多级模糊综合评判法案例
- 格式:doc
- 大小:563.00 KB
- 文档页数:13
模糊综合评价方法1、基本思想和原理1.1基本思想在客观世界中,存在着大量的模糊概念和模糊现象。
模糊数学就是试图用数学工具解决模糊事物方面的问题。
模糊综合评价是借助模糊数学的一些概念,对实际的综合评价问题提供一些评价的方法。
具地说,模糊综合评价就是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,从多个因素对被评价事物隶属等级状况进行综合性评价的一种方法。
1.2原理首先确定被评价对象的因素(指标)集合评价(等级)集;再分别确定各个因素的权重及它们的隶属度向量,获得模糊评判矩阵;最后把模糊评判矩阵与因素的权向量进行模糊运算并进行归一化,得到模糊综合评价结果。
其特点在于评判逐对象进行,对被评价对象有唯一的评价值,不受被评价对象所处对象集合的影响。
综合评价的目的是要从对象集中选出优胜对象,所以还需要将所有对象的综合评价结果进行排序。
2. 模糊综合评价法的模型和步骤2.1步骤步骤1 确定评价对象的因素论域,U={u1,u2,…,u m}有m个评价指标,表明评价对象的各个因素。
步骤2 确定评语等级论域评语集是对被评价对象的各个评价结果的集合,用V表示,V={v1,v2,…,v n}有n个评价结果,其中v j表示第j个评价结果。
步骤3 进行单因素评价,建立模糊矩阵R,单独从一个因素出发进行评价,以确定评价对象对评价集合V的隶属程度,称为单因素模糊评价。
在构造了等级模糊子集后,对被评价对象的每个因素u i进行量化,即确定从单因素来看被评价对象对各等级模糊子集的隶属度,进而得到模糊关系矩阵,R=(R1…R m)=(r11r12⋯r1n⋮⋱⋮r m1r m2⋯r mn)其中,r ij表示被评价对象从因素u i来说对v j等级模糊子集的隶属度。
一个被评价对象在某个因素u i方面的表现是通过模糊向量r i=(r i1,r i2,…,r im)来刻画的(在其他评价方法中多是由一个指标实际值来刻画,因此模糊评价需要更多的信息),r i称为单因素评价矩阵,可以看作是因素集U和评价集V之间的一种模糊关系,即影响因素和评价对象之间的“合理关系”。
模糊综合评价模型模糊综合评价模型(Fuzzy Synthetic Evaluation Model)[编辑]什么是模糊综合评价模型?模糊综合评价方法是模糊数学中应用的比较广泛的一种方法。
在对某一事务进行评价时常会遇到这样一类问题,由于评价事务是由多方面的因素所决定的,因而要对每一因素进行评价;在每一因素作出一个单独评语的基础上,如何考虑所有因素而作出一个综合评语,这就是一个综合评价问题。
模糊评价的基本思想许多事情的边界并不十分明显,评价时很难将其归于某个类别,于是我们先对单个因素进行评价,然后对所有因素进行综合模糊评价,防止遗漏任何统计信息和信息的中途损失,这有助于解决用“是”或“否”这样的确定性评价带来的对客观真实的偏离问题。
[编辑]模糊综合评价模型类别[1][编辑]模糊评价基本模型设评判对象为P: 其因素集 ,评判等级集。
对U中每一因素根据评判集中的等级指标进行模糊评判,得到评判矩阵:(1)其中,r ij表示u i关于v j的隶属程度。
(U,V,R) 则构成了一个模糊综合评判模型。
确定各因素重要性指标(也称权数)后,记为,满足,合成得(2)经归一化后,得 ,于是可确定对象P的评判等级。
置信度模糊评价模型(1) 置信度的确定。
在(U,V,R)模型中,R中的元素r ij是由评判者“打分”确定的。
例如k 个评判者,要求每个评判者u j对照作一次判断,统计得分和归一化后产生, 且 , 组成R0。
其中既代表u j关于v j的“隶属程度”,也反映了评判u j为v j的集中程度。
数值为1 ,说明u j为v j是可信的,数值为零为忽略。
因此,反映这种集中程度的量称为“置信度”。
对于权系数的确定也存在一个信度问题。
在用层次分析法确定了各个专家对指标评估所得的权重后,作关于权系数的等级划分,由此决定其结果的信度。
当取N个等级时,其量化后对应于[0,l]区间上N次平分。
例如,N取5,则依次得到[0,0.2],[0.2,0.4],[0.2,0.6],[0.6,0.8],[0.8,l]。
模糊综合评价模模糊数学是从量的角度研究和处理模糊现象的科学.这里模糊性是指客观事物的差异在中介过渡时所呈现的“亦此亦比”性。
比如用某种方法治疗某病的疗效“显效"与“好转”、某医院管理工作“达标”与“基本达标”、某篇学术论文水平“很高"与“较高”等等.从一个等级到另一个等级间没有一个明确的分界,中间经历了一个从量变到质变的连续过渡过程,这个现象叫中介过渡。
由这种中介过渡引起的划分上的“亦此亦比”性就是模糊性.模糊综合评价是以模糊数学为基础.应用模糊关系合成的原理,将一些边界不清,不易定量的因素定量化,进行综合评价的一种方法。
一、单因素模糊综合评价的步骤(1)根据评价目的确定评价指标(Evaluation Indicator )集合{}m u u u U ,,,21 =例如:评价某项科研成果,评价指标集合为={学术水平,社会效益,经济效益}。
(2)给出评价等级(Evaluation Grade )集合{}n v v v V ,,,21 =例如:评价某项科研成果,评价等级集合为={很好,好,一般,差}。
(3)确定各评价指标的权重(Weight){}m w μμμ,,,21 =权重反映各评价指标在综合评价中的重要性程度,且∑=1iμ例如:假设评价科研成果,评价指标集合={学术水平,社会效益,经济效益}其各因素权重设为{}4.0,3.0,3.0=w(4)确定评价矩阵R请该领域专家若干位,分别对此项成果每一因素进行单因素评价(One —Way Evaluation ),例如对学术水平,有50%的专家认为“很好”,30%的专家认为“好",20%的专家认为“一般”,由此得出学术水平的单因素评价结果为()0,2.0,3.0,5.01=R同样如果社会效益,经济效益两项单因素评价结果分别为()1.0,2.0,4.0,3.02=R()2.0,3.0,2.0,2.03=R那么该项成果的评价矩阵为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=2.03.02.02.01.02.04.03.002.03.05.0321R R R R(5)进行综合评价通过权系数矩阵W 与评价矩阵R 的模糊变换得到模糊评判集S 。
模糊综合评价模模糊数学是从量的角度研究和处理模糊现象的科学。
这里模糊性是指客观事物的差异在中介过渡时所呈现的“亦此亦比”性。
比如用某种方法治疗某病的疗效“显效”与“好转”、某医院管理工作“达标”与“基本达标”、某篇学术论文水平“很高”与“较高”等等。
从一个等级到另一个等级间没有一个明 确的分界,中间经历了一个从量变到质变的连续过渡过程,这个现象叫中介过渡。
由这种中介过渡引起的划分上的“亦此亦比”性就是模糊性。
模糊综合评价是以模糊数学为基础。
应用模糊关系合成的原理,将一些边界不清,不易定量的因素定量化,进行综合评价的一种方法。
一、单因素模糊综合评价的步骤(1)根据评价目的确定评价指标(Evaluation Indicator )集合{}m u u u U ,,,21 =例如:评价某项科研成果,评价指标集合为={学术水平,社会效益,经济效益}。
(2)给出评价等级(Evaluation Grade )集合{}n v v v V ,,,21 =例如:评价某项科研成果,评价等级集合为={很好,好,一般,差}。
(3)确定各评价指标的权重(Weight ){}m w μμμ,,,21 =权重反映各评价指标在综合评价中的重要性程度,且∑=1iμ例如:假设评价科研成果,评价指标集合={学术水平,社会效益,经济效益}其各因素权重设为{}4.0,3.0,3.0=w(4)确定评价矩阵R请该领域专家若干位,分别对此项成果每一因素进行单因素评价(One-Way Evaluation ),例如对学术水平,有50%的专家认为“很好”,30%的专家认为“好”,20%的专家认为“一般”,由此得出学术水平的单因素评价结果为()0,2.0,3.0,5.01=R同样如果社会效益,经济效益两项单因素评价结果分别为()1.0,2.0,4.0,3.02=R ()2.0,3.0,2.0,2.03=R那么该项成果的评价矩阵为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=2.03.02.02.01.02.04.03.002.03.05.0321R R R R(5)进行综合评价通过权系数矩阵W 与评价矩阵R 的模糊变换得到模糊评判集S 。
第三节 模糊综合评判法的应用案例 二、在物流中心选址中的应用 物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。 基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。这些模型及算法相当复杂。其主要困难在于: (1) 即使简单的问题也需要大量的约束条件和变量。 (2) 约束条件和变量多使问题的难度呈指数增长。 模糊综合评价方法是一种适合于物流中心选址的建模方法。它是一种定性与定量相结合的方法,有良好的理论基础。特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。 1.模型 ⑴ 单级评判模型 ① 将因素集U按属性的类型划分为k个子集,或者说影响U的k个指标,记为
12(,,,)kUUUU 且应满足:
1, kiijiUUUU ② 权重A的确定方法很多,在实际运用中常用的方法有:Delphi法、专家调查法和层次分析法。 ③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。 ④ 单级综合评判BAR ⑵ 多层次综合评判模型 一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。所以,需采用分层的办法来解决问题。 2.应用 运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7. 表3-7 物流中心选址的三级模型 第一级指标 第二级指标 第三级指标
自然环境1u () 气象条件11u () 地质条件12u () 水文条件13u () 地形条件14u () 交通运输2u () 经营环境3u ()
候选地4u () 面积41u () 形状42u () 周边干线43u () 地价44u () 公共设施5u () 三供51u () 供水511u (1/3) 供电512u (1/3) 供气513u (1/3)
废物处理52u () 排水521u () 固体废物处理522u () 通信53u () 道路设施54u ()
因素集U分为三层: 第一层为 12345,,,,Uuuuuu 第二层为 111121314441424344551525354,,,;,,,;,,,uuuuuuuuuuuuuuu 第三层为 5151151251352521522,,;,uuuuuuu 假设某区域有8个候选地址,决断集,,,,,,,VABCDEFGH代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。 表3-8 某区域的模糊综合评判 因 素 A B C D E F G H 气象条件 地质条件 水文条件 地形条件 交通运输 经营环境 候选地面积 候选地形状 候选地周边干线 候选地地价 供水 供电 供气 排水 固体废物处理 通信 道路设施
⑴ 分层作综合评判 51511512513,,uuuu,权重511/3,1/3,1/3A,由表3-8对511512513,,uuu的模
糊评判构成的单因素评判矩阵:
510.600.710.770.600.820.950.650.760.600.710.700.600.800.950.650.760.910.900.930.910.950.930.810.89R
用模型(,)M•计算得:
515151(0.703,0.773,0.8,0.703,0.857,0.943,0.703,0.803)BAR 类似地:525252(0.895,0.885,0.785,0.81,0.95,0.77,0.775,0.77)BAR
5550.7030.7730.80.7030.8570.9430.7030.8030.8950.8850.7850.810.950.770.7750.77(0.40.30.20.1)0.810.940.890.600.650.950.950.890.900.600.920.600.600.840.650.81BAR
=(0.802,0.823,0.826,0.704,0.818,0.882,0.769,0.811)
4440.600.950.600.950.950.950.950.950.600.690.920.920.870.740.890.95(0.10.10.40.4)0.950.690.930.850.600.600.940.780.750.600.800.930.840.840.600.80BAR
=(0.8,0.68,0.844,0.899,0.758,0.745,0.8,0.822) 1110.910.850.870.980.790.600.600.950.930.810.930.870.610.610.950.87(0.250.250.250.25)0.880.820.940.880.640.610.950.910.900.830.940.890.630.710.950.91BAR
=(0.905,0.828,0.92,0.905,0.668,0.633,0.863,0.91) (2)高层次的综合评判 12345,,,,Uuuuuu,权重0.1,0.2,0.3,0.2,0.2A,则综合评判
12345
BBBARABBB
0.9050.8280.920.9050.6680.6330.8630.910.950.900.90.940.600.910.950.94 =(0.10.20.30.20.2)0.900.900.870.950.870.650.740.61
0.80.680.8440.8990.7580.7450.80.8220.8020.8230.8260.7040.8180.8820.7690.811
=(0.871,0.833,0.867,0.884,0.763,0.766,0.812,0.789)
由此可知,8块候选地的综合评判结果的排序为:D,A,C,B,G,H,F,E,选出较高估计值的地点作为物流中心。 应用模糊综合评判方法进行物流中心选址,模糊评判模型采用层次式结构,把评判因素分为三层,也可进一步分为多层。这里介绍的计算模型由于对权重集进行归一化处理,采用加权求和型,将评价结果按照大小顺序排列,决策者从中选出估计值较高的地点作为物流中心即可,方法简便。
五、在人事考核中的应用 随着知识经济时代的到来,人才资源已成为企业最重要的战略要素之一,对其进行考核评价是现代企业人力资源管理的一项重要内容。 人事考核需要从多个方面对员工做出客观全面的评价,因而实际上属于多目标决策问题。对于那些决策系统运行机制清楚,决策信息完全,决策目标明确且易于量化的多目标决策问题,已经有很多方法能够较好的将其解决。但是,在人事考核中存在大量具有模糊性的概念,这种模糊性或不确定型不是由于事情发生的条件难以控制而导致的,而是由于事件本身的概念不明确所引起的。这就使得很多考核指标都难以直接量化。在评判实施过程中,评价者又容易受人际关系、经验等主观因素的影响,因此对人的综合素质评判往往带有一定的模糊性与经验性。 这里说明如何在人事考核中运用模糊综合评判,从而为企业员工职务的升降、评先晋级、聘用等提供重要依据,促进人事管理的规范化和科学化,提高人事管理的工作效率。 1.一级模糊综合评判在人事考核中的应用 在对企业员工进行考核时,由于考核的目的、考核对象、考核范围等的不同,考核的具体内容也会有所差别。有的考核,涉及的指标较少,有些考核,又包含了非常全面丰富的内容,需要涉及很多指标。鉴于这种情况,企业可以根据需要,在指标个数较少的考核中,运用一级模糊综合评判,而在问题较为复杂,指标较多时,运用多层模糊综合评判,以提高精度。 一级模糊综合评价模型的建立,主要包括以下步骤。 ⑴ 确定因素集 对员工的表现,需要从多方面进行综合评判,如员工的工作业绩、工作态度、沟通能力、政治表现等。所有这些因素构成了评价体系集合,即因素集,记为:
12{,,,}nUuuu ⑵ 确定评语集 由于每个指标的评价值的不同,往往会形成不同的等级。如对工作业绩的评价有好、较好、中等、较差、很差等。由各种不同决断构成的集合被称作评语集 记为: