高三数学函数
- 格式:pdf
- 大小:3.08 MB
- 文档页数:16
高三数学函数知识点总结1. 函数的奇偶性(1)假设f(*)是偶函数,那么f(*)=f(-*)=(2)假设f(*)是奇函数,0在其定义域内,那么(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(*)f(-*)=0或(f(*)(4)假设所给函数的解析式较为繁复,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:假设已知的定义域为[a,b],其复合函数f[g(*)]的定义域由不等式ab解出即可;假设已知f[g(*)]的定义域为[a,b],求 f(*)的定义域,相当于*[a,b]时,求g(*)的值域(即 f(*)的定义域);讨论函数的问题肯定要留意定义域优先的原那么。
(2)复合函数的单调性由同增异减判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的.对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(*,y)=0,关于y=*+a(y=-*+a)的对称曲线C2的方程为f(y-a,*+a)=0(或f(-y+a,-*+a)=0);(4)曲线C1:f(*,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-*,2b-y)=0;(5)假设函数y=f(*)对*R时,f(a+*)=f(a-*)恒成立,那么y=f(*)图像关于直线*=a对称;(6)函数y=f(*-a)与y=f(b-*)的图像关于直线*=对称;4.函数的周期性(1)y=f(*)对*R时,f(* +a)=f(*-a) 或f(*-2a )=f(*) (a0)恒成立,那么y=f(*)是周期为2a的周期函数;(2)假设y=f(*)是偶函数,其图像又关于直线*=a对称,那么f(*)是周期为2︱a︱的周期函数;(3)假设y=f(*)奇函数,其图像又关于直线*=a对称,那么f(*)是周期为4︱a︱的周期函数;(4)假设y=f(*)关于点(a,0),(b,0)对称,那么f(*)是周期为2的周期函数;(5)y=f(*)的图象关于直线*=a,*=b(ab)对称,那么函数y=f(*)是周期为2的周期函数;(6)y=f(*)对*R时,f(*+a)=-f(*)(或f(*+a)=,那么y=f(*)是周期为2的周期函数;5.方程k=f(*)有解kD(D为f(*)的值域);6.af(*) 恒成立[f(*)]ma*,; f(*) 恒成立[f(*)]min;7.(1)(a1,b0,n(2) l ogaN=( a1,b1);(3) l ogab的符号由口诀同正异负记忆;(4) alog a N= N ( a1,N8. 判断对应是否为映射时,抓住两点:(1)A中元素需要都有象且唯一;(2)B中元素不肯定都有原象,并且A中不同元素在B中可以有相同的象;9. 能娴熟地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
高三数学常用函数及其性质总结与应用在高三数学学习中,函数是一个重要的概念,它在解决实际问题中起到了至关重要的作用。
因此,熟练掌握常用函数及其性质对于高三学生来说是至关重要的。
本文将总结常用函数及其性质,并探讨其在实际应用中的具体使用方法。
一、常用函数及其性质1. 一次函数一次函数的一般形式为f(x) = kx + b,其中k和b是常数。
一次函数的图像是一条直线,其斜率k决定了直线的倾斜程度,而常数b则决定了直线与y轴的交点。
一次函数通常用于直线的表示和分析。
2. 二次函数二次函数的一般形式为f(x) = ax² + bx + c,其中a、b和c是常数且a≠0。
二次函数的图像是一条抛物线,其开口方向取决于系数a的正负。
二次函数在实际应用中常用于模拟曲线的运动轨迹,求解最优化问题等。
3. 幂函数幂函数的一般形式为f(x) = x^a,其中a是常数。
幂函数的图像在原点中心对称,其形状由幂指数a的大小决定。
幂函数常用于描述一些与面积、体积等相关的问题。
4. 指数函数指数函数的一般形式为f(x) = a^x,其中a是常数且a>0且a≠1。
指数函数的图像是一条与x轴交于原点的递增曲线。
指数函数常用于表示增长速度较快的问题,如金融领域的复利计算等。
5. 对数函数对数函数的一般形式为f(x) = logₐ(x),其中a是常数且a>0且a≠1。
对数函数是指数函数的反函数,用于求解指数方程和指数不等式等。
对数函数的图像是一条递增且无穷渐近于x轴的曲线。
6. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
它们的图像周期性重复,并且具有特定的对称性质。
三角函数在解决与周期性和振动相关的问题时起到了重要的作用。
二、常用函数的应用1. 函数的图像分析通过分析函数的图像,我们可以获得函数的一些性质和特点。
例如,对于一次函数,我们可以通过斜率k判断其是上升还是下降的;对于二次函数,我们可以通过开口方向判断其的极值点位置等。
高三函数对称性知识点汇总函数是数学中的重要概念,在高三数学学习中,函数的对称性是一个重要的知识点。
本文将对高三函数对称性的相关知识进行汇总,并介绍不同函数的对称性及其特点。
函数的对称性是指函数图像在某种变换下保持不变的性质。
在高三函数学习中,常见的函数对称性有以下几种:关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称。
一、关于x轴对称若函数图像在x轴两侧关于x轴对称,即对于函数中的每一个点(x, y),都存在另一个点(x, -y)也在函数图像上,则称函数关于x轴对称。
对于一个函数关于x轴对称的特点有:1. 函数的解析式中只含有偶次项,或不包含奇次项。
2. 函数图像关于y轴对称。
若函数图像在y轴两侧关于y轴对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, y)也在函数图像上,则称函数关于y 轴对称。
对于一个函数关于y轴对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。
2. 函数图像关于x轴对称。
三、关于原点对称若函数图像关于原点对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, -y)也在函数图像上,则称函数关于原点对称。
对于一个函数关于原点对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。
2. 函数图像关于原点对称。
当函数图像在直线L两侧对称时,我们称函数关于直线L对称。
对于关于直线对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。
2. 函数图像上关于直线L对称。
五、关于点对称若函数图像在点P两侧对称时,我们称函数关于点P对称。
对于关于点对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。
2. 函数图像关于点P对称。
综上所述,高三数学中的函数对称性知识点主要包括关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称等几种形式。
高三数学函数的定义域与值域试题答案及解析1.已知函数f(x)=(a≠1).(1)若a>0,则f(x)的定义域是________;(2)若f(x)在区间(0,1]上是减函数,则实数a的取值范围是________.【答案】(1)(-∞,](2)(-∞,0)∪(1,3]【解析】(1)当a>0且a≠1时,由3-ax≥0得x≤,即此时函数f(x)的定义域是(-∞,].(2)当a-1>0,即a>1时,要使f(x)在(0,1]上是减函数,则需3-a×1≥0,此时1<a≤3.当a-1<0,即a<1时,要使f(x)在(0,1]上为减函数,则需-a>0,此时a<0.综上a的取值范围(-∞,0)∪(1,3].2.已知函数f(x)= (a是常数且a>0).对于下列命题:①函数f(x)的最小值是-1;②函数f(x)在R上是单调函数;③若f(x)>0在[,+∞)上恒成立,则a的取值范围是a>1;④对任意x1<0,x2<0且x1≠x2,恒有f()<.其中正确命题的所有序号是________.【答案】①③④【解析】作出函数f(x)的图象如图所示,显然f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以函数f(x)的最小值为f(0)=-1,故命题①正确;显然,函数f(x)在R上不是单调函数,②错误;因为f(x)在(0,+∞)上单调递增,故函数f(x)在[,+∞)上的最小值为f()=2a×-1=a-1,所以若f(x)>0在[,+∞)上恒成立,则a-1>0,即a>1,故③正确;由图象可知,在(-∞,0)上,对任意x1<0,x2<0且x1≠x2,恒有f()<成立,故④正确.3.函数的定义域是________.【答案】【解析】得.【考点】函数的定义域.4. (2014·荆州模拟)函数y=ln(2-x-x2)+的定义域是()A.(-1,2)B.(-∞,-2)∪(1,+∞)C.(-2,1)D.[-2,1)【答案】C【解析】使函数有意义,则有解得-2<x<1,即定义域为(-2,1).5.某幼儿园准备建一个转盘,转盘的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为k元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y元.(1)试写出y关于x的函数关系式,并写出定义域;(2)当k=50米时,试确定座位的个数,使得总造价最低?【答案】(1)y=+,定义域(2)32个【解析】(1)设转盘上总共有n个座位,则x=即n=,y=+,定义域.(2)y=f(x)=k2,y′=k2,令y′=0得x=.当x∈时,f′(x)<0,即f(x)在x∈上单调递减,当x∈时,f′(x)>0,即f(x)在x∈上单调递增,y的最小值在x=时取到,此时座位个数为=32个.6.设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是()A.1,3B.﹣1,1C.﹣1,3D.﹣1,1,3【答案】A【解析】当a=﹣1时,y=x﹣1的定义域是x|x≠0,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是x|x≥0且为非奇非偶函数.当a=3时,函数y=x的定义域是R且为奇函数.故选A.7.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.∪(1,+∞)B.[0,+∞)C.D.∪(2,+∞)【答案】D【解析】令x<g(x),即x2-x-2>0,解得x<-1或x>2.令x≥g(x),即x2-x-2≤0,解得-1≤x≤2.故函数f(x)=当x<-1或x>2时,函数f(x)>f(-1)=2;当-1≤x≤2时,函数≤f(x)≤f(-1),即≤f(x)≤0.故函数f(x)的值域是∪(2,+∞).选D.8.已知则的值为【解析】由题意有,解得,∴原式=.【考点】函数的定义域.9.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>110.求下列函数的值域:(1) y=x-;(2) y=x2-2x-3,x∈(-1,4];(3) y=,x∈[3,5];(4) y= (x>1).【答案】(1)(2)[-4,5].(3)(4)[2-2,+∞).【解析】(1) (换元法)设=t,t≥0,则y= (t2+2)-t=2-,当t=时,y有最小值-,故所求函数的值域为.(2) (配方法)配方,得y=(x-1)2-4,因为x∈(-1,4],结合图象知,所求函数的值域为[-4,5].(3) (解法1)由y==2-,结合图象知,函数在[3,5]上是增函数,所以ymax =,ymin=,故所求函数的值域是.(解法2)由y=,得x=.因为x∈[3,5],所以3≤≤5,解得≤y≤,即所求函数的值域是.(4) (基本不等式法)令t=x-1,则x=t+1(t>0),所以y==t+-2(t>0).因为t+≥2=2,当且仅当t=,即x=+1时,等号成立,故所求函数的值域为[2-2,+∞).11.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域。
高三数学函数与方程试题1.函数f(x)=lnx-x-a有两个不同的零点,则实数a的取值范围是()A.(-∞,-1]B.(-∞,-1)C.[-1,+∞)D.(-1,+∞)【答案】B【解析】函数f(x)=lnx-x-a的零点,即为关于x的方程lnx-x-a=0的实根,将方程lnx-x-a=0,化为方程lnx=x+a,令y1=lnx,y2=x+a,由导数知识可知,直线y2=x+a与曲线y1=lnx相切时有a=-1,若关于x的方程lnx-x-a=0有两个不同的实根,则实数a的取值范围是(-∞,-1).故选B.2.已知函数f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).(1)若g(x)=m有实数根,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.【答案】(1)m≥2e(2)(-e2+2e+1,+∞)【解析】解:(1)∵g(x)=x+≥2=2e等号成立的条件是x=e,故g(x)的值域是[2e,+∞),因此,只需m≥2e,g(x)=m就有实数根.(2)若g(x)-f(x)=0有两个相异的实根,即g(x)与f(x)的图象有两个不同的交点,作出g(x)与f(x)的大致图象.∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,∴其图象的对称轴为x=e,开口向下,最大值为m-1+e2.故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.∴m的取值范围是(-e2+2e+1,+∞).3.设函数,,则函数的零点有个.【答案】4【解析】由得所以由,在同一坐标系内作和图像,可知有4个交点.故答案为4【考点】函数的解析式;函数与方程.4.已知函数f(x)=|ax-2|+bln x(x>0,实数a,b为常数).(1)若a=1,f(x)在(0,+∞)上是单调增函数,求b的取值范围;(2)若a≥2,b=1,求方程f(x)=在(0,1]上解的个数.【答案】(1)[2,+∞).(2)0【解析】解:(1)当a=1时,f(x)=|x-2|+bln x①当0<x<2时,f(x)=-x+2+bln x,f′(x)=-1+.由条件得-1+≥0恒成立,即b≥x恒成立.所以b≥2;②当x≥2时,f(x)=x-2+bln x,f′(x)=1+.由条件得1+≥0恒成立,即b≥-x恒成立.所以b≥-2.因为函数f(x)的图像在(0,+∞)上不间断,综合①②得b的取值范围是[2,+∞).(2)令g(x)=|ax-2|+ln x-,即当0<x<时,g(x)=-ax+2+ln x-,g′(x)=-a++.因为0<x<,所以>,则g′(x)>-a++=≥0,即g′(x)>0,所以g(x)在上是单调增函数;当x>时,g(x)=ax-2+ln x-,g′(x)=a++>0,所以g(x)在上是单调增函数.因为函数g(x)的图像在(0,+∞)上不间断,所以g(x)在(0,+∞)上是单调增函数.因为g=ln-,而a≥2,所以ln≤0,则g<0,g(1)=|a-2|-1=a-3.①当a≥3时,因为g(1)≥0,所以g(x)=0在(0,1]上有唯一解,即方程f(x)=解的个数为1;②当2≤a<3时,因为g(1)<0,所以g(x)=0在(0,1]上无解,即方程f(x)=解的个数为0.5.已知函数,,的零点分别为,则()A.B.C.D.【答案】D【解析】令,,分别得,,,则分别为函数的图象与函数,,的图象交点的横坐标,在同一平面直角坐标系下作出它们的图象,易得,,,故选.【考点】函数图象、零点的概念.6.若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是()A.(-2,2)B.[-2,2]C.(-1,1)D.[-1,1]【答案】A【解析】函数f(x)=x3-3x+a有3个不同的零点方程x3-3x+a=0有三个不同的根a=-x3+3x函数g(x)=a与函数F(x)=-x3+3x的图象有三个不同的交点∵F′(x)=-3x2+3=-3(x2-1)=-3(x-1)(x+1)∴即F(x)在x=1处取得极大值2,在x=-1处取得极小值-2∵直线g(x)=a与函数F(x)=-x3+3x的图象有三个不同的交点∴a∈(-2,2)7.已知二元一次方程组的增广矩阵是,若该方程组无解,则实数的值为___________.【答案】【解析】二元一次方程组的增广矩阵就是把方程组中两个方程的未知数的系数及常数项分别对应的写成一行形成的矩阵.当然时,该方程组是有解的,时,该方程组无解等价于,解得.【考点】方程组的增广矩阵及方程组解的判定.8.方程的实数解的个数为___________.【答案】【解析】由题意可令函数和,分别作图如下,不难发现它们有三个交点,则方程有三个实数解.【考点】1.函数的图象;2.函数与方程的关系9.若、是方程,的解,函数,则关于的方程的解的个数是()A.B.C.D.【答案】C【解析】由题意知,、是方程,的实数根,作出函数,与函数的图象如下图所示,则函数与函数交于点,函数与函数交于点,由于函数与函数关于直线对称,且直线与垂直,且交于点,故点、也关于直线对称,且其中点为点,因此,当时,,解方程,即,解得或;当时,,解方程,故关于的方程的实根个数为,故选C.【考点】1.函数的零点;2.函数的图象;3.分段函数10.设,(1)若的图像关于对称,且,求的解析式;(2)对于(1)中的,讨论与的图像的交点个数.【答案】(1);(2)见解析.【解析】(1)因为函数图象关于对称,故为二次函数且对称轴为∴,又,代入可求得函数解析式;(2)将问题转化为有几个解的问题,令,利用导数讨论其增减区间,当时,与的图像无交点;当时,与的图像有一个交点;当时,与的图像有两个交点.试题解析:(1)∵的图像关于对称∴为二次函数且对称轴为∴又∵∴∴(2)即即令当时∵∴即在递增当时∵∴即在递减,∵当时当时∴①当时,与的图像无交点;②当时,与的图像有一个交点;③当时,与的图像有两个交点.【考点】利用导数研究函数的单调区间、函数与方程思想、函数解析式的求法.11.已知函数(为常数,为自然对数的底数)的图象在点处的切线与该函数的图象恰好有三个公共点,则实数的取值范围是【答案】【解析】函数在点处的切线的方程为,因此原条件转化为直线与曲线有两个公共点,即方程有两个小于1的根,设,则有,解得实数的取值范围是实数的取值范围是【考点】导数的几何意义、函数与方程、一元二次方程根的分布.12.下列几个命题:①方程有一个正实根,一个负实根,则;②函数是偶函数,但不是奇函数;③设函数定义域为R,则函数与的图象关于轴对称;④一条曲线和直线的公共点个数是,则的值不可能是.其中正确的有_______________.【答案】①④【解析】方程有一个正实根,一个负实根,则当时,,故,故①正确;对于②,函数化为,是常函数,且其既为偶函数也为奇函数,故②错;对于③,与的图象对称轴为,故③错;对于④,和直线的公共点个数可以是不可能是,故④正确.答案为:①④.【考点】函数与方程、函数的奇偶性、函数的对称性.13.“函数在上存在零点”的充要条件是 .【答案】或【解析】函数在上存在零点等价于直线在上与轴有交点,则或,即或.【考点】函数的零点,充要条件.14.若函数在上有两个零点,则实数的取值范围是________.【答案】【解析】函数在上有两个零点即直线与函数的图象有两个交点,,所以在是减函数,在上是增函数,,所以实数的取值范围是.【考点】函数零点、函数的最值.15.设函数,则其零点所在的区间为()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)【答案】C【解析】因为,,,,,且,所以,函数的零点在区间(1,2)内.【考点】函数零点的判定16.若方程在[1,4]上有实数解,则实数的取值范围是( )A.[4,5]B.[3,5]C.[3,4]D.[4,6]【答案】A【解析】,解得.【考点】根的分布.17.若定义在R上的偶函数满足且时,则方程的零点个数是()A.2个B.3个C.4个D.多于4个【答案】C【解析】试题分析:函数f(x)是以2为周期的周期函数,且是偶函数,根据上的解析式,图象关于y轴对称,可以绘制上的图象,根据周期性,可以绘制上的图象,而是个偶函数,绘制其在y轴右侧图象可知两图象右侧有两个交点,根据对称性可得共有四个交点,故选B.【考点】函数与方程.18.定义在上的偶函数,满足,,则函数在区间内零点的个数为()A.个B.个C.个D.至少个【答案】D【解析】∵是定义在上的偶函数,且周期是3,,∴,即.∴,,所以方程在内,至少有4个解,选D.【考点】函数的性质,函数的零点.19.若是函数的两个零点,且,则的最小值是 .【答案】【解析】因为是函数的两个零点,所以,,.【考点】函数零点问题.20.根据下表中的数据,可以判断函数的一个零点所在区间为,则=01230.37A.2 B.1 C.0 D.-1【答案】B【解析】由表可知,故,故选B.【考点】本题考查了零点存在性定理点评:熟练掌握零点的概念及零点存在性定理是解决此类问题的关键,属基础题21.已知函数,,则函数的零点个数是A.4B.3C.2D.1【解析】根据题意,由于函数,那么可知函数的零点,即为f(f(x)+1=0的解得个数,因为结合图像可知,满足f(f(x)=-1,则可知f(x)=-2,或者f(x)=,因此可知满组每个方程的解有2个,则可知解有4个,故选A.。
高三数学函数综合试题答案及解析1.当时,不等式恒成立,则实数的取值范围是()A.B.C.D.【答案】B【解析】当x=0时,不等式mx3﹣x2+4x+3≥0对任意m∈R恒成立;当0<x≤1时,mx3﹣x2+4x+3≥0可化为m≥,令f(x)=,则f ′(x)=(*),当0<x≤1时,f ′(x)>0,f(x)在(0,1]上单调递增,f(x)max=f(1)=﹣6,∴m≥﹣6;当﹣2≤x<0时,mx3﹣x2+4x+3≥0可化为m≤,由(*)式可知,当﹣2≤x<﹣1时,f′(x)<0,f(x)单调递减,当﹣1<x<0时,f ′(x)>0,f(x)单调递增,f(x)min=f(﹣1)=﹣2,∴m≤﹣2;综上所述,实数m的取值范围是﹣6≤m≤﹣2,即实数m的取值范围是[﹣6,﹣2].【考点】1、不等关系;2、导数的应用.2.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图象上存在区域内的点,则实数的取值范围为()A.B.C.D.【答案】B【解析】∵函数的两个极值点分别为x1,x2,且x1∈(0,1),x2∈(1,+∞),的两根x1,x2满足0<x1<1<x2,则x1+x2=-m,x1x2=>0,,即n+3m+2<0,∴-m<n<-3m-2,为平面区域D,如图:∴m<-1,n>1.∵的图象上存在区域D内的点,∴loga(-1+4)>1,∴∵a>1,∴lga>0,∴1g3>lga.解得1<a<3;故选B.【考点】1.利用导数研究函数的极值;2.不等式组表示平面区域.3.设函数,,,记,则( )A.B.C.D.【答案】B【解析】由,故,由,故,,故,故选B【考点】比较大小.4.对任意实数a,b,函数F(a,b)=(a+b-|a-b|),如果函数f(x)=-x2+2x+3,g(x)=x+1,那么函数G(x)=F(f(x),g(x))的最大值等于________.【答案】3【解析】由题可知F(a,b)=(a+b-|a-b|)=,则在同一坐标系中画出f(x)=-x2+2x=3.+3,g(x)=x+1的图象,数形结合可知x=2时,G(x)max5.(2011•浙江)设函数f(x)=,若f(a)=4,则实数a=()A.﹣4或﹣2B.﹣4或2C.﹣2或4D.﹣2或2【答案】B【解析】当a≤0时若f(a)=4,则﹣a=4,解得a=﹣4当a>0时若f(a)=4,则a2=4,解得a=2或a=﹣2(舍去)故实数a=﹣4或a=2故选B6.函数在内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点【答案】B【解析】利用数形结合法进行直观判断,或根据函数的性质(值域、单调性等)进行判断。
高三数学函数及其表示试题答案及解析1.已知集合M={},若对于任意,存在,使得成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={};②M={};③M={};④M={}.其中是“垂直对点集”的序号是;【答案】②④【解析】对于①是以x,y轴为渐近线的双曲线,渐近线的夹角是90°,所以在同一支上,任意(x1,y1)∈M,不存在(x2,y2)∈M,满足“垂直对点集”的定义;在另一支上对任意(x1,y 1)∈M,不存在(x2,y2)∈M,使得x1x2+y1y2=0成立,所以不满足“垂直对点集”的定义,不是“垂直对点集”.对于②M={(x,y)|y=sinx+1},对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如(0,1)、(π,0),满足“垂直对点集”的定义,所以M是“垂直对点集”;对于③M={(x,y)|y=log2x},取点(1,0),曲线上不存在另外的点,使得两点与原点的连线互相垂直,所以集合M不是“垂直对点集”.对于④M={(x,y)|y=e x-2},如下图红线的直角始终存在,对于任意(x1,y1)∈M,存在(x2,y 2)∈M,使得x1x2+y1y2=0成立,例如取M(0,-1),则N(ln2,0),满足“垂直对点集”的定义,所以是“垂直对点集”;正确.所以②④正确.【考点】函数的基本性质2.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点【答案】D【解析】从图中直线的看出:K甲>K乙;S甲=S乙;甲、乙同时出发,跑了相同的路程,甲先与乙到达.故选D.3.设为不小于2的正整数,对任意,若(其中,,且),则记,如,.下列关于该映射的命题中,正确的是.①若,,则②若,,,且,则③若,,,,且,,则④若,,,,且,,则.【答案】②③④【解析】当时,所以,.所以不成立;由即设,所以即即②正确;由设,可得.所以,所以可得即③正确.同理根据的含义,可得④正确.【考点】1.新定义问题.2.整数的余式定理.3.分类的思想.4.建立数式运算解决数学问题.4.设集合={1,2,3,4,5},对任意和正整数,记,其中,表示不大于的最大整数,则=,若,则.【答案】,.【解析】由已知,==;观察可知,当一定时,随的增大而增大,进一步考察如下:==;=;=;当一定时,随的增大而增大,进一步考察如下:=;故,综上知,答案为,.【考点】新定义,取整函数.5.下列图象表示函数关系y=f(x)的有________.(填序号)【答案】①④【解析】根据函数定义,定义域内任意的一个自变量x的值都有唯一一个y与之对应.6.下列说法正确的是______________.(填序号)①函数是其定义域到值域的映射;②设A=B=R,对应法则f:x→y=,x∈A,y∈B,满足条件的对应法则f构成从集合A到集合B的函数;③函数y=f(x)的图象与直线x=1的交点有且只有1个;④映射f:{1,2,3}→{1,2,3,4}满足f(x)=x,则这样的映射f共有1个.【答案】①④【解析】②中满足y=的x值不存在,故对应法则f不能构成从集合A到集合B的函数;③中函数y=f(x)的定义域中若不含x=1的值,则其图象与直线x=1没有交点.7.求下列函数f(x)的解析式.(1) 已知f(1-x)=2x2-x+1,求f(x);(2) 已知f=x2+,求f(x);(3) 已知一次函数f(x)满足f(f(x))=4x-1,求f(x);(4) 定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),求f(x).【答案】(1)f(x)=2x2-3x+2(2)f(x)=lg(x+1)+lg(1-x),x∈(-1,1).【解析】(1) (换元法)设t=1-x,则x=1-t,∴ f(t)=2(1-t)2-(1-t)+1=2t2-3t+2,∴ f(x)=2x2-3x+2.(2) (配凑法)∵ f=x2+=2+2,∴ f(x)=x2+2.(3) (待定系数法)∵ f(x)是一次函数,∴设f(x)=ax+b(a≠0),则f(f(x))=f(ax+b)=a(ax+b)+b=a2x+ab+b.∵f(f(x))=4x-1,∴解得或∴f(x)=2x-或f(x)=-2x+1.(4) (消去法)当x∈(-1,1)时,有2f(x)-f(-x)=lg(x+1),①以-x代替x得2f(-x)-f(x)=lg(-x+1),②由①②消去f(-x)得,f(x)=lg(x+1)+lg(1-x),x∈(-1,1)8.函数图象和方程的曲线有密切的关系,如把抛物线的图象绕远点沿逆时针方向旋转就得到函数的图象,若把双曲线的图象绕原点逆时针方向旋转一定的角度后,就得到某一函数的图象,则旋转角可以是( )A.B.C.D.【答案】C【解析】把双曲线的渐进线旋转到与轴重合时,双曲线的图象就变成函数图象,由知,则可得旋转角,故选C.【考点】函数的定义,函数图象的旋转.9.若对任意,,(、)有唯一确定的与之对应,称为关于、的二元函数. 现定义满足下列性质的二元函数为关于实数、的广义“距离”:(1)非负性:,当且仅当时取等号;(2)对称性:;(3)三角形不等式:对任意的实数z均成立.今给出个二元函数:①;②;③;④.则能够成为关于的、的广义“距离”的函数的所有序号是 .【答案】(1)【解析】对于①,f(x,y)=|x-y|≥0满足(1),f(x,y)=|x-y|=f(y,x)=|y-x|满足(2);f(x,y)=|x-y|=|(x-z)+(z-y)|≤|x-z|+|z-y|=f(x,z)+f(z,y)满足(3)故①能够成为关于的x、y的广义“距离”的函数;对于②不满足(3);对于③不满足(2);对于④不满足(1)(2),故答案为①【考点】1.函数的概念及其构成要素.10.若曲线y=上存在三点A,B,C,使得,则称曲线有“中位点”,下列曲线(1)y=cosx,,(2),(3),(4)有“中位点”的是()A.(2)(4)B.(1)(3)(4)C.(1)(2)(4) C.(2)(3)D.(2)(3)(4)【答案】B【解析】若曲线y=上存在三点A,B,C,使得,则称曲线有“中位点”,此时函数图象上必然有三点共线,函数y=cosx的图象上(0,1),(,0),(π,-1)三点显然共线,函数的图象上(-1,-4),(0,-2),(1,0)三点和函数的图象上(-1,-1),(0,0),(1,1)三点显然共线,均有三点共线,而没有,故选B.【考点】1.数形结合的思想方法;2.新定义的理解11.上的偶函数满足,若时,,则= .【答案】【解析】因为,所以,又因为是上的偶函数,所以有,又,所以.【考点】函数的综合运用.12.若函数为奇函数,且,则;.【答案】;【解析】试题解析:为奇函数,所以,所以,,,,.【考点】1.函数的解析式;2.倒序相加法13.已知,则___________.【答案】2【解析】因为,所以,又因为,所以.【考点】求分段函数的函数值.14.已知函数满足.(1)求常数的值;(2)解不等式.【答案】(1) ;(2)【解析】(1)显然,所以,代入相应解析式求出;(2)由(1)确定函数解析式,对在不同段上的讨论.试题解析:(1)因为,所以;由,即,. 4分(2)由(1)得,由得, 6分当时,解得; 8分当时,解得. 10分所以的解集为. 12分【考点】1.分段函数;2.不等式.15.在平面直角坐标系中,横坐标和纵坐标均为整数的点称为格点,如果函数的图象恰好通过个格点,则称函数为阶格点函数. 给出下列4个函数:①;②;③;④.其中是一阶格点函数的是()A.①③B.②③C.③④D.①④【答案】D【解析】由题中所给信息可知:图像过点…不是一阶格点函数;图像过点…不是一阶格点函数,故可排除②③;对于①只过一个整数点(0,0),④也只过一个整数点(3,5),故答案选D.【考点】对新定义的理解16.下列整数中,小于-3的整数是A.-4B.-2C.0D.3【答案】A【解析】-4比-3小,-2、0和3比-3大,所以应该选A。
高三数学分段函数知识点分段函数是高中数学中的重要概念之一,广泛应用于各个领域的实际问题中。
在高三数学学习中,理解和掌握分段函数的知识点对于解题和理论应用都具有重要意义。
本文将为您介绍高三数学中与分段函数相关的知识点。
一、分段函数的定义与表达方式分段函数是由不同的函数规则在不同的定义域上确定的一种函数。
分段函数通常由若干段或多个函数规则组合而成,对于不同的自变量取值,函数的表达方式也不相同。
通常,分段函数可以用以下的形式表示:y = f(x),x ∈ D,其中D为定义域。
在定义域D的不同区间上,函数f(x)可以用不同的函数表达式来表示。
二、分段函数的性质1. 定义域和值域:分段函数的定义域由各个函数规则的定义域的并集构成,值域则由各个子区间的值域的并集构成。
2. 连续性和间断点:分段函数在定义域上可能存在间断点。
常见的间断点有可去间断点(函数值可以通过修复后定义),跳跃间断点(函数在间断点处的左右极限存在,但不相等)和无穷间断点(函数在间断点处的左右极限至少有一个为无穷大)。
3. 单调性:针对不同函数规则的子区间,分段函数可以是递增的、递减的或不变的。
4. 极值点:分段函数在每个子区间内寻找最大值和最小值,可以通过求导或者构建不等式来确定。
三、分段函数的图像分段函数的图像通常是一个由多段连接而成的曲线,并且在不同的子区间上可能有不同的形态。
对于每一个子区间,我们可以先画出对应函数规则的图像,然后将这些图像进行连接。
在画图时,需要注意各个子区间的连接点和间断点的特殊处理,以及函数图像的平滑与连续性。
四、分段函数的应用分段函数广泛应用于各个领域的实际问题中,下面举几个例子:1. 费用函数:在一些商业模型中,根据不同的销售数量区间,利用分段函数可以比较准确地计算成本、利润等。
2. 税务计算:税务计算常常需要根据收入或利润的不同区间采用不同的税率,这也可以通过分段函数进行模拟计算。
3. 温度转换:将摄氏度和华氏度进行相互转换时,由于两种温度间存在不同的线性关系,可以使用分段函数表示。
高三函数的图像知识点函数是数学中非常重要的概念,而在高三数学学习中,关于函数的图像尤为重要。
本文将介绍高三函数的图像知识点。
一、函数的图像及其性质函数的图像是函数在直角坐标系中的几何表示,它能够直观地反映函数的性质。
常见的函数图像有线性函数、二次函数、指数函数、对数函数等。
1. 线性函数图像线性函数的图像是一条直线,表现为函数图像上的所有点都在线性关系 y = kx + b 上。
其中 k 表示斜率,b 表示截距。
2. 二次函数图像二次函数的图像是抛物线,分为开口向上和开口向下两种情况。
开口向上的抛物线表现为函数图像上的点低于顶点,并随着 x 的增大而增大。
开口向下的抛物线则相反。
3. 指数函数图像指数函数的图像是以底数大于 1 的指数函数图像。
当底数大于1 时,指数函数图像表现为随着 x 的增大,函数图像逐渐上升;当底数在 0 和 1 之间时,指数函数图像表现为随着 x 的增大,函数图像逐渐下降。
4. 对数函数图像对数函数的图像是以底数大于 1 的对数函数图像。
对数函数图像与指数函数图像是互逆的关系。
当底数大于 1 时,对数函数图像表现为随着 x 的增大,函数图像逐渐上升;当底数在 0 和 1 之间时,对数函数图像表现为随着 x 的增大,函数图像逐渐下降。
二、函数图像的平移、伸缩和翻折除了基本的函数图像形状外,我们还可以通过平移、伸缩和翻折等变换来改变函数图像。
1. 平移函数图像的平移是指将函数图像沿着 x 轴或 y 轴的方向移动一定的距离。
沿着 x 轴方向平移表示为 y = f(x - a),其中 a 表示平移的距离;沿着 y 轴方向平移表示为 y = f(x) + b,其中 b 表示平移的距离。
2. 伸缩函数图像的伸缩是指将函数图像在 x 轴或 y 轴的方向上进行拉伸或压缩,改变函数图像的幅度。
沿着 x 轴方向伸缩表示为 y = f(kx),其中 k 表示水平方向上的伸缩比例;沿着 y 轴方向伸缩表示为 y = kf(x),其中 k 表示垂直方向上的伸缩比例。
知识点总结 3-2函数的性质一.函数的奇偶性偶函数 奇函数 定义如果对于函数f(x)的定义域内任意一个x 都有f(-x)=f(x),那么函数f(x)是偶函数 都有f(-x)=-f(x),那么函数f(x)是奇函数图象特征 关于y 轴对称 关于原点对称 (1)函数的定义域关于原点对称是函数具有奇偶性的前提条件. (2)若f(x)≠0,则奇(偶)函数定义的等价形式如下: ①f(x)为奇函数⇔f(-x)=-f(x)⇔f(-x)+f(x)=0⇔f(−x)f(x)=-1.②f(x)为偶函数⇔f(-x)=f(x)⇔f(-x)-f(x)=0⇔f(−x)f(x)=1. (3)如果一个奇函数f(x)在x =0处有定义,那么一定有f(0)=0. (4)如果函数f(x)是偶函数,那么f(x)=f(|x|).(5)在关于原点对称的区间上:奇函数具有相同的单调性;偶函数具有相反的单调性. (6)若y =f(x +a )是奇函数⇔f(x)关于点(a ,0)对称; 若y =f(x +a )是偶函数⇔f(x)关于直线x=a 对称.(7)奇函数的最值:若奇函数f (x)在区间D 上有最值,则f mzx (x)+f min (x)=0;(8)若函数f(x)的定义域关于原点对称,则函数f(x)能表示成一个偶函数与一个奇函数的和的形式. 即f(x)=g(x)+h(x),其中:g(x)=12[f(x)+f(−x)] ,h(x)=12[f(x)−f(−x)];二.函数的周期性(差为常数有周期)1.如果存在一个非零常数T ,使得当x 取定义域内任何值时,都有f(x +T)=f(x),就称函数y =f(x)为周期函数, 称T 为这个函数的周期。
2.最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期. 提醒:若T 是函数f(x)的一个周期,则nT(n ∈Z ,n≠0)也是函数f(x)的周期. 3.周期性的几个常用结论(1)f(x +a )=−f(x)+t(t ∈R),则T =2a . (2)f(x +a )=kf(x),(k ∈R,k ≠0),则T =2a . (3)f(x +a )=1−f(x)1+f(x),则T =2a ; f(x +a )=1+f(x)1−f(x);则T =4a ;(5)若f(x +2a )=f(x +a )−f(x),则T =6a (a >0).4.函数对称性与周期性的关系(类比三角函数):若函数存在两个对称关系,则必然是周期函数; 口诀:两次对称成周期,两轴两心二倍差,一轴一心四倍差(或:同性两距离,异性4距离)。