简单液压系统的设计实例-文档资料
- 格式:ppt
- 大小:705.50 KB
- 文档页数:17
基于PLC的四柱万能液压机液压系统设计第1章绪论液压机简介液压机是利用液压油来传递压力的设备。
液压油在密闭的容器中传递压力时是遵循帕斯卡定律液压机的液压传动系统由动力机构、控制机构、执行机构、辅助机构和工作介质组成。
动力机构通常采用油泵作为动力机构,一般为容积式油泵。
为了满足执行机构运动速度的要求,选用一个油泵或多个油泵。
低压〔油压小于2.5MP〕用齿轮泵;中压〔油压小于6.3MP〕用叶片泵高压〔油压小于32.0MP〕用柱塞泵。
液压机通常指液压泵和液压马达,液压机和液压马达都是液压系统中的能量转换装置,不同的是液压泵把驱动电动机的机械能转换成油液的压力能,是液压系统中的动力装置,而液压马达是把油液的压力能转换成机械能,是液压系统中的执行装置。
液压系统中常用的液压泵和马达液压机都是容积式的,其工作原理都是利用密封容积的变化进行吸油和压油的。
从工作原理上来说,大部分液压泵和液压马达是互逆的,即输入压力油,液压泵就变成液压马达,就可输出转速和转矩,但在结构上,液压泵和液压马达还是有些差异的.液压机的维修:过盈配合的零件拆装采用锤敲、棍橇劳动强度大效率低且不安全,还容易打坏零件,以及用加热法操作困难、增加维修成本的缺点提供的,是在支架的顶部,安装有活塞杆竖直向下的液压油缸,活塞杆的下端安装有压头;支架上在活塞杆的下部,水平固定有工作台;与油泵连接的输油管通过换向阀与液压油缸连接。
用液压油缸的压力装卸零件,没有猛烈的锤击棍橇,不损坏零件,也不用加热耗能,安全可靠节能,安装精度高.液压机液压机简介:液压机由主机及控制机构两大部分组成。
液压机主机部分包括机身、主缸、顶出缸及充液装置等。
动力机构由油箱、高压泵、低压控制系统、电动机及各种压力阀和方向阀等组成。
动力机构在电气装置的控制下,通过泵和油缸及各种液压阀实现能量的转换,调节和输送,完成各种工艺动作的循环。
液压机的分类:利用帕斯卡定律制成的利用液体压强传动的机械,种类很多。
小型液压机:液压系统设计方案概述1. 介绍本文件主要阐述了一款小型液压机的液压系统设计方案。
该方案旨在为小型液压机提供安全、稳定、高效的液压动力,以满足各种工业应用需求。
本文档将详细介绍液压系统的组成、工作原理、主要参数及应用范围。
2. 液压系统组成小型液压机的液压系统主要由以下几个部分组成:1. 液压泵:为整个液压系统提供动力来源,将液体从油箱吸入,然后高压输出至液压缸或液压马达。
2. 控制阀:控制液压系统的工作状态,包括方向、压力、流量等,确保系统按照预定的方式运行。
3. 液压缸/液压马达:将液压泵提供的压力能转化为机械能,完成各种工程任务。
4. 油箱:储存液压油,为液压系统提供充足的冷却和过滤。
5. 管路及连接件:连接液压系统的各个部分,确保液压油畅通无阻。
6. 传感器及监控系统:实时监测液压系统的运行状态,确保系统安全、稳定运行。
3. 工作原理小型液压机的液压系统工作原理如下:1. 启动液压泵,将液体从油箱吸入,经过过滤器过滤后,高压输出至控制阀。
2. 控制阀根据操作指令,调节液压系统的方向、压力、流量等参数,将液压油输送至液压缸或液压马达。
3. 液压缸或液压马达将液压油的压力能转化为机械能,完成各种工程任务。
4. 液压油回流至油箱,经过冷却和过滤,再次被液压泵吸入,形成循环。
5. 传感器及监控系统实时监测液压系统的运行状态,如压力、流量、温度等,确保系统安全、稳定运行。
4. 主要参数小型液压机液压系统的主要参数包括:1. 液压泵额定压力:根据液压机的工作需求,选择合适的液压泵额定压力。
2. 液压泵额定流量:确保液压泵在规定时间内提供足够的液压油。
3. 液压缸/液压马达额定功率:根据工程任务需求,选择合适的液压缸/液压马达额定功率。
4. 管路直径及长度:根据液压系统的压力损失和流量要求,合理设计管路直径及长度。
5. 控制阀规格:根据液压系统的需求,选择合适的控制阀规格,确保系统稳定运行。
液压系统设计指南:专为小型液压机1. 简介本文档旨在提供一份液压系统设计指南,专为小型液压机而设计。
液压系统是一种利用液体力学原理传递能量的系统,广泛应用于各种工业和机械设备中。
通过正确设计液压系统,可以实现高效的能量传递和精确的控制。
本指南将介绍设计小型液压机所需考虑的关键要素和简单策略,以确保系统的可靠性和性能。
2. 设计要素在设计小型液压机的液压系统时,需要考虑以下关键要素:2.1 压力需求首先,确定液压系统所需的最大工作压力。
这取决于液压机的工作负载和所需的力输出。
根据负载的类型和大小,选择适当的液压缸和泵以满足系统的压力需求。
2.2 流量需求确定液压系统所需的最大流量。
流量需求取决于液压机的工作速度和所需的流体输送量。
选择适当的泵和管道尺寸,以确保系统能够提供所需的流量。
2.3 控制方式选择适当的控制方式以实现对液压机的精确控制。
常见的控制方式包括手动控制、自动控制和比例控制。
根据具体应用需求,选择最合适的控制方式。
2.4 安全考虑在设计液压系统时,安全是至关重要的考虑因素。
确保系统具有适当的压力保护装置,并采取必要的措施来防止液压系统发生泄漏和过热等问题。
3. 设计策略为了简化液压系统的设计,并确保系统的可靠性和性能,以下是一些简单的设计策略:3.1 使用标准组件尽可能使用标准化的液压组件,如泵、阀门、液压缸等。
这样可以降低系统的复杂性,并简化维护和维修工作。
3.2 避免复杂的管路布局设计简单直接的管路布局,减少管道的长度和弯曲,以降低系统的压力损失和能量消耗。
3.3 定期维护和检修定期检查和维护液压系统,包括更换液压油、清洁过滤器、紧固松动的连接件等。
这样可以延长系统的使用寿命,并确保系统的正常运行。
3.4 进行性能测试在设计完成后,进行系统的性能测试,以确保系统的性能符合设计要求。
测试包括压力测试、流量测试和控制精度测试等。
结论本文档提供了一份液压系统设计指南,专为小型液压机而设计。
典型液压传动系统实例分析(总32页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章典型液压传动系统实例分析第一节液压系统的型式及其评价一、液压系统的型式通常可以把液压系统分成以下几种不同的型式。
1.按油液循环方式的不同分按油液循环方式的不同,可将液压系统分为开式系统和闭式系统。
(1)开式系统如图所示,开式系统是指液压泵1从油箱5吸油,通过换向阀2给液压缸3(或液压马达)供油以驱动工作机构,液压缸3(或液压马达)的回油再经换向阀回油箱。
在泵出口处装溢流阀4。
这种系统结构较为简单。
由于系统工作完的油液回油箱,因此可以发挥油箱的散热、沉淀杂质的作用。
但因油液常与空气接触,使空气易于渗入系统,导致工作机构运动的图开式系统不平稳及其它不良后果。
为了保证工作机构运动的平稳性,在系统的回油路上可设置背压阀,这将引起附加的能量损失,使油温升高。
70在开式系统中,采用的液压泵为定量泵或单向变量泵,考虑到泵的自吸能力和避免产生吸空现象,对自吸能力差的液压泵,通常将其工作转速限制在额定转速的75%以内,或增设一个辅助泵进行灌注。
工作机构的换向则借助于换向阀。
换向阀换向时,除了产生液压冲击外,运动部件的惯性能将转变为热能,而使液压油的温度升高。
但由于开式系统结构简单,因此仍为大多数工程机械所采用。
(2)闭式系统如图所示。
在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。
闭式直系统结构较为紧凑,和空气接触机会较少,空气不易渗入系统,故传动的平稳性好。
工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。
但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。
为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油和散热,因此这种系统实际上是一个半闭式系统。