得到答案;(3)根据(1),求出圆锥体积之和与球的体积,进而得到答案.【详解】(1)由几何体的特征,得到△ABC 为直角三角形,由于大圆锥的轴截面为等边三角形, 故30ABC ∠=︒,所以:AC R =,3BC R ,所以32BC R r == (2)球心到圆锥底面的距离12R OO =,所以小圆锥的高为22R R R -=, 故小圆锥的母线长为R 3R ,所以213πS R =,2232πS R =⋅,234S πR =⋅,故123::3S S S .(3)由(1)得:两个圆锥的体积和为321232R r R ππ⋅⋅⋅=,球的体积为343R π. 故两个圆锥的体积和为32πR ;体积之比为:334:3:823R R ππ=. 22.如图,某市政府计划在长为1km 的道路AB 一侧的一片区域内搭建一个传染病预防措施宣传区.该区域由直角三角形区域ABC (ACB ∠为直角)和以BC 为直径的半圆形区域拼接而成.点P 为半圆弧上的一点(异于B 、C ),CH AB ⊥.设,62ππA θ⎛⎫∠=∈ ⎪⎝⎭.(1)为了让更多的市民看到宣传内容,达到最佳宣传效果,需满足CAB PBC ∠=∠,且CA CP +达到最大值.求θ为何值时,CA CP +最大,最大值为多少?(2)为了让宣传栏达到最佳稳定性,更加耐用,需满足π3PBA ∠=,且CH CP +达到最大值.问当θ为何值时,CH CP +取得最大值.【答案】(1)3πθ=时,AC CP +的最大值为54;(2)512πθ=. 【分析】(1)由题意得BAC PBC θ∠=∠=,则cos AC θ=,2sin PC θ=,再结合平方关系及二次函数的最值即可出答案;(2)在直角△ABC 中,由1122ABC S CA CB AB CH =⋅⋅=⋅,得sin cos CH θθ=,在直角△PBC 中,sin sin 6πPC θθ⎛⎫=- ⎪⎝⎭,再利用三角恒等变换结合正弦函数的性质即可得出答案. 【详解】解:(1)由题意得BAC PBC θ∠=∠=,1AB =千米,则在直角△ABC 中,cos AC θ=,sin BC θ=,在直角△PBC 中,2sin sin PC BC θθ=⋅=,2cos cos 1AC CP θθ+=-++,,62ππθ⎛⎫∈ ⎪⎝⎭, 所以当1cos 2θ=,即3πθ=时,AC CP +的最大值为54; (2)在直角△ABC 中,由1122ABC SCA CB AB CH =⋅⋅=⋅, 解得sin cos sin cos 1θθCH θθ==, 在直角△PBC 中,sin sin sin 326πππPC BC θθθ⎡⎤⎛⎫⎛⎫=⋅--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以31sin cos sin cos 2CH CP θθθθθ⎫+=+-⎪⎪⎝⎭,,62ππθ⎛⎫∈ ⎪⎝⎭, 故23131cos 21sin cos sin cos 222θCH CP θθθθθ-++=+11sin 22sin 2423πθθθ⎛⎫==- ⎪⎝⎭,所以当512πθ=时,CH CP +.。
2025年上外版高一数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、过点且平行于直线的直线方程为().A.B.C.D.2、【题文】函数的值域为()A.B.C.D.3、【题文】的零点在下列哪个区间内()A. (0,1)B. (1,2)C. (2,3)D. (3,4)4、函数的值域为()A. (0,+∞)B. [0,+∞)C. (1,+∞)D. [1,+∞)5、设扇形的弧长为2面积为2则扇形中心角的弧度数是()A. 1B. 4C. 1或4D. 娄脨评卷人得分二、填空题(共9题,共18分)6、已知二次函数f(x)满足条件f(0)=1,且有f(x+1)-f(x)=2x.在区间[-1,2]上,y=f(x)的图象恒在y=2x+m的图象下方,则实数m的取值范围为____.7、在△ABC中,∠A=90°,AC=1,AB=过A在三角形内作射线AM交线段BC于M,则∠AMC>60°的概率是____.8、圆锥的底面半径是3,高是4,则圆锥的侧面积是____.9、在半径为3的圆中,弧AB为120°,则扇形 OAB 的面积为____.10、【题文】已知A={x|x2-2x-3≤0},若实数a∈A,则a的取值范围是________.11、【题文】集合则集合A中所有元素之积为____.12、已知集合M={f(x)|f2(x)﹣f2(y)=f(x+y)f(x﹣y);x,y∈R},有下列命题。
①若f(x)= 则f(x)∈M;②若f(x)=2x;则f(x)∈M;③f(x)∈M;则y=f(x)的图象关于原点对称;④f(x)∈M,则对于任意实数x1, x2(x1≠x2),总有<0成立;其中所有正确命题的序号是____.(写出所有正确命题的序号)13、已知长方形ABCD中,AB=2 AD=3,其水平放置的直观图如图所示,则A′C′=______ .14、已知幂函数y=(m2鈭�2m鈭�2)xm2+4m的图象关于原点对称且与x轴、y轴均无交点,则整数m的值为 ______ .评卷人得分三、证明题(共8题,共16分)15、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.求证:(1)∠CFD=∠CAD;(2)EG<EF.16、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.17、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.(1)求证:E为的中点;(2)若CF=3,DE•EF=,求EF的长.18、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.19、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:(1)AD=AE(2)PC•CE=PA•BE.20、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.21、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.22、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分四、作图题(共3题,共18分)23、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.24、作出下列函数图象:y=25、已知简单组合体如图;试画出它的三视图(尺寸不做严格要求)评卷人得分五、解答题(共2题,共10分)26、已知函数(1) 用函数单调性的定义证明在区间上为增函数(2) 解不等式27、【题文】(本小题满分15分)已知函数f(x)=-1+2sinxcosx+2cos2x.(1)求f(x)的单调递减区间;(2)求f(x)图象上与原点最近的对称中心的坐标;(3)若角α,β的终边不共线,且f(α)=f(β),求tan(α+β)的值.评卷人得分六、综合题(共4题,共28分)28、如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(4;0);与y轴正半轴交于点E(0,4),边长为4的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;(1)求拋物线的函数表达式;(2)如图2;若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线与边AB交于点P 且同时与边CD交于点Q.设点A的坐标为(m,n)①当PO=PF时;分别求出点P和点Q的坐标及PF所在直线l的函数解析式;②当n=2时;若P为AB边中点,请求出m的值;(3)若点B在第(2)①中的PF所在直线l上运动;且正方形ABCD与抛物线有两个交点,请直接写出m的取值范围.29、设直线kx+(k+1)y-1=0与坐标轴所围成的直角三角形的面积为S k,则S1+S2+ +S2009=____.30、已知函数y1=px+q和y2=ax2+bx+c的图象交于A(1,-1)和B(3,1)两点,抛物线y2与x轴交点的横坐标为x1,x2,且|x1-x2|=2.(1)求这两个函数的解析式;(2)设y2与y轴交点为C,求△ABC的面积.31、(2011•青浦区二模)如图,已知边长为3的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是____.参考答案一、选择题(共5题,共10分)1、A【分析】所求直线方程为即【解析】【答案】A2、A【分析】【解析】试题分析:即,令则所以函数的值域为选A。
2024届江苏百校大联考高一数学第二学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等比数列{}n a 中,39a =-,71a =-,则5a 的值为( ) A .3或-3 B .3C .-3D .不存在2.在中,如果,,,则此三角形有( ) A .无解 B .一解C .两解D .无穷多解 3.若集合,则A .B .C .D .4.若是的重心,a ,b ,c 分别是角的对边,若3G G GC 03a b c A +B +=,则角( )A .90B .60C .45D .305.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥6.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.则获得复赛资格的人数为()A .640B .520C .280D .2407.若圆锥的高扩大为原来的3倍,底面半径缩短为原来的,则圆锥的体积( ) A .缩小为原来的 B .缩小为原来的 C .扩大为原来的2倍 D .不变8.式子22cos cos sin sin 3636ππππ-的值为( ) A .12-B .0C .1D .39.过点P (0,2)作直线x+my ﹣4=0的垂线,垂足为Q ,则Q 到直线x+2y ﹣14=0的距离最小值为( ) A .0B .2C 5D .510.计算:2sincos12122cos 112πππ=- A .3B 3 C 23D .3二、填空题:本大题共6小题,每小题5分,共30分。
训练14 反函数的概念
基础巩固 站起来,拿得到!
1.函数y=
4
73+-x x 的反函数是( ) A.y=473+-x x (x ∈R 且x ≠-4) B.y=x
x -+374(x ∈R 且x ≠3) C.y=734-+x x (x ∈R 且x ≠37) D.y=743+-x x (x ∈R 且x ≠-47) 答案:C
解析:由y=473+-x x ,得x=y
y -+374.故所求反函数为y=x x -+374(x ∈R 且x ≠3). 2.函数y=⎪⎩⎪⎨⎧≥-<0,2
1,0,2x x x x 的反函数是( ) A.y=⎩⎨⎧≤-≤-0
,0,2x x x x B.y=⎩⎨⎧>≤-0,0,2x x x x C.y=⎪⎩⎪⎨⎧>≤-0,,0,21x x x x D.y=⎪⎩
⎪⎨⎧>-≤-0,,0,21x x x x
答案:A
解析:当x<0时,由y=x 2,得x=-
y .故反函数为y=f -1(x)=-x (x>0). 当x ≥0时,由y=-
21x,得x=-2y. 故反函数为y=f -1(x)=-2x(x ≤0).
∴y=f -1(x)=-x,x>0,
-2x,x ≤0.
3.若函数f(x)的反函数f -1(x)=1+x 2(x<0),则f(2)等于( )
A.1
B.-1
C.1和-1
D.5
答案:B
解法一:由y=1+x 2(x<0),得x=-
1-y .故f(x)=-1-x (x>0),f(2)=-12-=-1. 解法二:令1+x 2=2(x<0),则x=-1,即f(2)=-1.
4.若函数y=f(x)的反函数是y=-21x -(-1≤x ≤0),则原函数的定义域是( )
A.(-1,0)
B.[-1,1]
C.[-1,0]
D.[0,1] 答案:C
解析:∵原函数的定义域为反函数的值域,
又-1≤x ≤0,
∴0≤1-x 2≤1,即y ∈[-1,0].
5.设y=3
x +m 和y=nx-9互为反函数,那么m 、n 的值分别是( ) A.-6,3 B.2,1 C.2,3 D.3,3
答案:D
解析:求出y=3
x +m 的反函数y=3x-3m,再与y=nx-9对比系数即得. 6.已知f(x)=x 2-1(x ≥2),则f -1(4)=______________. 答案:5
解析:因为f(x)=x 2-1,x ≥2,所以其反函数为f -1(x)=1+x (x ≥3). 所以f -1(4)=514=+. 7.求下列函数的反函数: (1)y=-21x -(-1≤x<0);
(2)y=-x 2-2x+1(1≤x ≤2);
(3)y=⎩⎨⎧>--≤.
0,1,0,2x x x x
解:(1)由y=-21x -,得y 2=1-x 2
, 即x 2=1-y 2
.
∵-1≤x<0,
∴x=-21y -. 又∵y=-21x -,-1≤x<0,
∴-1<y ≤0.
∴所求反函数为y=-21x -(-1<x ≤0).
(2)由y=-x 2-2x+1=-(x+1)2+2,得(x+1)2=2-y.
∵1≤x ≤2,
∴2≤x+1≤3.
∴x+1=y -2,即x=-1+y -2.
∴反函数为y=-1+x -2(-7≤x ≤-2).
(3)①由y=x 2(x ≤0),得x=-y ,即y=x 2(x ≤0)的反函数为y=-x (x ≥0).
②由y=-x-1(x>0),得x=-y-1,即y=-x-1(x>0)的反函数为y=-x-1(x<-1).
由①②可知f(x)=⎩⎨⎧>--≤.0,1,0,2x x x x 的反函数为f -1(x)=⎩⎨⎧-<--≥-.
1,1,0,x x x x 能力提升 踮起脚,抓得住!
8.函数y=2|x|在下面的区间上,不存在反函数的是( )
A.[0,+∞])
B.(-∞,0)]
C.[-4,4]
D.[2,4] 答案:C
解法一:函数若在区间上单调,则存在反函数,易知函数y=2|x|在[0,+∞),(-∞,0],[2,4]上单调.
解法二:当x=±4时,y=8,知不是一一映射.
9.函数f(x)是增函数,它的反函数是f -1(x),若a=f(2)+f -1(2),b=f(3)+f -1(3),则下面结论中正确的是
( )
A.a<b
B.a=b
C.a>b
D.无法确定 答案:A
解析:∵f(x)是增函数,故其反函数f -1(x)也是增函数,∴f(3)>f(2),f -1(3)>f -1(2),即b>a.
10.已知f(x)=3x-2,则f -1[f(x)]=__________________;f [f -1(x)]=__________________. 答案:x x
解析:∵f -1(x)=
32+x , ∴f -1[f(x)]=
31[(3x-2)+2]=x,f [f -1(x)]=3·32+x -2=x. 一般地,f [f -1(x)]与f -1[f(x)]的表达式总为x,但两个函数定义域不一定相同,故不一定
是同一个函数.
11.函数f(x)=ax 2+(a+2)x-1在x ∈R 上存在反函数,则f -1(1)=_______________.
答案:1
解析:依题意a=0,f(x)=2x-1,令f -1(1)=b,则f(b)=1,即2b-1=1⇒b=1.
12.已知函数f(x)=a
x x ++23(x ≠-a,a ≠32). (1)求它的反函数;
(2)求使f -1(x)=f(x)的实数a 的值;
(3)当a=-1时,求f -1(2).
解:(1)设y=
a
x x ++23,∵x ≠-a,∴反解得(y-3)x=2-ay. 若y=3,则a=32与a ≠32矛盾. ∴y ≠3.∴x=3
2--y ay . ∴f -1(x)=3
2--x ax (x ≠3,a ≠32). (2)当f -1(x)=f(x)时,有a x x x ax ++=--2332, 整理得(a+3)x 2+(a 2
-9)x-2(a+3)=0.
∴a+3=0,即a=-3.
(3)当a=-1时,由(1)知f -1(x)=
32-+x x . ∴f -1(2)=-4.
13.已知f(x)=(1
1+-x x )2(x ≥1), (1)求f(x)的反函数f -1(x),并求出反函数的定义域;
(2)判断并证明f -1(x)的单调性.
解:(1)设y=(11+-x x )2⇒x=y
y -+11,又x ≥1, ∴y
y
-+11≥1⇒0≤y<1,即f -1(x)=x x -+11,f -1(x)的定义域为[0,1]. (2)f -1(x)在[0,1)上单调递增.
证明如下:设0≤x 1<x 2<1,∴0≤1x <2x <1.
∴f -1(x 1)-f -1(x 2)=)1)(1()
(22121x x x x ---<0.∴f -1
(x)在[0,1]上单调递增. 拓展应用 跳一跳,够得着!
14.要使函数y=x 2-2ax+1在区间[1,2]上存在反函数,则a 的取值范围是( )
A.a ≤1
B.a ≥2
C.a ≤1或a ≥2
D.1≤a ≤2 答案:C
解析:由已知得函数y=x 2-2ax+1在区间[1,2]上单调,则a ≤1或a ≥2.
15.已知函数y=f(x-1)的反函数为y=f -1(x-1),且f(1)=2,则f(2)的值为______________. 答案:1
解析:y=f -1(x-1)⇒x-1=f(y)⇒x=f(y)+1,
故y=f -1(x-1)的反函数为y=f(x)+1.
故f(x-1)=f(x)+1,即f(x)=f(x-1)-1,
则f(2)=f(1)-1=1.
16.(1)已知f(x)=c x b ax ++(a 、b 、c 是常数)的反函数是f -1(x)=3
52-+x x ,求a+b+c 的值. (2)设点P(-1,-2)既在函数f(x)=ax 2+b(x ≤0)的图象上,又在f(x)的反函数的图象上,求f -1(x). 解:(1)设y=c x b ax ++,解得x=a
y b cy -+-, 即f -1(x)=a
x b cx -+-, 因此,352-+=-+-x x a x b cx , 由对应项系数相等得a=3,b=5,c=-2,
∴a+b+c=6.
(2)点P(-1,-2)在f(x)=ax 2+b 上,则-2=a(-1)2+b, ①
又∵点P(-1,-2)在f -1(x)上,
∴点(-2,-1)在f(x)上.
∴
-1=a(-2)2+b. ②
由①②联立,解得a=
31,b=-37. ∴f(x)= 3
1x 2-37(x ≤0). ∴f -1(x)=-73 x (x ≥-3
7).。