电动汽车电池管理系统软件设计
- 格式:pdf
- 大小:181.45 KB
- 文档页数:3
电动汽车动力电池管理系统(BMS)设计摘要:本文主要从硬件系统设计、软件系统设计两个方面,对电动汽车中动力电池的内部管理系统(BMS)综合设计,进行了深度的分析与研究,以通过不断地实践研究,积极探索出电动汽车中动力电池的内部管理系统(BMS)最具高效性的综合设计方案,以充分提升电动汽车中动力电池的内部管理系统(BMS)的设计水准,确保电动汽车中动力电池的内部管理系统(BMS)各项功能能够满足于电动汽车实际的应用需求,为我国电动汽车行业的长期发展奠定基础。
关键词:电动汽车;动力电池;管理系统(BMS);设计前言:电动汽车(battery electric vehicle;BEV),主要是指以车载类电源为基本动力,利用电机来驱动车轮达到行驶目地,符合于我国安全法规与交管各项规定的车辆。
基于电动汽车有着环保性特征,所以,其在国内的发展前景相对较为良好。
但是,基于国内电动汽车相关技术还处于初步探索阶段,各项技术还不够成熟,若想实现突破性发展还需作出更多的努力。
电动汽车,它与传统汽车最大的不同之处就在于电动汽车内部包含着一种动力的电池。
在一定程度上,通过该动力电池可实现电动汽车节能化、环保化的行使。
那么,为了能够更好地助推我国电动汽车行业的发展,就需从其内部的动力电池入手,对其所在的管理系统(BMS),进行系统化的分析与研究。
从而能够设计出更具有功能特性的动力电池内部管理系统(BMS),为电动汽车提供强大动力电池内部管理系统支持,进一步推动我国电动汽车行业的快速发展,让其可稳步向着新的发展征程迈进。
1、硬件系统设计基于电池组主要是由多节电池的单体并联与串联而成,实现对所有电池单体实时化监控。
因而,如图1所示,电池内部管理系统主要应用了主从结构,以实现灵活性通讯,提升通讯实际速度。
从板均需具有电池单体的温度与电压检测、CAN总线的通讯等各项功能。
图1 BMS系统框图示图1.1 IMCU系统处理器系统处理器主要选用的是Freescale -9S12DT64型号的MCU系统处理器,该型号MCU系统处理器为16位系统的单片机,主要是由CAN系统的总线模块、PWM的调节器(1个)AD的转换器(2个)定时器(1个)外部串口(1个)内部串口(2个)。
新能源汽车用动力电池管理系统设计摘要:随着科学技术的发展,动力电池已经不再仅仅是电动汽车的必备元件,而是被广泛采用于各种领域。
它们不仅提供稳定的输出,而且还具备良好的性价比,因此,对于新能源汽车的电池进行合理的管控和控制,是保证其安全、稳定的使用的必不可少的步骤。
随着技术的进步,电动汽车的操作变得越来越简单,但是,它们的电池维护却变得更为困难。
此外,由于生产技术的局限,无法确保每个电池的完整性和稳定性,从而导致某些电池经常出现超负荷的情况。
由于经常出现超负荷运行,以及缺乏维护,这种情况下的电池极有可能会发生故障,从而对其运行造成不利。
关键词:新能源汽车;动力电池;管理系统前言:优化的新能源汽车电池管理系统有助于保证驾驶者的安全,并且有助于更有效地运转锂离子。
为了实现这一目标,我们应该进一步研究锂离子的性质,并优化其相关的硬件和软件设备,从而更好地为客户服务,促进新能源汽车产业的快速增长。
1现阶段新能源汽车动力电池管理系统存在的问题1.1管理系统结构设定与实际工作匹配度不高我国对新能源动力电池研究进展相对落后,部分汽车企业没有真正立足于国内汽车市场真正需求,不具备科学完整的未来发展战略,导致动力电池管理系统结构设定与实际情况不符,是阻碍新能源汽车行业发展的主要原因之一。
1.2锂电子动力电池重视程度低动力电池目前在我国还未形成完整的售后维修体系,汽车行业仍然没有认识到动力电池后期养护与维修的重要性,对此缺乏深刻认知,社会关注度低,后市场资金投入力度不足,缺少相关技术人员、销售人员以及管理人员,人才缺失,缺乏创新升级。
1.3动力电池技术水平不高现阶段我国新能源动力电池技术还处于较低水平,在动力电池性能、结构、维修、寿命等方面还缺少深层次研究,大多数新能源汽车实际续航里程与设定不符,同时在安全性、稳定性等方面也存在一定欠缺,因此应加大研发力度,加大资金投入力度。
2新能源汽车动力电池管理系统硬件设计1.1硬件设计组成在动力电池管理系统的硬件设计上,我们配备了一台精确的温度传感器,并且还配备有一个可靠的冷却器,还有一个可以实现电压实时监测的模块,从而有效地监督和记录电池的运行状态,包括剩余的能源和耗尽的能源。
随着能源的枯竭和节能产业的发展,社会对环保的呼声,使得零排放电动汽车的研究得到了许多国家的大力支持。
电动汽车的各种特性取决于其电源,即电池。
管理可以提高电池效率,确保电池安全运行在最佳状态,延长电池寿命。
1.1电动汽车目前,全球汽车保有量超过6亿辆,汽车的石油消耗量非常大,达到每年6至70亿桶,可占世界石油产量的一半以上。
随着长期的现代化和大规模开采,石油资源逐渐增加。
筋疲力尽的。
电力来源众多,人们在用电方面积累了丰富的经验。
进入21世纪,电能将成为各种地面车辆的主要能源。
电动汽车的发展是交通运输业和汽车业发展的必然趋势。
由于电动汽车的显着特点和优势,各国都在发展电动汽车。
中国:早在“九五”时期,我国就将电动汽车列为科技产业重大工程项目。
市内七海岛设有示范区。
清华大学、华南理工大学、广东汽车改装厂等单位都参与了电动汽车的研发。
丰田汽车公司和通用汽车公司为示范区的测试提供了原型车和技术支持。
德国:吕根岛测试场是德国联邦教育、科学研究和技术部资助的最大的电动汽车和混合动力汽车测试项目,提供来自梅赛德斯-奔驰、大众、欧宝、宝马和曼汽车。
公司测试。
法国:拉罗尔市成为第一个安装电动汽车系统的城市,拥有 12 个充电站,其中 3 个为快速充电站。
PSA、雪铁龙和 PSA 集团都参与了电动汽车的建设。
日本:在大阪市,大发汽车公司、日本蓄电池公司和大阪电力公司共同建立了EV和HEV试验区。
1.2 电动汽车电池根据汽车的特点,实用的动力电池一般应具有比能量高、比功率高、自放电少、工作温度范围宽、充电快、使用寿命长、安全可靠等特点。
前景较好的是镍氢电池、铅酸电池、锂离子电池、1.3 电池管理系统(BMS)电池能量管理系统是维持供电系统正常应用、保障电动汽车安全、提高电池寿命的关键技术。
可以保护电池的性能,防止单体电池过早损坏,方便电动汽车的运行,并具有保护和警示功能。
.通过对电池盒的电池模块进行监控,实现电动汽车充电、运行等功能与电池相关参数的协调。
摘要随着工业发展和社会需求的增加,汽车在社会进步和经济发展中扮演着重要的角色。
汽车工业的迅速发展,推动了机械、能源、橡胶、钢铁等重要产业的发展,但同时也日益面临着环境污染、能源短缺的严重问题。
纯电动汽车以其零排放,噪声低等优点越来越受到世界各国的重视,被称作绿色环保车。
作为发展电动车的关键技术之一的电池管理系统(BMS),是纯电动车产业化的关键。
车载网络数据采集系统就是这样一个电池管理系统,可以直接检测及管理电动汽车的储能电池运行的全过程,实现对车载多级串联锂电池、电池温度、车速等数据的监测、采集和分析。
本论文是基于CAN总线的车载网络数据采集系统选用STM32F103VB作为系统的核心芯片,通过芯片自带的12位ADC对端口电压分别进行采集和监测,并通过CAN网络将采集到的数据发送到汽车仪表盘,为车辆状态量实时监测提供数据来源。
关键词:纯电动车,电池管理系统,电池状态,STM32F103VBAbstractWith industrial development and social demand, vehicle of social progress and economic development play important roles. Although the rapid development of automobile industry promote the machinery, energy, rubber, steel and other important industries, it is increasingly faced with environmental pollution, energy shortages and other serious problems.With the merit of zero-emission, and low noise, the pure electric vehicles which is called green cars has got more and more attention around the world. As one of the key technologies for the development of electric vehicles ,battery management system (BMS) is the point of the pure electric vehicle industry. Vehicle network data acquisition system is a battery management system that can directly detect and manage the storage battery electric vehicles to run the whole process, to achieve the data monitoring, collection and analysis of the on-board multi-level series of lithium battery, battery temperature, speed, and otherThe thesis is based on the vehicle CAN bus data acquisition system to chose STM32F103VB network as the core of the system ADC which comes from the chip collect and monitor the port voltages and sent the collected data to the car dashboard through the CAN network , which offer real-time monitoring of vehicle status amount of data sources.Key words:Pure electric cars, Battery Management Systems, The battery state, STM32F103VB摘要 (1)Abstract (2)第一章前言 (5)本课题研究的目的和意义 (5)车载网络数据采集系统的国内外研究现状 (6)本论文研究的主要工作 (7)第二章车载网络数据采集系统设计的原理 (9)车载网络数据采集系统的功能概述 (9)车载网络数据采集系统的结构 (10)基于STM32的车在网络数据采集系统设计控制框图 (10)信号的采集与处理 (11)车载系统的网络通讯 (12)CAN网络的基本概念 (12)CAN网络在车载数据采集系统中的应用 (13)系统主要性能指标 (14)系统预期误差的评估 (15)第三章基于STM32F103VB数据采集系统的硬件设计 (16)STM32F103VB简介 (16)STM32F103VB电源模块的设计 (18)电源电路的设计 (18)STM32启动模式电路选择设计 (18)STM32F103VB外围接口电路的设计 (19)模数转换器的电路设计 (19)测温电路设计 (20)复位电路的电路设计 (21)STM32F103B通讯电路的设计 (21)CAN通讯接口电路设计 (21)JTAG程序调试接口电路设计 (22)RS485通讯电路设计 (23)第四章基于STM32数据采集系统的软件设计 (25)Keil uVision3平台简介 (25)基于STM32的车在网络数据采集系统的程序设计 (25)数据采集模块程序设计 (26)LCD显示模块程序设计 (27)数据存储模块程序设计 (27)CAN数据通讯模块程序设计 (28)RS485通讯模块程序设计 (28)第五章误差分析与处理 (29)误差概述 (29)误差的主要来源 (29)误差的处理 (29)误差分析 (30)测控系统的非线性 (30)系统工作环境的噪声 (31)系统的稳定性 (31)误差处理 (32)实测电压数据分析 (32)整机PCB板设计 (33)第六章总结与展望 (35)总结 (35)展望 (35)参考文献 (36)致谢 (36)第一章前言本课题研究的目的和意义随着世界工业经济的不断发展和人类需求的不断增长,对全球气候造成严重的影响,二氧化碳排放量增大,臭氧层遭受到破坏等。
新能源汽车电池管理系统的设计与优化随着全球经济的快速发展和环境问题的日益突出,新能源汽车作为一种绿色、环保的交通工具已经逐渐进入人们的视野。
而在新能源汽车的核心部件中,电池系统的设计与优化是影响电动汽车性能的关键因素。
在本篇文章中,我们将重点讨论新能源汽车电池管理系统的设计与优化。
1、电池管理系统的基本原理电池管理系统是一种集合了数据监测、电池保护、能量管理、通信管理等多种功能的智能软硬件系统。
其基本原理是对电池的电量和状态进行实时监测,并通过内部控制模块实现电池的充电、放电和保护等功能。
一般情况下,电池管理系统分为硬件系统和软件系统两个部分。
2、电池管理系统的硬件设计电池管理系统的硬件设计包括电池模块、电池管理芯片、控制芯片、通讯芯片等主要部件的选型和组成。
其中,电池模块是由多个电池单体组成的,在选型时需要考虑电池容量、电压、工作温度、充放电效率等因素。
电池管理芯片是电池管理系统中最为核心的部分,用来实现电池的电压监测、温度监测、充放电控制等功能。
控制芯片用于处理电池管理系统中的各种控制信号,实现电池系统的各种操作。
通信芯片则用于实现电池管理系统与其它部件的数据交互和通讯。
3、电池管理系统的软件设计电池管理系统的软件设计包括算法开发、控制策略设计、故障诊断等方面。
在算法开发方面,常用的算法有补偿算法、预测算法、模型算法等。
其中,补偿算法是常用的一种算法,其原理是通过实时监测电池状态,并对电池状态进行补偿和优化,以提高电池的使用寿命。
在控制策略设计方面,需要考虑到电池的充放电控制、温度控制等因素,以保证系统的运行稳定性和效率性。
在故障诊断方面,则需要通过监测多种电池异常情况,并进行精准诊断,以保证系统的安全性和可靠性。
4、电池管理系统的优化措施电池管理系统的优化措施主要包括电池容量优化、充放电控制优化、温度控制优化等方面。
其中,电池容量优化的核心在于提高电池的使用寿命和续航里程。
在充放电控制优化方面,则需要考虑到充电效率和放电效率的平衡以及系统的安全性和稳定性。
AUTOMOBILE DESIGN | 汽车设计时代汽车 电动汽车动力电池管理系统的设计与研究纪文煜无锡南洋职业技术学院 江苏省无锡市 214081摘 要: 能源危机和生态危机产生的人类生存压力越来越明显,汽车产业受能源危机和生态危机的双重影响,电动汽车的研发俨然是大趋势。
电动汽车的问世减少了环境污染,缓解了生态压力,而其也减少了能源消耗,在解决能源枯竭问题方面有着积极意义。
其研发与应用得益于其电池管理系统的设计优化,这也是新型能源汽车研发中的核心命题。
本文主要就电动汽车所对应的电池管理系统进行设计方面的系统研究,以通过硬件与软件的系优化设计,带来电池管理系统的优化,带来电动汽车研发的新革命,使得其性能逐步提升,助力新能源汽车产业的创新发展。
关键词:电动汽车 动力电池 管理系统 设计分析汽车产业是市场经济中的一大主导产业,其快速发展的背后也引发人类关于生态性问题、能源利用问题的深刻思考,当前生态危机加剧,能源紧张的现实让部分产业发展受限,而汽车产业首当其冲。
鉴于传统汽车产业发展的不足,研究新能源汽车成为备受瞩目的课题,而电动汽车的问世无疑为汽车行业的转型升级带来曙光。
对于电动汽车设计研发和性能发挥、来说,起核心作用的是电池,而其对应的系统设计是重中之重,电池作为其能量源泉,其系统则负责能量来源——电池运行情况的分析、数据的采集、故障的判断、运动控制等,系统性能优劣对汽车安全性和功能性发挥的影响是直接而深刻的。
1 电动汽车动力电池工作原理当前汽车的动力电池多对为金属燃料,主要构成是铝,基于其材料选择和性能循环的优化考虑,电池负极为金属材料,正极则采用泡沫石墨烯,其电解液主要成分是四氯化铝,实现了充放电的有效循环,即使在常温条件下也可以正常循环运作。
其正极所对应的石墨烯材料属于典型的层状材料,其能有效容纳阳离子,实现电解液内阴离子的容纳,让动力电池放电形成良性循环。
2 电动汽车电池管理系统设计的三大技术支持2.1 参数检测与分析工作参数检测是动力电池管理系统设计中首先要考虑的问题,工作参数检测涵盖多个方面,从工作电力到电压再到电温等,在这些工作参数检测的过程中[1],重点是进行单体电池的电压具体数值的测量,进行电压稳定性分析,以此明确电池工作状态。
268化工自动化及仪表2021年电池管理系统全自动测试软件设计刘永臣巨永锋张嘉洋杜凯(长安大学电子与控制工程学院)摘要针对锂离子电池及其电池管理系统在长期使用过程中存在的问题,以电池管理系统为测试目标,分析电池管理系统全自动化测试系统的总体功能要求,确定测试内容,然后根据测试内容设计测试方法和流程,最后根据软件功能,在Visual C++6.0开发环境下进行软件设计,实现上位机测试软件发送测试命令,接收并显示测试结果,控制测试进程等测试功能"实验结果表明:全自动测试软件有效提高了测试准确性、全面性和测试效率。
关键词电池管理系统锂离子电池全自动测试系统CAN通信中图分类号TP399文献标识码A文章编号1000-3932(2021)03-0268-05电池管理系统(BMS"既是新能源汽车的重要组成部分,又是连接电池与用户的枢纽,具有提高电池有效利用率、防止电池过度充放电、延缓电池损耗、增加使用寿命、监控电池的状态的作用,可以更加合理地管理和控制电池[1]o电池作为电动汽车的能量来源,由于电压和功率对汽车驱动的要求,电池需要相互并联或串联才能达到要求进行使用。
由于电池制作工艺的不同且电池反复使用,不断充电放电消耗,电池单体电量间的差异越来越明显,长此以往会对电池造成不可恢复的消耗损坏,电池的使用寿命将大打折扣。
这也成为新能源汽车核心技术难以突破的瓶颈,所以电动汽车的发展需要电池管理系统技术的发展来支撑[2](目前,锂离子电池是新能源汽车中使用范围最广的电池,锂离子电池具有环保、循环寿命长及安全性能好等优点。
但是,锂离子电池及其电池管理系统在长期的使用过程中存在一些缺陷亟待解决,如电池单体间差异、电池单体损坏、数据采样精度低及热失控现象等[3](因此,电池管理系统的质量直接影响电池的效率,而在电池管理系统开发过程中最关键的环节是功能测试。
笔者设计开发了一款电池管理系统全自动测试软件,实现对电池管理系统功能的全自动测试,有效提高了功能测试的准确性、全面性和测试效率。
电动汽车动力电池管理系统设计近年来,随着科技的不断发展和环保意识的不断增强,电动汽车作为一种新兴的交通工具越来越受到人们的关注。
而动力电池作为电动汽车的重要组成部分,其管理系统的设计显得尤为重要。
本文将从动力电池管理系统的功能、设计原则以及实现方法等方面进行阐述,为电动汽车动力电池管理系统的设计提供一些参考。
一、动力电池管理系统的功能动力电池管理系统主要具有以下功能:1、充电控制:监控电池的电量,控制充电电压和电流,确保电池的充电过程安全可靠。
2、放电控制:控制电池的输出电量和输出电流,确保电池的放电过程安全可靠。
3、温度控制:监控电池的温度,防止电池过热或过冷。
4、状态估计:对电池的充放电状态、容量、健康状态等进行估计和监控。
5、故障诊断:对电池的故障进行检测和诊断,避免电池事故的发生。
二、动力电池管理系统的设计原则在设计动力电池管理系统时,需要遵循以下原则:1、安全性原则:确保电池的充放电过程安全可靠,防止电池的过充、过放、过热等问题的发生。
2、高效性原则:确保电池的能量利用率最大化,使电池的使用寿命和续航里程更长。
3、可靠性原则:确保电池管理系统的可靠性和稳定性,避免电池管理系统本身故障,导致电池的损坏和事故的发生。
4、可控性原则:确保电池管理系统的可控性和可监控性,使用户可以了解电池的工作状态和健康状况。
三、动力电池管理系统的实现方法为实现电动汽车动力电池的管理系统设计,可以考虑采用以下实现方法:1、硬件实现方法:即通过硬件控制来实现电池的充放电过程的控制和监控。
主要包括控制模块、温度传感器、电流传感器和电压传感器等。
2、软件实现方法:即通过软件控制来实现电池的充放电过程的控制和监控。
主要包括程序设计、电池模型和运算算法等。
3、混合实现方法:即将硬件和软件相结合来实现电池的充放电过程的控制和监控。
主要是通过控制模块和程序算法相结合来实现电池管理系统的设计。
以上是电动汽车动力电池管理系统设计的基本思路和方法。