减水剂
- 格式:doc
- 大小:95.00 KB
- 文档页数:7
减水剂的减水原理减水剂是一种能够减少混凝土或砂浆中所需水分含量的化学添加剂。
减水剂的减水原理主要包括分散作用、吸附作用和化学作用等方面。
1.分散作用:减水剂分子中存在有亲水基团和疏水基团,亲水基团与水分子互相吸附形成水合力,从而解离水分子之间的静电吸引力,使水分子得以分散,降低水的表面张力。
这种分散作用导致减水剂能够将水分子分散到砂浆或混凝土中的颗粒间隙中,减少颗粒间的水分聚集。
2.吸附作用:减水剂分子中的疏水基团与砂浆或混凝土的颗粒表面形成物理或化学吸附,形成一层覆盖在颗粒表面的减水剂分子膜。
膜的存在阻碍水分子的吸附到颗粒表面,从而减少了颗粒间的吸附力。
此外,减水剂也能改善颗粒间的沉积状态,使砂浆或混凝土中的颗粒能够更好地分散和均匀分布。
3.化学作用:减水剂中的化学成分能够与混凝土或砂浆中的水化产物发生反应,形成新的化学结合物。
这些新生成物能够延缓水化反应速度,从而延缓水的凝结时间,提高砂浆或混凝土的可延性。
此外,减水剂还能与集料表面形成盐类溶液,并与水化产物发生反应,形成具有较好分散性的胶凝体颗粒,从而改善混凝土或砂浆的流动性和可塑性。
减水剂的减水原理主要是通过分散作用、吸附作用和化学作用来实现的。
减水剂通过分散作用将水分子分散到颗粒间隙中,降低水的表面张力,从而减少颗粒间的水聚集。
减水剂还通过吸附作用,在颗粒表面形成分子膜,抑制水分子的吸附,改善颗粒间的分散状态。
此外,减水剂还通过化学作用与水化产物发生反应,延缓水化反应速度,提高砂浆或混凝土的可延性和流动性。
总之,减水剂的减水原理是通过分散作用、吸附作用和化学作用等多种方式来减少砂浆或混凝土中所需水分含量,使其具有更好的流动性、可塑性和抗渗性。
这不仅可以提高混凝土或砂浆的施工性能,还可以降低水泥用量,减少材料成本,提高工程质量。
因此,在建筑工程中广泛应用减水剂以达到经济、环保和施工效果最佳化的目的。
减水剂生产工艺流程减水剂,又称减水剂、水泥引气剂、冻融增强剂,是一种在混凝土或砂浆中添加的化学物质,能够降低混凝土或砂浆水灰比,提高其流动性和可泵性,从而达到减少水泥消耗、增强混凝土强度和耐久性的效果。
减水剂广泛应用于建筑、水利、交通、能源等行业。
减水剂的生产工艺流程一般包括以下几个主要步骤:原料处理、反应合成、中间处理、产品分离、产品处理、产品包装等。
1.原料处理:减水剂的原料包括主要活性成分以及辅助成分。
主要活性成分可以选用磺酸盐型减水剂、醚型减水剂、高效减水剂等,辅助成分有溶剂、稳定剂、表面活性剂等。
原料处理主要包括原料的储存、计量、预处理等工序。
2.反应合成:根据减水剂的种类和配方,将原料按一定比例加入反应釜中,经过特定的温度、压力、时间等条件下进行反应合成。
在反应过程中,需要进行搅拌、加热、冷却等操作,以促进反应的进行。
3.中间处理:合成反应完成后,产生的反应产物需要进行中间处理。
通常包括过滤、浓缩、脱色等工序,以去除杂质、调整产品性质。
4.产品分离:经过中间处理后的产物需要进行产品分离。
根据减水剂的性质和需求,可以选择离心分离、蒸发浓缩等方法进行产品分离。
5.产品处理:分离后的产品需要进一步处理,以达到产品的质量要求。
处理过程可能包括调整产品的PH值、粘度、固体含量等,以及添加其他辅助剂来改善产品性能。
6.产品包装:处理后的减水剂产品需要进行包装,通常采用塑料桶、塑料袋等包装方式,以确保产品的质量和使用安全。
在整个减水剂生产工艺流程中,需要经过严格的质量控制和工艺监控,以确保产品的稳定性和一致性。
同时,还需要进行相关的安全措施,保障生产过程的安全和环境保护。
混凝土中减水剂的作用混凝土中的减水剂是一种在混凝土中添加的化学添加剂,用于改善混凝土的性能和工作性能。
减水剂具有多种作用,包括改善混凝土的流动性、提高混凝土的强度和耐久性、减少混凝土的收缩和膨胀等。
以下是减水剂的一些主要作用:1.改善混凝土的流动性:减水剂可以通过降低混凝土的黏性和粘度,使混凝土更易于流动和铺设。
通过减少内部摩擦,减水剂可以改善混凝土的可流动性,使其更容易在模板之间流动,填充模板中的空隙,并确保混凝土在浇筑过程中得到充分的密实。
2.提高混凝土的强度:减水剂可以通过改善混凝土的颗粒分散和碾压效应,有效地提高混凝土的强度。
减水剂可以使水分更好地包裹在水泥颗粒周围,并提供更好的润湿性和分散性,从而使水泥颗粒能够更加均匀地分散在混凝土中。
减水剂还可以减少水泥颗粒之间的亲和力,减少水泥颗粒之间的摩擦力,提高混凝土的强度。
3.改善混凝土的耐久性:减水剂可以改善混凝土的抗渗性和耐久性。
减水剂可以减少混凝土中的孔隙和毛细孔,提高混凝土的致密性和密实度。
减水剂可以使混凝土中的水化产物更加细小和均匀,减少孔隙溶液的浸渗和渗透,提高混凝土的抗潮湿性和耐久性。
4.减少混凝土的收缩和膨胀:减水剂可以减少混凝土的收缩和膨胀。
混凝土在固化过程中会产生收缩和膨胀,从而导致混凝土的开裂和变形。
减水剂可以通过调节混凝土中水泥水化的过程,减少水泥凝胶的收缩和膨胀,从而减少混凝土的开裂和变形。
5.改善混凝土的耐久性:减水剂可以提高混凝土的抗冻性、抗硫酸盐侵蚀性和抗氯盐侵蚀性。
减水剂可以增加混凝土中的气孔数量和大小,从而增加混凝土的抗冻性。
减水剂还可以减少混凝土中的钙反应,降低混凝土的碱-骨料反应,提高混凝土的耐久性。
总之,减水剂在混凝土中起到了重要的作用,可以改善混凝土的流动性、提高混凝土的强度和耐久性、减少混凝土的收缩和膨胀等。
使用减水剂可以提高混凝土的工作性能,节省水泥用量,降低成本,并提高混凝土结构的质量和耐久性。
减水剂的作用原理减水剂是指在混凝土搅拌过程中使用的一种添加剂,可以减少混凝土水泥用量、提高混凝土强度、改善混凝土的工作性能。
减水剂的作用原理主要有以下几点。
1.分散作用减水剂通过分散作用,将混凝土中的水泥颗粒分散均匀,并使之与其他颗粒分散在一起。
这样可以降低水泥颗粒间的粘连力,减少团聚现象,从而提高混凝土的流动性和可泵性。
2.引气作用减水剂能在混凝土中形成气泡,使混凝土中的气泡分布均匀。
这些气泡可以分散在混凝土中,减少混凝土的密实度,改善混凝土的工作性能,提高抗裂性能。
3.吸附作用减水剂可以通过与水泥颗粒的吸附作用,改变水泥颗粒的电荷状态,从而减少水泥颗粒之间的静电吸引力,使其互相排斥。
这样可以降低水泥颗粒间的吸附力,减少水泥颗粒的互相接触,抑制水泥颗粒间的团聚。
4.化学作用减水剂能与水泥中的化学成分发生反应,形成水化产物,提高混凝土的强度和耐久性。
减水剂中的化学成分可以改变水泥颗粒的形态和结构,促进水泥的水化反应,从而加速混凝土的凝结和硬化过程。
减水剂的具体作用机理还涉及到多种因素,如减水剂的种类、用量、添加时间、混凝土配合比等。
不同种类的减水剂具有不同的作用机理。
例如,有机型减水剂主要通过在水泥颗粒表面形成胶体分散体,提供分散剂、吸附剂和润湿剂的作用,改善混凝土的流动性和可泵性。
无机型减水剂主要通过与水泥中的硫铝酸盐反应,形成水化产物,提高混凝土的强度和耐久性。
在实际应用中,减水剂的选择应根据混凝土的具体要求和工程条件来确定。
通过合理选择和使用减水剂,可以充分发挥减水剂的作用,提高混凝土的性能,降低混凝土的成本,促进混凝土工程的施工进度和质量。
减水剂原理减水剂是一种常用的混凝土掺合剂,通过调整混凝土中水泥浆体的流动性和减少砂浆内部摩擦,从而实现控制混凝土水灰比和提高混凝土工作性能的效果。
减水剂的原理主要包括两个方面:物理原理和化学原理。
物理原理:1.分散作用:减水剂含有表面活性剂,可降低砂浆颗粒之间的表面张力,使颗粒分散,从而改善混凝土的可流动性和减少黏着剂的使用量。
2.润湿作用:减水剂能够将水分子分散到混凝土中,从而改善砂浆的流动性和润湿性。
3.防止沉淀作用:减水剂能够降低砂浆中水泥颗粒的沉淀速度,使水泥均匀分散,从而改善混凝土的均匀性。
化学原理:1.吸附作用:减水剂含有带电离子的有机分子,可与水泥颗粒表面吸附及电荷相互作用,阻碍水泥颗粒的结合,从而改善混凝土的流动性。
2.化学吸附作用:减水剂含有活性基团,可与水泥中的氢氧根(OH-)等离子起反应,形成活性化合物,阻碍水泥颗粒的结合,从而改善混凝土的流动性和可塑性。
3.键合作用:减水剂中的分子结构中含有亲水基团和疏水基团,可与水泥颗粒表面进行键合,从而降低水泥颗粒的表面能,使混凝土具有更好的流动性。
减水剂通过以上物理和化学原理,实现了改善混凝土的可流动性和减少黏着剂使用量的效果。
它能够有效降低混凝土的黏稠度,提高砂浆的流动性,使混凝土易于浇注、振捣和成型。
同时,减水剂还能够增加混凝土的强度和耐久性,改善混凝土的工作性能。
然而,需要注意的是减水剂的使用应符合一定的用量和工艺要求,过量或错误的使用可能会对混凝土的性能产生负面影响。
因此,减水剂的选择与使用需要综合考虑混凝土的工作性能、坍落度、强度等因素,并在实际工程应用中进行试验验证。
综上所述,减水剂通过物理和化学原理作用于水泥颗粒及其间的相互作用,改善混凝土的流动性、可塑性和均匀性,提高混凝土的工作性能和耐久性。
合理选择和使用减水剂,可以提高混凝土施工的效率和质量,实现节能减排的目标。
减水剂主要成分减水剂是一种在混凝土或水泥中添加的化学物质,可以降低水泥用量、改善混凝土的流动性和减少水泥与水的比例。
减水剂主要由以下几种成分组成:1. 高分子聚合物:高分子聚合物是减水剂中最常见的成分之一。
它可以通过改变水泥浆体的流动性来改善混凝土的工作性能。
高分子聚合物能够与水分子形成氢键,从而在混凝土中形成稳定的分散体系,使混凝土具有较高的流动性和可泵性。
2. 有机酸盐:有机酸盐主要有草酸盐、葡萄糖酸盐等。
它们可以通过与水泥颗粒表面的钙离子形成螯合物,阻止颗粒的聚集,从而改善混凝土的流动性。
3. 硫酸盐:硫酸盐是一种常用的减水剂成分。
它可以通过与水泥中的石膏反应生成可溶性的钙硫酸盐,从而减少水泥与水的反应,延缓水泥的凝结时间,使混凝土具有较长的可塑性和延展性。
4. 硅酸盐:硅酸盐是一种常用的减水剂成分,如膨胀剂。
它可以通过与水泥中的氢氧化钙反应生成膨胀胶体,从而增加混凝土的体积,改善混凝土的工作性能。
硅酸盐还可以与水泥中的氢氧化铝反应生成凝胶,增加混凝土的粘结性。
5. 空气泡剂:空气泡剂是一种常用的减水剂成分。
它可以通过在混凝土中引入微小的气泡,从而改善混凝土的抗冻性能和耐久性。
空气泡剂可以通过改变混凝土的表面张力和内聚力,使混凝土中的气泡分布均匀,并且能够抵抗冻融循环的破坏。
减水剂的主要成分可以根据其功能和使用方法进行选择和组合。
不同的减水剂成分对混凝土的性能有不同的影响,因此在选择减水剂时需要根据具体的工程要求和混凝土性能的需求进行调整和优化。
减水剂的应用可以提高混凝土的工作性能,减少水泥用量,降低混凝土的成本,同时也可以改善混凝土的耐久性和抗冻性能。
减水剂主要由高分子聚合物、有机酸盐、硫酸盐、硅酸盐和空气泡剂等成分组成。
这些成分可以通过改变水泥浆体的流动性、防止水泥颗粒聚集、延缓水泥的凝结时间、增加混凝土的体积和改善混凝土的抗冻性能等方式,从而提高混凝土的工作性能和耐久性。
在实际工程中,可以根据具体要求选择合适的减水剂成分和使用方法,以达到最佳的效果。
减水剂的作用机理简述
减水剂是混凝土施工中常用的一种添加剂,它能够有效地降低混凝土的水灰比,提高混凝土的流动性和可泵性,从而改善混凝土的性能。
减水剂主要通过以下几种作用机理来实现对混凝土的影响:
1.分散作用:减水剂中的活性成分能够与水泥颗粒表面形成一层电荷
互斥的保护膜,阻止水泥颗粒之间的互相粘连,从而使水泥颗粒保持分散状态。
这样可以有效地降低混凝土的内摩擦力,提高混凝土的流动性。
2.吸附作用:减水剂中的分子在混凝土中可以吸附水泥颗粒表面,改
变水泥颗粒表面能量,并与水泥颗粒形成一种物理或化学结合,从而降低水泥颗粒之间的粘附力,使其易于分散,提高混凝土的流动性。
3.水泥颗粒表面电荷控制作用:减水剂中的活性成分能够改变水泥颗
粒表面的电荷状态,使水泥颗粒表面带有相同的电荷,导致彼此之间发生相互排斥,从而降低水泥颗粒之间的凝聚力,提高混凝土的流动性。
4.流变作用:减水剂通过改变混凝土的内部结构,使混凝土具有更好
的变形性和可变性,从而提高混凝土的流动性和可泵性。
总的来说,减水剂通过改变水泥浆体系的物理和化学性质,增加浆体的流动性
和可变形性,减小混凝土内部摩擦力,改善混凝土的工作性能和耐久性。
在混凝土施工中,正确使用减水剂可以提高施工效率,降低成本,同时确保混凝土施工质量和工程可持续发展。
减水剂的名词解释减水剂是一种常用于建筑工程中的化学添加剂,主要作用是减少混凝土中的水分含量,从而改善混凝土的流动性能和可加工性。
减水剂可以通过改变水泥颗粒间的相互作用力,降低水泥浆体的黏滞性和表面张力,从而使混凝土更易于流动和加工。
一、减水剂的分类根据减水剂的化学成分和作用机理,减水剂可以分为有机减水剂和无机减水剂两类。
1. 有机减水剂:有机减水剂一般是由高分子化合物制成,常见的有聚羧酸盐减水剂、磺酸盐减水剂和脂肪酸盐减水剂等。
这些减水剂可以在水泥颗粒表面形成一层隔离膜,降低水泥颗粒间的黏结力,从而有效减少水分对混凝土流动性的影响。
2. 无机减水剂:无机减水剂主要是指使用活性硅酸盐、铜盐等无机成分制成的减水剂。
这些减水剂的作用机理主要是通过吸附水泥颗粒表面的氢氧根离子,降低水泥颗粒间的作用力,从而实现减水效果。
二、减水剂的作用机理减水剂的作用机理比较复杂,大致可以归纳为以下几个方面:1. 分散作用:减水剂通过在水泥颗粒表面形成一层稳定的分散层,阻碍水泥颗粒间的聚集,使混凝土颗粒分散均匀,从而提高混凝土的流动性。
2. 减水作用:减水剂可以降低水泥浆体的黏滞性和表面张力,使水泥浆体的相互作用力减小,从而减少水分对混凝土流动性的影响。
3. 稳定作用:减水剂还可以增加混凝土的稳定性,提高其耐久性和抗裂性。
三、减水剂的应用减水剂的应用广泛,除了在建筑工程中常见的混凝土施工中使用外,还可以应用于港口码头、地下工程、道路养护等领域。
采用减水剂可以提高混凝土的流动性,减轻施工过程中的劳动强度,提高工作效率。
然而,减水剂的应用也需要注意一些问题。
首先,减水剂的用量需严格控制,过量使用会导致混凝土的强度降低。
其次,应根据具体施工条件和要求选择合适的减水剂种类和品牌,确保减水剂能够发挥最佳效果。
四、减水剂的发展前景随着建筑工程的不断发展和技术的进步,减水剂在工程施工中的重要性将逐渐凸显。
有机减水剂在减少混凝土用水量的同时,还可以改善混凝土的性能和耐久性,减少混凝土开裂的风险。
普通减水剂使用中需要注意的事项普通减水剂是一种用于混凝土施工中的化学添加剂,可以降低混凝土的水灰比,提高混凝土的流动性和可塑性,从而降低混凝土的用水量,改善混凝土的工作性能和强度。
在使用普通减水剂时,有几个需要注意的事项:
1.遵循生产厂家的建议:在使用普通减水剂之前,应仔细阅读产品说明书,遵循生产厂家提供的建议和使用方法,确保正确使用减水剂,以获得最佳效果。
2.控制剂量:在混凝土搅拌过程中添加减水剂时,应控制好减水剂的剂量,不要过量使用。
一般来说,减水剂的添加量通常为混凝土总水量的0.5%至1%,具体剂量可根据混凝土的配合比和施工要求进行调整。
3.注意与其他添加剂的兼容性:在混凝土配合料中使用多种添加剂时,应注意减水剂与其他添加剂的兼容性。
有些添加剂可能会影响减水剂的性能,导致混凝土性能的下降,因此在使用前应进行试验验证。
4.避免混凝土过度流动:虽然减水剂可以提高混凝土的流动性,但过度使用减水剂可能会导致混凝土过度流动,影响混凝土的强度和耐久性。
因此,在使用减水剂时应根据具体情况控制混凝土的流动性。
5.注意环境温度和湿度:混凝土施工中的环境温度和湿度会影响减水剂的性能和效果。
在低温和高湿的环境下,减水剂的作用可能会降低,因此需要根据实际情况调整减水剂的使用量。
6.定期进行试验和检查:在施工过程中,应定期进行混凝土试验和检查,以确保减水剂的使用效果符合要求,及时调整和控制减
水剂的使用量。
综上所述,使用普通减水剂时需要注意剂量控制、兼容性、流动性、环境条件等因素,以确保混凝土施工的质量和效果。
减水剂的作用及减水原理减水剂是一种可以减少混凝土、水泥砂浆和其他建筑材料中水分含量的化学添加剂。
它可以改善材料的可流动性和流动性,提高施工效率,并减少水泥和水的用量。
减水剂在现代建筑材料中被广泛应用,对于提高建筑材料的性能和质量具有重要作用。
减水剂通过两种方式发挥作用:化学作用和物理作用。
在化学作用中,减水剂会与水泥砂浆中的水发生化学反应,从而改变水泥砂浆中颗粒的表面电荷和分散状态。
这些化学反应可以帮助水泥颗粒更加均匀地分散在水中,形成稳定的胶体,从而减少砂浆的黏度并提高流动性。
物理作用中,减水剂会改变水泥砂浆的离子浓度,从而减少颗粒间的相互作用力,使砂浆的黏度降低,提高流动性。
减水剂的主要作用有几个方面:1.增加流动性:减水剂能够降低水泥砂浆的黏度,并提高材料的流动性。
通过添加减水剂,水泥砂浆可以更容易地流动到需要润湿和填充的区域,从而提高施工效率。
2.提高强度:减水剂的添加可以提供更加均匀的颗粒分散状态,从而提高水泥砂浆的力学性能。
减水剂还可以改善材料的抗裂性能,增加抗拉强度和抗压强度,提高混凝土的整体性能。
3.改善耐久性:减水剂还可以降低水泥砂浆中的孔隙率,并改善其抗渗透性和耐久性。
通过减少砂浆中的水分含量,减水剂还可以降低冻融和干缩引起的损伤,提高砂浆的耐久性。
4.调节凝结时间:减水剂可以改变水泥砂浆的凝结时间,使其满足施工的需要。
对于需要延长凝结时间的工程,可以添加减水剂延缓凝结过程;对于需要加快凝结时间的工程,可以添加减水剂加速凝结过程。
减水剂的作用原理主要有两个方面:1.离子吸附:减水剂中的活性物质可以吸附在水泥颗粒表面,形成一层吸附膜。
这层吸附膜可以降低水泥颗粒之间的相互吸附力,减少颗粒间的胶凝作用。
同时,吸附膜的存在可以阻断颗粒间的离子迁移,从而减少了粒间碰撞和胶凝作用的能力,降低了砂浆的黏性。
2.分散作用:减水剂中的活性物质还可以与砂浆中的水发生化学反应,形成胶凝物种。
这些胶凝物种可以影响水泥颗粒的表面电荷,改变颗粒的分散状态和互作用力。
减水剂.前言随着科学技术的发展,人们对混凝土的性能提出了各种新的更高的要求。
从上世纪40年代开始推广混凝土外加剂以来,它的发展不但从微观亚微观层次改变了硬化混凝土的内部结构,并且在工艺过程改变了新拌混凝土的结构。
减水剂又称分散剂或塑化剂,是最常用和最重要的外加剂。
使用它时能在不影响混凝土和易性的条件下使新拌混凝土的用水量减少。
它的主要成分是表面活性剂,它对新拌混凝土所起的作用也主要是表面活性作用。
减水剂可以减少混凝土的拌合物的用水量,提高混凝土的强度和耐久性、抗渗性;改善混凝土的工作性,提高施工速度和施工质量,满足机械化施工要求,减少噪声及劳动强度,节约水泥用量等。
减水剂发展历程20 世纪30 年代,人们发现在混凝土中掺入亚硫酸盐纸浆废液之后,能改善拌合物的和易性,强度和耐久性也能得到提高。
1935 年,美国的E. W.Scripture 首先研制成以木质素磺酸盐为主要成分的减水剂。
1962 年日本首先研制成以β- 萘磺酸甲醛缩合物钠盐为主要成分的减水剂,简称萘系减水剂。
这类减水剂具有减水率高的特点,适宜于制备高强(抗压强度达100 MPa)或坍落度可达20 cm 以上混凝土。
随后1964 年联邦德国研究成功磺化三聚氰胺甲醛树脂减水剂,该类减水剂与萘系减水剂同样具有减水率高、早强效果好、低引气量等特点,同时对蒸养混凝土制品和铝酸盐(主要为C3A) 含量高的水泥制品适应性较好,能制备高强或大流动性混凝土。
70年代后期,很多人对木质素类减水剂进行改进,研究出了改性木质素磺酸盐高效减水剂。
90 年代初,美国首次提出高性能混凝土(HPC)的概念,即要求混凝土具有高强度、高流动性、高耐久性等性能,高性能混凝土对减水剂提出了更高的要求,要求高性能减水剂具有减水率高、大流动度和坍落度经时损失小等特点。
一些新型高效减水剂得到了迅速的开发和应用,如聚羧酸系、氨基磺酸系高效减水剂。
综上所述,减水剂经历了从木素磺酸盐、萘磺酸盐缩合物、三聚氢胺甲醛缩合物、氨基磺酸盐系、聚羧酸系等发展的历程,减水率也从8 %增加到30 %左右。
高性能减水剂的应用,意味着满足同样性能的混凝土可以节约20 %~30 %的水泥,从源头实现混凝土的节能、省资、减污等清洁化生产减水剂的种类减水剂的种类有木质素磺酸盐、萘系减水剂、密胺系减水剂、聚羧酸盐减水剂、干酪素减水剂、氨基磺酸盐减水剂、丙烯酸系减水剂等。
木质素磺酸盐:它属于普通的减水剂,它的原料是木质素,一般从针叶树材中提取,木质素是由对亘香醇、松柏醇、芥子醇这三种木质素单体聚合而成的,用于砂浆中可改进施工性、流动性,提高强度,减水率在5%-10%。
萘磺酸盐减水剂:是我国最早使用的高效减水剂,是萘通过硫酸磺化,再和甲醛进行缩合的产物,属于阴离子型表面活性剂。
该类减水剂外观视产品的不同可呈浅黄色到深褐色的粉末,易溶于水,对水泥等许多粉体材料分散作用良好,减水率达25%。
密胺系减水剂:是三聚氰胺通过硫酸磺化,再和甲醛进行缩合的产物,因而化学名称为磺化三聚氰胺甲醛树脂,属于阴离子表面活性剂。
该类减水剂外观为白色粉末,易溶于水,对粉体材料分散好,减水率高,其流动性和自修补性良好。
粉末聚羧酸酯:它是近年来研制开发的新型高性能减水剂,它具有优异的减水率、流动性、渗透性。
明显增强水泥砂浆的强度,但制作工艺复杂,一般价格较高。
干酪素:它是一种生物聚合物,它是牛奶用酸沉淀并经过圆筒干燥后得到的。
减水剂的作用原理:减水剂通常是一种表面活性剂,属阴离子型表面活性剂。
它吸附于水泥颗粒表面使颗粒显示电性能,颗粒间由于带相同电荷而相互排斥,使水泥颗粒被分散而释放颗粒间多余的水分而产生减水作用。
另一方面,由于加入减水剂后,水泥颗粒表面形成吸咐膜,影响水泥的水化速度,使水泥石晶体的生长更为完善,减少水分蒸发的毛细空隙,网络结构更为致密,提高了水泥砂浆的硬度和结构致密性。
具体分为以下几步:分散作用:水泥加水拌合后,由于水泥颗粒分子引力的作用,使水泥浆形成絮凝结构,使10%~30%的拌合水被包裹在水泥颗粒之中,不能参与自由流动和润滑作用,从而影响了混凝土拌合物的流动性。
当加入减水剂后,由于减水剂分子能定向吸附于水泥颗粒表面,使水泥颗粒表面带有同一种电荷(通常为负电荷),形成静电排斥作用,促使水泥颗粒相互分散,絮凝结构破坏,释放出被包裹部分水,参与流动,从而有效地增加混凝土拌合物的流动性。
润滑作用:减水剂中的亲水基极性很强,因此水泥颗粒表面的减水剂吸附膜能与水分子形成一层稳定的溶剂化水膜,这层水膜具有很好的润滑作用,能有效降低水泥颗粒间的滑动阻力,从而使混凝土流动性进一步提高。
空间位阻作用:减水剂结构中具有亲水性的聚醚侧链,伸展于水溶液中,从而在所吸附的水泥颗粒表面形成有一定厚度的亲水性立体吸附层。
当水泥颗粒靠近时,吸附层开始重叠,即在水泥颗粒间产生空间位阻作用,重叠越多,空间位阻斥力越大,对水泥颗粒间凝聚作用的阻碍也越大,使得混凝土的坍落度保持良好。
接枝共聚支链的缓释作用:新型的减水剂如聚羧酸减水剂在制备的过程中,在减水剂的分子上接枝上一些支链,该支链不仅可提供空间位阻效应,而且,在水泥水化的高碱度环境中,该支链还可慢慢被切断,从而释放出具有分散作用的多羧酸,这样就可提高水泥粒子的分散效果,并控制坍落度损失。
减水剂对混泥土性能的影响1.。
减水剂对新拌混凝土流变性质的影响要制备流动性质好的新拌混凝土,必须拆开降低水泥颗粒间阻碍流动的粘滞结构,使水泥颗粒在水介质中充分分散。
影响水泥胶融的性质很多,如水泥的矿物组成,水泥颗粒的形状尺寸,矿物结晶的完整程度以及操作条件和环境因素等。
上述各种因素直接或间接地控制着浆体中水泥颗粒的稳定性。
介质条件不同就有可能改变浆体中水泥颗粒所带电荷的数值,即改变颗粒间的静电斥力。
当新拌混凝土中适量加入减水剂后,水泥颗粒所带的电位增大,而水泥颗粒间的电性斥力大大增加,导致新拌混凝土的粘度下降,这样就促使整个分散体系的稳定性提高,流动性得到改善。
另外,水泥浆体从稀释到凝聚状态之间还存在着一个存在于两者之间的中间状态,即触变状态。
这是由于水泥净浆中的凝聚结构在剪切速率增大的情况下再度分散引起的。
具体表现为剪切速率增大时阻力减小,粘度减小。
即浆体静止不同时成凝聚状态,若一经搅拌或摇动已凝聚的浆体又重新获得流动性。
一般在水泥浆体中掺入适量减水剂能促使新拌混凝土显示出较强的触变性。
这是由于水泥颗粒表面对减水剂的吸附溶剂化膜层的形成以及电位的提高等原因,若稍加振动又会表现出较好的流动性。
不加减水剂的新拌混凝土的触变性要弱很多。
2.减水剂对新拌混凝土和易性的影响影响新拌混凝土和易性的因素很多,主要是水泥,集料,用水量,外加剂的性质和用量,温度等因素。
当其它条件相同时和易性则与减水剂的种类和掺量有一定关系。
新拌混凝土的和易性通常用塌落度值测定来衡量。
混凝土拌制后到浇灌需要有一段运输等候停放时间,往往使混凝土和易性变差,造成施工困难。
实验证明掺用减水剂能改善混凝土的初始和易性,但往往其坍落度损失要比不掺减水剂的基准混凝土要大些,其原因有:⑴水泥中矿物吸附减水剂能力有强弱。
水泥中主要矿物吸附减水剂能力顺序为C3A >C4AF>C3S>C2S,一加水搅拌,就促使较多分散剂涌聚到水泥颗粒表面,整个液相中减水剂浓度下降,当浇灌时,对水泥起分散作用的减水剂量渐显不足,因而坍落度随时间而逐渐减小。
⑵气泡外溢及水分蒸发。
即使是非引气性减水剂在掺入混凝土中时也有一定气派引入,而在运输等过程中气泡不断外溢消散,并伴随着水分蒸发,高效减水剂表现的尤为显著。
⑶掺入减水剂后由于分散、湿润等作用,使水泥初期水化速度过快,水化产物增多,固体量增加,整个体系粘度增加,致使坍落度值下降较快,高温条件下更甚。
表一:各品种减水剂对混泥土坍塌度的影响由表一可以看出坍落度随减水剂的掺量增加而增大。
减水剂掺量为水泥用量的0.5%以内时,其坍落度增大幅度较大,若超过0.5%,其坍落度增加的幅度明显下降。
但是普通减水剂的常用量为0.25%,超掺量会显示出强烈延缓凝结和硬化作用,而高效减水剂的常用掺量为0.50%-0.75%。
在常用掺量下,当配合比和用水量相同时,掺普通减水剂者坍落度可增大2倍以上,而高效减水剂可增大3倍以上。
3.减水剂对混凝土凝结时间的影响混凝土凝结时间是施工中一项重要的参数,尤其是对大体积混凝土施工更为重要。
适量的掺加缓凝剂可延缓混凝土的凝结时间,便于解决施工中所出现的问题。
减水剂和高效减水剂对混凝土凝结时间的影响结果如下表二。
表二:减水剂和高效减水泥对混泥土凝结时间的影响从表二数据可以看出在常用掺量下,木钙和蜜糖减水剂延缓混凝土的凝结时间,属于缓凝减水剂。
FDN,UNF-2和SN-Ⅱ高效能减水剂对混凝土的凝结时间影响不大。
若上述减水剂超掺量使用时(推荐掺量的一倍或一倍以上)木钙将会使混凝土严重缓凝,甚至发生不凝。
而奈系建水泥超掺量使用时也会产生缓凝,早期强度降低。
温度对掺减水剂混凝土的凝结时间影响规律与普通混凝土相类似,随着温度的提高,水泥的水化反应速率加快,其凝结时间和硬化过程也相应缩短。
不同温度条件下掺与不掺普通减水剂的混凝土凝结时间情况如表三表三:不同温度条件下掺与不掺普通减水剂的混泥土凝结时间温度对掺高效减水剂混凝土凝结时间的影响与掺普通减水剂者大致相同,环境温度高凝结时间提前,反之延缓。
4.减水剂对混凝土抗压强度的影响抗压强度是混凝土最重要的力学性质之一。
在一定条件下工程上要求混凝土其它性质往往与混凝土的强度之间存在着密切的联系。
长期以来研究混凝土强度理论的基本出发点都是把水泥石的抗压强度性能作为主要影响因素,加以考虑并建立了一系列说明水泥石空隙率与密实度与强度之间的关系式:R=ARC(C/W-B)。
式中:R-混凝土抗压强度;A B-经验常数;RC-水泥的实际强度;C/W-灰水比。
由上式可看出混凝土强度的重要因素是水泥浆的水灰比和水化程度有关。
在加入减水剂后使混凝土中水灰比有较大幅度的下降,水泥石内部空隙体积明显减少,水泥石更加致密,使混凝土的抗压强度有显著的提高。
由表四中普通减水剂不同掺量与混凝土抗压强度之间的关系可以看出,在标准养护条件下普通减水剂的适宜掺量为0.25%左右,若掺量超过0.3%时个龄期混凝土的抗压强度显著下降。
表四:普通减水剂不同掺量与混凝土抗压强度之间的关系5.减水剂对混凝土耐久性能的影响5.1对抗冻融性的影响混凝土的抗冻融性在其他条件相同的情况下,很大程度上是受水灰比和合气量这两个重要因素制约。
实验发现,混凝土的水灰比愈小,其抗冻融性能愈好,掺入具有一定引气作用的减水剂,其抗冻融性能有更大的改善。
目前国内常用的减水剂均有不同程度的减水和引气作用,因此也将有利于提高混凝土的抗冻融性。