混水直供热网运行控制策略
- 格式:pdf
- 大小:199.02 KB
- 文档页数:4
混水机组在供热二次网运行中的应用发表时间:2020-09-28T06:27:09.975Z 来源:《新型城镇化》2020年9期作者:闫进法[导读] 本文通过对混水机组在供热二次网运行中的应用分析,给出了供热机组在解决末端不热、水力失调、节能建筑节能等供热水网问题的优势。
青岛能源热电有限公司山东青岛 266000摘要:本文通过对混水机组在供热二次网运行中的应用分析,给出了供热机组在解决末端不热、水力失调、节能建筑节能等供热水网问题的优势。
关键字:混水机组;水网平衡;增大流量一、概述供热系统连接方式一般有直接供热、间接供热、混水供热等方式。
直接供热在运行中仅仅是进行流量分配,运行调节容易,由于受到用户端供水温度不能太高的限制,使得一次网管径较大,首站循环泵也较大,运行过程中弊病较多。
间接供热的特点是一、二次网互相隔离,彼此独立,介质之间只通过换热机组进行热能交换。
运行调试相对简单,因此在实际供热中运用普遍。
混水供热处于直接供热与间接供热之间,运行工况相对较为复杂,但由于混水供热能够增大一、二次网供回水温差,相较于直接供热和间接供热有更大的节能空间,同时,在较大的二次网水力失调问题中有较好的解决效果,目前在实际供热中运用越来越广泛。
本文主要讨论的是混水机组在水网中的运用情况。
将混水机组安装在二次水网不同位置,对解决末端不热、水网失调、节能建筑节能等供热问题有很好的效果。
二、混水供热的模式由于系统各楼座标高不同,或者是楼座高度不同,因此要根据各楼座不同的压差采用不同的混水模式,根据二次网混水泵及电动调节阀(或采用电磁阀)安装位置的不同,混水机组主要可分为以下三种:1、旁通混水模式混水泵安装在供回水旁通上,电动调节阀(或电磁阀)安装在一次网供水上,二次网回水定压的压力和一次网一致,这种情况适用在二次回水定压大致和一次网回水压力相当的场合,如换热站高程和首站高程一致或相差无几,主要用于系统近端用户,采用变频控制。
集中供暖二级网水力平衡控制方案1、引言随着中国经济的发展以及城市化建设进程,我国北方城市集中供暖覆盖面积也越来越大,人民对供暖质量的要求越来越高。
为了处理好用户的舒适度和节约能源之间的关系,按需供热是处理这个矛盾的最好方案。
当大规模热用户的热负荷发生变化时,就需要我们对供热系统的流量、供水温度等进行调节。
充分了解二次管网的水力平衡,有利于运行调度管理调节操作的协调性、有利于热网运行的稳定性、有利于避免资源浪费和用户温度不达标等问题。
2、目的和意义在目前的供暖设计中,二级网供水温度设计一般是60-65℃,回水温度设计一般是45-50℃,温差15℃-20℃。
由于各热用户距离换热站的位置有远有近,供水压力沿着管道逐渐衰减降低,所以热水流到每个用户的时候供回水压力偏差很大。
距离换热站越偏远的用户,供水压力低,供水量偏小,供不热的现象就出现了;距离换热站近的用户则供水量偏大,浪费水量,浪费能耗。
为了增加偏远用户的热水供应量,需要进一步增大换热站循环泵的频率,提高供水压力和水量,造成水泵的电耗增加。
而距离换热站近的用户,供水压力偏高,供水量偏大,导致室内温度偏高,引起室内干燥,部分老百姓打开窗户通风,导致大量能源浪费,大大增加了供热企业的能源成本,降低供热企业利润。
综上所述,由于二级热网的供回水压力不平衡导致热水供量失衡,该热的用户不热,而有的用户室温偏热却浪费了能源,这种现象就是二级热网区块内水力失衡。
每个二级热网区块(例如,生活小区、学校、医院等)是相互独立互不影响的,是一个封闭的区块体系。
新华公司针对独立的二级供热管网,采用自主研发的室内温度监测和流量控制相结合的产品,依托多年的热网自控经验,采用多年积累的DCS技术和基于云平台的大型SCADA平台,开发出了二级网水力平衡控制系统;消除二级网区块内的水力失衡,可以实现均匀平衡的合理供热,取消了二级网区块的热水量浪费导致的能源浪费和水耗、电耗浪费,改善用户的供暖体验,节约供暖公司的运营成本,提高供热公司的盈利能力。
集中供热中“直供”运行方式的优点分析摘要:对于我国北方城市集中供热区域而言,集中供热系统基本由热源、一级网、换热站、二级网和热用户组成。
根据二级网循环泵和一级网流量调节阀安装位置的不同,混水直供共有六种连接方式,以适应二级网不同的定压要求。
混水直供由于一级网和二级网直接连通,供热系统较大时,对于二级网的失水不能及时确定区域,给供热系统正常运行带来隐患,本文给出已经安全运行多年的解决方案。
关键词:集中供热;直供运行方式;优点;分析1混水直供的优势在北方集中供热系统中,绝大多数二级换热站仍采用板式换热器间供的方式,随着控制技术和网络技术的发展,大面积采用混水直供的方式成为可能。
混水直供和板式换热器间供相比具有较大的优势。
首先,板式换热器是二级换热站投资最大的单体设备,采用混水直供,此项投资可节省;其次,采用混水直供,由于没有了板式换热器,二级网循环泵的扬程普遍可减少3~5m,其中采用图一和图四连接方式的二级网循环泵流量可减少20%左右,在实际运行时可大大减少电能消耗。
采用混水直供,由于没有了板式换热器,一级网和二级网回水温度相同,在实际运行时可拉大一级网供回水温差3~5度,增加一级管网输送能力6%左右。
2供热现状及存在的问题基区现有集中供热面积575万平方米。
管网与热用户的连接为简单直接连接方式,无换热站和热力分配站,实际供回温度75℃/50℃。
按照供热区域的划分,从热源总出口分出三个相对独立的热网系统,即区网、重网和钢网。
其中区网为235万平方米,重网为180万平方米,钢网为160万平方。
随着热负荷的增长,热网规模逐年增大,由于热网缺乏应有的运行调控计量设施,导致热网末端流量不足,不热区域逐年增多,水力工况失调严重。
大量不热用户为了解决室内温度低的问题,采用放水取热的方法,严寒期最大失水量在达1100t/h,占循环水总量的8%左右,远远超出2%的补水标准。
为了保证运行工况,只得采用补充非处理冷水,这样进一步导致了管道腐蚀速率加快。
污水源热泵供热系统运行优化控制策略研究摘要:随着科学技术的发展,我国的热泵技术有了很大进展,随着热泵技术的发展及污水处理厂提标升级改造项目的落实,污水处理厂出水水质有所提高,为污水源热泵机组在北方冬季供暖中的应用提供更加有利的水质条件,换热后的低温污水排放对水体的热污染明显减小,污水处理厂冬季供暖安全可靠、经济环保。
本文对污水源热泵供暖系统运行优化控制策略应用进行分析,以供参考。
关键词:污水源热泵;优化控制策略;能耗费用引言集中供热是一个全球性的问题,由于其会用到化石燃料,从而产生大量的温室气体、废水并导致空气污染,故而其可持续性受到了广泛关注。
使用可再生能源(如太阳能和风能)来替代化石燃料虽然可以有效解决环境污染问题,但该方法需要投入巨大的成本和非常复杂的基础设施,实施难度较大。
污水源热泵系统是城市可再生能源利用形式中的重要一类,市政污水含有大量的热能,在建筑供热与供冷方面具有很大的应用价值。
对于一个已经投入运行的供热系统而言,设计方案和设备性能参数已不可改变,但合理的运行控制策略,能够挖掘系统节能潜力,显著提升能源利用效率。
1污水源热泵机组的工作原理污水源热泵机组和普通水源热泵相同,主要由压缩机、冷凝器、膨胀(节流)阀、蒸发器及连接管路组成。
其工作原理是通过蒸发器从污水中提取热量Q,在冷凝器中放出热量Q(Q=Q+W)供给供热系统。
这种供热系统只要消耗少量的电能W,便可得到满足供热系统所需要的热量Q。
污水源热泵,主要是以城市污水做为提取和储存能量的冷热源,利用生活废水、工业废水、矿井水、工业设备冷却水、生产工艺排放的废水,通过设置于污水端的换热设备与中介水进行换热。
由换热后的中介水进入热泵机组,主机消耗少量的电能,在冬季及过渡季提取污废水中低品质热量后,经管网供给室内采暖系统、生活热水系统;在夏季将室内的热量带走并释放到污废水中,供室内制冷并制取生活热水。
2污水源热泵供热系统运行优化控制策略2.1城市供热热泵技术在城市供热系统中应用广泛,并且具有诸多优势,能够实现高效供热、多能源利用、能耗优化和环保可持续等方面的目标。
混水直连供热系统的节能分析李志平,翁杰(河北热电有限责任公司,河北石家庄050021)1直接式供热系统的形式1.1单纯直连单纯直连是指一级网供水直接进入热用户而不进行混水的连接方式,该方式可分为3种形式。
a. 直接连接热网热水直接进入用户系统。
一般要在热力入口处设置简单的计量仪表(压力表、温度计等),安装关断阀门和调节阀门。
热力入口通常设置于地下检查井中,每个用户设1处或多处入口,数目较多且维护调节不方便,因此适用于小规模的供热系统。
b. 热力站设分、集水器的直接连接在热网与热用户之间设置多个热力站,每一个热力站供应1个居民小区或几个热用户。
热力站内设有分水器、集水器、除污器、测量仪表、分配阀门、监控装置等,相对于方式a而言,操作环境好,可集中地对几个用户进行调节,管理维护方便,适合于大型的直供式系统。
c. 热力站设加压泵的直接连接在热力站内的一级网供水管或回水管上安装水泵,用以提高该热力站的一级网供回水压差,满足用户系统的需用压差。
此种形式适用于热网末端或个别阻力损失较大的用户系统。
1.2混水直连混水直连是指一级网供水在进入用户系统之前进行混水的直接连接,该方式可分为2种形式。
1.2.1热力站设旁通混水泵的直接连接在热力站内一级网供回水管之间的旁通管上安装水泵,抽引回水压入供水管,混合后再进入二级网路。
此种方式提高了一级网供回水温差,缩小了一级网的设计管径,降低了一级网的建设费用。
混合比μ的计算公式如下:μ=Gh /GwG=Gh +Gw(2)以上2式中,Gh 为混水量,Gw为一级网循环水量,G为二级网循环水量。
单位均为t/h。
1.2.2热力站设加压混水泵的直接连接在热力站一级网供水管上设置水泵,同时将泵吸入口处的供水管与用户系统的回水管连通,使得该泵同时抽引一级网供水与用户系统的部分回水,具有加压与混水2种功能。
此种形式主要用在以旁通混水泵形式为主的混水直连供热系统中的那些一级网供回水压差低于用户系统需用压差的热力站。
交直流混合配电网的运行模式及控制策略发布时间:2022-01-18T07:58:53.202Z 来源:《现代电信科技》2021年第16期作者:付艳清[导读] 本文提出了含柔性互联装置的交直流混合配电网协调控制方法,分析了正常运行和交流侧发生短路故障情况下互联装置、光伏发电单元以及储能单元的运行模式,并且给出了相应的控制策略。
(长春电子科技学院吉林长春 130000)摘要:本文提出了含柔性互联装置的交直流混合配电网协调控制方法,分析了正常运行和交流侧发生短路故障情况下互联装置、光伏发电单元以及储能单元的运行模式,并且给出了相应的控制策略。
关键词:交直流混合配电网;运行模式;控制策略1交直流混合配电网交直流混合配电网(Ac/dchybriddistributionnetwork)是指交流和直流混合在一起的配电网络。
传统交流配电系统面临线损高、电能质量扰动、电压跌落等一系列问题,难以满足电力用户日益增长的电力需求。
与交流配电网相比,直流供电能有效解决谐波、三相不平衡等电能质量问题,且在改善供电质量方面优势明显,但是短时间内还无法完全替代交流配电网。
因此,在交流配电网的基础上建设交直流混合配电网是未来配电网的发展趋势。
2交直流混合配电网的运行模式 2.1正常运行当正常运行时,光伏发电单元采用最大功率点跟踪(maximumpowerpointtracking,MPPT)控制策略实现太阳能最大化利用,为了避免蓄电池出现频繁充放电现象,设置正常运行情况下蓄电池储能系统工作在待机模式。
多个柔性互联装置采用直流下垂控制对直流网络负载功率进行均分,而交流负载功率主要由大电网提供。
2.2交流侧发生短路故障当交流侧出现三相短路等故障时,保护装置会跳闸,同时使得互联装置的控制策略由直流下垂控制切换至恒压恒频(constantvoltageconstantfrequency,CVCF)控制策略,以维持交流本地负载的电压和频率恒定,实现重要负载的不间断供电,而非故障侧互联装置仍然采用直流下垂控制维持直流电压在允许运行范围内。
论混水直供在集中供热中的应用一、混水直供技术的原理混水直供技术是指将供水和回水混合后直接供应到用户系统中的一种供热方式。
它采用了较低的供水温度和较高的回水温度,通过充分利用回水的余热,减少了管网的热损失,提高了系统的能效。
具体原理主要包括以下几点:1. 采用低温供水混水直供技术采用了较低的供水温度,一般在50℃左右,与传统的供水温度相比,大大降低了能源消耗,提高了系统的热效率。
2. 回水利用3. 管网运行平稳采用混水直供技术后,供水与回水温差较小,能够有效地减小管网中的温差冲击,减少了管网的热损失和运行风险,保证了供热系统的稳定运行。
二、混水直供技术在集中供热中的优势混水直供技术在集中供热中的应用具有许多优势,主要体现在以下几个方面:1. 节能减排采用混水直供技术后,供水温度较低,回水利用率高,能够有效地降低供热系统的能源消耗,减少了二氧化碳等温室气体的排放,符合节能减排的国家政策要求。
2. 提高能源利用率混水直供技术通过充分利用回水的余热,提高了系统的能效,减少了能源的浪费,使得能源利用率得到了显著提高。
4. 提升用户舒适度混水直供技术使得供水温度较低,避免了传统供暖系统中由于供水温度过高而导致的过热现象,提升了用户的舒适度。
5. 减少管网投资混水直供技术采用低温供水,管网输送损失小,因此可以减少管网的投资和运行成本。
混水直供技术在我国的集中供热系统中已经得到了一定的应用,具有了一些成功的案例。
以某市某项目为例,该项目采用了混水直供技术,取得了显著的经济效益和社会效益。
在用户舒适度方面,用户对该项目的取暖效果和服务质量给予了高度评价,表示在冬季取暖过程中,使用了混水直供技术后,不再出现了传统暖气片过热的现象,居室内温度恰到好处,使得用户的取暖体验大大提升。
在投资收益方面,采用了混水直供技术后,该项目显著降低了管网的投资成本和运行成本,提高了供热系统的经济效益。
在长期运行方面,采用了混水直供技术后,该项目供热系统运行稳定,取暖效果好,社会反响良好,得到了用户和相关部门的认可和好评。
论混水直供在集中供热中的应用1. 引言1.1 背景介绍随着社会经济的不断发展和人们生活水平的提高,集中供热系统在城市中得到了广泛的应用。
在传统的集中供热系统中,水在锅炉中被加热后通过管道输送到各个用户处,然后再通过回水管道回收冷水返回锅炉重新加热,这种方式存在着很多问题,如能耗高、水质不稳定等。
本文旨在通过对混水直供技术的原理、优势、实践案例分析、影响因素和未来发展趋势等方面进行研究,探讨混水直供在集中供热中的应用前景,并为供热系统的改进和优化提供参考。
1.2 研究目的研究目的是探讨混水直供在集中供热系统中的应用效果,并分析其在节能减排、提高供热效率、改善供热质量等方面的优势。
通过深入研究混水直供技术原理及其实际应用情况,旨在为推广和应用混水直供技术提供理论支持和实践参考。
通过对混水直供技术的影响因素进行分析和总结,探讨未来混水直供在集中供热领域的发展趋势,以期为相关研究和工程实践提供科学依据和指导,促进集中供热系统的技术进步和可持续发展。
通过本研究,可以为提升集中供热系统的能效和服务质量,实现节能减排、环境保护和经济效益的多方共赢提供新的思路和方法。
2. 正文2.1 混水直供技术原理混水直供技术原理是指在集中供热系统中使用混水直供方式进行热水供应的一种技术方案。
其基本原理为通过将循环水和新鲜水混合,经过适当的调节和控制之后,直接送入用户热交换设备进行供热。
混水直供技术的实现主要依靠控制阀、传感器、调节器等设备,实现对混合水温度、流量等参数的精确控制。
在混水直供技术中,循环水和新鲜水通过混水阀混合之后,再经过系统的循环泵将混合水送入各用户供热设备中。
通过控制混水阀的开度和循环泵的运行,可以实现对用户供热温度的精确控制。
混水直供技术还可以通过调节混水阀和循环泵的工作方式,实现不同用户之间供热功率的分配,提高供热系统的灵活性和效率。
混水直供技术原理简单、操作方便、效率高,能够满足不同用户对供热温度的需求,并能够有效减少系统能耗,降低运行成本。
混水供热浅谈!2007年12月16日星期日 13:480.前言混水直供供热方式在集中供热中发展较慢,其原因主要是早期缺乏热网监控设备的投入以及一次网高温水对水质的要求较高等两大方面。
随着供热技术的发展及先进监控设备在供热系统中的应用,在一次网水温不高的情况下(即管网直供与间供的过渡期),混水换热直供方式也慢慢的找到自身的控制方式,同时体现了它独特的二次网系统定压方式--回水阀定压,实现了它经济节能的优越性。
本文主要介绍本公司16座热力站实现混水换热直供方式过程中的运行特征及相对间接供热方式的经济性。
1.系统概括:本公司的供热系统是在热电厂设置换热首站作为热源,以电厂凝汽器及尖峰加热器生产的热水作为介质向一次热网输送热量,然后通过二次热网将热量输送给热用户的系统。
系统中二次网回水一部分通过混水循环泵作用混入一次网供水成为二次网供水,另一部分回水作为一次网回水返回一次总网,具体如图1所示。
受地势的影响,此供热系统采用了三种混水换热方式:a.水泵旁通加压,b.水泵回水加压,c.水泵供水加压;并在一次网供水中远处设中继加压站,在一次网回水上设减压站。
a、水泵旁通加压:混水泵设置在混水旁通管路上,利用水泵将二次网的一部分回水加压打入一次网供水中混合加热,形成二次网供水,二次网的另一部分回水作为一次网回水返回一次网回水总管;一次网供回水上设置调节阀,水泵采用变频控制。
此供热方式适用于一次网供水的高中压区。
b、水泵回水加压:混水泵设置在二次网回水总管上,利用水泵将二次网回水加压,一部分回水受混水旁通管路上的调节阀或者一次网回水管路上调节阀(视水泵出口到一次网总回水与到二次网供水需增压力相对大小定)支配流入一次网供水混合加热,形成二次网供水,另一部分回水直接返回一次网回水总管;一次网供回水上设置调节阀,水泵采用变频控制。
此供热方式适用于一次网供水的高压区且地势低洼处。
c、水泵供水加压:混水泵设置在二次网供水总管上,一次网回水调节阀将二次网回水压力调节至满足二次网系统静压,当一次网供水压力高于二次网回水静压时,一次网供水侧电动调节阀在调节流量的同时一次网供水阀后压力与二次网回水静压相持平衡,利用水泵将二次网一部分回水及一次网供水同时吸入混合加热,形成二次网供水,另一部分二次网回水直接返回一次网回水总管;一次网供水(或混水旁通)与一次网回水上设置调节阀,水泵采用变频控制。
论混水直供在集中供热中的应用摘要:所谓集中供热就是通过蒸汽和水,利用管道热网将热源向乡镇、城镇以及部分地区的用户提供热能,它既是我国完善城镇建设的一项重要内容,也是一项非常重要的基础设施,且在城镇基础设施建设中有着举足轻重的地位。
目前为提升集中供热效率,降低能源消耗,各种自动化技术在供热系统中得到了广泛的适用。
关键词:混水直供;集中供热;应用前言混水加热直供方式能灵活适应各类热用户对不同采暖方式的需求,适应性好、造价低廉、节能效果显著,在实际工程中应用越来越多,成为供热行业普遍关注的热点。
1混水供热技术概述在热源和热用户之间增加混水站,在站内使用户的部分回水和热源输出的一级管网供水进行混合,作为热用户的二级管网供水进行供热的方式称之为混水供热。
混合比是指进入混水装置中的二级管网回水流量与一级管网供水流量之比,在混水供热中是非常重要的一个参数,直接决定着供热效果。
根据热平衡原理,单位时间内进入混水装置的一级管网水的放热量等于进入混水装置的二级管网水吸收的热量,即Q1放=Q2吸,可以推导出混合比与一、二级管网供、回水温度之间的关系:N=G2h/G1g=(t1g-t2g)/(t2g-t2h)。
其中,N为混合比;t1g为一级管网供水温度,℃;G2h为二级管网回水混入流量,m3/h;t2g为二级网供水温度,℃;G1g为一级管网供水混入流量,m3/h;t2h为二级管网回水温度,℃。
根据混水系统中使用的水泵不同,分为喷射泵和混水泵混水连接系统两大类,近几年各热力公司为了降低供热成本中的电耗,普遍使用变频调速泵,使得变频混水泵混水连接系统的使用日趋增多,根据一级管网和二级管网压力工况,混水泵混水连接有很多种,如旁通加压式、二级管网供水加压式、二级管网回水加压式、一级管网供水和旁通加压式、二级管网供水和旁通加压式等,但是不同的连接方式,水泵的能耗不同。
2混水直供供热技术的优势2.1热利用率高在间接供热的热力站内通常换热器是裸露的,在供热期间每时每刻都在向外散热,热量损失很大,而混水直供供热方式不需要换热器,也就没有换热器的散热损失,所以混水直供相对于间接供热热利用率更高。