(名师整理)最新人教版数学八年级上册第15章第3节第3课时《分式方程的应用》精品课件
- 格式:ppt
- 大小:1.79 MB
- 文档页数:17
第3课时分式方程的应用◇教学目标◇[*^~%#]【知识与技能】能将实际问题中的等量关系用分式方程表示,列出分式方程解决简单的实际问题,并能根据实际问题的意义检验所得的结果是否合理.【过程与方法】培养学生分析问题、解决问题的能力.【情感、态度与价值观】鼓励学生进行探索和交流,培养他们的创新意识和合作精神.◇教学重难点◇【教学重点】结合实际分析问题列分式方程.【教学难点】[&^%#*]分析过程,得到等量关系.◇教学过程◇[%&#*^]一、情境导入为弘扬“敬老爱老”传统美德,某校八年级(1)班的学生要去距离学校10 km的敬老院看望老人,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果乘汽车的同学早到10 min.已知汽车的速度是骑车学生的4倍,求骑车学生的速度.你能解答吗?二、合作探究探究点1 工程问题典例1 为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?[解析] 设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.根据题意得=10.解得x=20.经检验x=20是原方程的解且符合实际问题的意义.∴1.2x=1.2×20=24.答:甲广告公司每天能制作20个宣传栏,乙广告公司每天能制作24个宣传栏.探究点2 行程问题典例2 甲、乙两人同时同地沿一路线开始攀登一座600米高的山,甲的攀登速度是乙的1.2倍,恰比乙早20分钟到达顶峰,甲乙两人的攀登速度各是多少?如果山高为h米,甲的攀登速度是乙的m倍,并比乙早r分钟到达顶峰,则两人的攀登速度各是多少?[解析] 设乙的速度为x米/分钟, [~%*@^]-20=,解得,x=5,经检验,x=5是原分式方程的解,∴1.2x=6,即甲的平均攀登速度是6米/分钟;如果山高为h米,甲的攀登速度是乙的m倍,并比乙早r分钟到达顶峰,设乙的速度为x米/分钟,-r=,解得x=,∴mx=,即甲的平均攀登速度是米/分钟.三、板书设计[&^%#*]分式方程的应用分式方程的应用◇教学反思◇本节课的内容是列分式方程解应用题,重点是建立分式方程应用题的思维模型,会根据题中的条件找出等量关系,同时列出分式方程,并解答.注重从审、找、设、列、解、验、答几个步骤对应用题进行了详细的讲解,使学生对解分式方程应用题的步骤和思路有一个清晰而深刻的认识,同时也对书写的过程有准确的概念.Unit5 Lesson1教学设计【内容来源】人民教育出版社(一起点)六年级下册Unit5【主题】Nature and Culture【课时】第1课时:Lesson1一、本课教学目标1. 通过听、说、读、写等形式的语言活动,帮助学生复习前几册有关Weather, Seasons, Sports and Games和Weekends等话题的重点词汇和功能句,培养学生综合运用所学语言知识进行交流的能力。
教学设计2024秋季八年级数学上册第十五章分式方程《分式方程的应用》教学目标(核心素养)1.知识与技能:学生能够理解分式方程在解决实际问题中的应用,掌握建立分式方程模型的方法,并能准确求解。
2.数学建模:通过实际问题抽象出分式方程,培养学生的数学建模能力和问题解决能力。
3.逻辑思维:在分析和解决问题的过程中,锻炼学生的逻辑推理能力和代数运算能力。
4.情感态度:激发学生对数学的兴趣,培养应用数学知识解决实际问题的意识。
教学重点•分式方程在解决实际问题中的应用。
•建立分式方程模型的方法。
教学难点•如何根据实际问题抽象出合适的分式方程。
•求解分式方程并验证解的合理性。
教学资源•多媒体课件(包含实际问题案例、分式方程建模过程)•教材及配套习题册•黑板与粉笔•学生分组讨论用的学习材料教学方法•案例教学法:通过实际问题案例引入,引导学生思考如何建立分式方程模型。
•讨论法:组织学生分组讨论,共同探索解决方案。
•讲授法:在关键环节进行必要的讲授,帮助学生理解难点。
•练习法:通过习题练习,巩固所学知识。
教学过程导入新课•生活实例引入:展示一个与分式方程紧密相关的生活实例(如速度、时间、距离问题,工程问题,经济问题等),引导学生思考如何用数学方法解决。
•提出问题:如何将这些实际问题转化为分式方程并求解?引出本节课的学习内容。
新课教学1.案例分析•选取一个典型的实际问题案例,详细分析其中的数量关系,引导学生识别出未知数和已知量。
•逐步引导学生建立分式方程模型,讲解建模过程中的思路和方法。
2.建模过程•强调建模步骤:理解问题、设定变量、建立方程、求解验证。
•通过多媒体演示或板书,清晰展示建模的每一步骤和注意事项。
3.求解验证•教授学生如何求解分式方程,并强调验根的重要性。
•引导学生将求得的解代入原问题中验证其合理性。
4.小组讨论•组织学生分组讨论其他类似的实际问题,尝试建立分式方程模型并求解。
•教师巡视指导,鼓励学生之间的交流与合作。