列车再生制动方法及条件
- 格式:doc
- 大小:378.00 KB
- 文档页数:7
高速列车制动方式分类从能量的观点来看,制动的实质就是将列车动能转变成其他能量或转移走;从作用力的观点来看,制动就是让制动装置产生与列车运行方向相反的外力,使列车产生较大的减速度,尽快减速或停车。
(1)根据列车动能转移方式的不同,列车制动可分为如下几种方式:①盘形制动。
②电阻制动。
③再生制动。
④磁轨制动。
⑤轨道涡流制动。
⑥旋转涡流制动。
⑦风阻制动。
上述制动方式中的盘形制动和磁轨制动也可称为摩擦制动,都是通过机械摩擦来消耗高速列车动能的制动方式。
其优点是制动力与列车速度无关。
无论列车是高速运行还是低速运行,都有制动能力,特别是在低速运行时能对列车施行制动直至停车。
可以说摩擦制动始终是高速列车最基本的制动方式。
摩擦制动的缺点是制动力有限,因受散热限制而使制动功率增大。
电阻制动、再生制动、轨道涡流制动和旋转涡流制动等也可称为动力制动,都是利用某种能量转换装置将运行中列车的动能转换为其他形式的能量,并予以消耗的制动方式。
其特点是制动力与列车速度有很大关系,列车速度越高,制动力越大,随着列车速度的降低,制动力也随之下降。
(2)根据制动力的形成方式不同,制动方式可分为黏着制动和非黏着制动。
车轮在钢轨上滚动时,轮轨接触处既非静止,也非滑动,在铁路术语中用“黏着”来说明这种状态。
黏着制动是指依靠黏着滚动的车轮与钢轨黏着点之间的黏着力来实现列车制动的方式。
黏着制度包括闸瓦制动、盘形制动、电阻制动、再生制动及电磁涡流转子制动等。
以闸瓦制动为例,车轮、闸瓦和钢轨三者之间有3种可供分析的状态:第一种是难以实现的理想的纯滚动状态;第二种是应极力避免的“滑行”状态;第三种是实际运用中的黏着状态。
在上述3种情况中,纯滚动状态为最理想的轮轨接触状态,但实际上是不可能实现的;为避免车轮踏面擦伤、制动距离延长,需要防止“滑行”;黏着状态介于两者之间,它可以随气候与速度等条件的不同有相当大的变化。
由于列车的制动能量和速度的平方成正比,因此高速列车的动能很大,需要足够大的制动功率和更灵敏的制动操纵系统。
机车再生制动能量吸收利用方案2014年8月汇报内容一、机车再生制动能量吸收利用的意义机械能→电能机械能→热能机械能→热能将再生制动的能量回收再利用;可采用储能、回馈等方式。
减少隧道内热量的排放;减小环控动力负荷,节约环控投资。
减小机车轴重,增加了载客能力;节约车底空间,减小电气布线难度。
全被其它车辆和本车的用电设备吸收时,牵引网电压将很快上升,网压上升到一定程度1、电阻耗能型由于电阻装置将吸收的能量均以发热的形式消耗掉,装置顶部温度高,出现过烤化灯管等问。
(北京地铁15号线中段地下站的电阻室设置在地面,为封闭式房间,后改为栏杆形通过对北京已通线运行情况调查,电阻工作时会1、电阻耗能型2、逆变回馈型二、国内外技术现状2.12.2逆变回馈型再生电能利用装置的直流侧与牵引变电所中的整流器直流母线相联,其交流进3、储能型(超级电容储能、飞轮储能)储能型再生制动能量吸收装置主要采用IGBT逆变器将列车的再生制动能量吸收到大容量电能释放出去并进行再利用。
电容储能装置原理图经初步估算,电容型装置在北京地铁的寿命约10年。
储能装置接线示意图储能单元3、储能型(超级电容储能、飞轮储能)电容储能型应用情况:三、再生制动能量吸收利用方案比较1、中压逆变型装置接入系统方案①2、中压逆变型装置系统参数3、中压逆变型装置应用情况18变压器交流低压开关柜中压能馈装置4、设备实物照片-北京10号线二期-千驷驭-2000kW4、设备实物照片-14号线西段-时代电气-3600kW(间歇工作20s/120s)变压器双向变流器直流柜(隔离开关和电抗器)5、实测数据分析-北京10号线5、实测数据分析-北京10号线5、实测数据分析-10号线根据实测数据,十里河变电所能馈装置1月22-4月10日期间日均节能1724度。
5、实测数据分析-10号线根据实测数据,西钓鱼台变电所能馈装置1月22-2月1日期间日均节能1555度。
5、实测数据分析-北京14号线5、实测数据分析-北京14号线5、实测数据分析-北京14号线5、实测数据分析-北京14号线五、发展方向展望。
地铁列车再生制动能量吸收装置参数设置作者:张猛来源:《中国新技术新产品》2017年第02期摘要:地铁列车在制动时会向电网回馈能量,当这部分能量不能完全被其他车辆或用电设备吸收时,会造成电网电压升高,这对变电所设备和车辆的运行非常不利,因此需要设置再生制动能量吸收装置将剩余能量消耗掉,以维持电网电压稳定。
关键词:牵引制动;能量反馈;网压中图分类号:U231 文献标识码:A1.牵引列车现状在每个牵引箱里均配有电压传感器用来实时检测网压值,以检测网压的实时情况。
电压传感器检测到的数据实时传给DCU,由DCU进行软件处理判断。
当网压在正常范围内时,牵引逆变器正常工作,当网压过高或过低时,DCU会报出网压过高或过低故障,并断开相应的接触器以保护牵引设备。
在DCU中会设有网压过压1、网压过压2、网压欠压等3种针对网压值的故障判断。
其中当网压值超过2100V时,DCU会报出“网压过压2”故障,为防止网压过压对设备造成损害,DCU会断开高速断路器、短接接触器、封锁逆变单元,并且需要通过MVB复位或重新激活列车进行恢复。
这意味着发生这种故障时,列车才能合高断进行牵引,否则列车无法动车。
此时,牵引制动过压保护的设置成为关键。
2.研究方法通常再生制动引起过电压持续时间非常短,供电系统设备无法采集到过电压情况。
过电压是由于供电系统震荡引起或在列车制动过程引起的。
网压过高或列车本身检测系统采集错误的过电压无法判断。
通过试车线模拟正线电客车启动、行驶、制动、停止,采集变电所内牵引网压。
研究采用DSO-3034a型号示波器采集牵引网压波形,实际电压=采集电压×220,横向间隔表示采样时间,纵向间隔表示采样大小。
采集频率设置为100KSa/S(1s采集1×10----5个点=10微秒采集1个点)。
牵引供电系统采用桥式24脉波整流,将交流电压转换成直流电压,由于示波器的采样频率非常高,所以在采集的直流电压波形图中,每当电压趋于稳定后,放大的波形图中会观察到很厚的波形,电压变化幅度越小,波形越厚重。
第16卷第1期2021年3月电气工程学报Vol.16 No.1Mar. 2021DOI:10.11985/2021.01.020重载铁路再生制动能量利用方案研究刘华伟1耿安琪2何正友2胡海涛2张宏伟2(1. 神华包神铁路集团有限责任公司包头014010;2. 西南交通大学电气工程学院成都611756)摘要:重载铁路运输作为铁路的重要发展方向之一,具有效率高、成本低且运能大的特点。
近年来,我国重载铁路运能不断提高的同时,也使得能源消耗问题日益凸显。
针对如何实现重载铁路的节能降耗,提出了一种基于混合储能的再生制动能量利用方案,通过利用蓄电池和超级电容器在性能上的互补性,实现混合储能系统对重载铁路再生制动能量的高效利用。
结合神朔铁路的实测数据,对该条线路的负荷情况进行了分析,并针对混合储能系统设计了有效的能量管理策略,最后在实测数据的基础上对系统的经济性进行了评估。
分析结果验证了提出能量管理策略的有效性,以及再生制动能量利用方案具有很好的经济性。
关键词:重载铁路;再生制动能量;混合储能;经济性中图分类号:TM711Research on Energy Utilization Scheme of Regenerative Braking forHeavy Haul RailwayLIU Huawei1GENG Anqi2HE Zhengyou2HU Haitao2ZHANG Hongwei2(1. Shenhua Baoshen Railway Group Co. Ltd., Baotou 014010;2. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756)Abstract:As one of the important development directions of railroad, heavy-duty railroad transportation has the characteristics of high efficiency, low cost and large capacity. In recent years, while China heavy-duty railroad capacity has been increasing, it also makes the problem of energy consumption increasingly prominent. A hybrid energy storage based regenerative braking energy utilization scheme is proposed to realize the efficient utilization of regenerative braking energy for heavy-duty railroads by using the complementary performance of storage battery and supercapacitor. The load conditions of the line are analyzed with the measured data of the Shenshuo railroad, and an effective energy management strategy is designed for the hybrid energy storage system, and finally the economics of the system is evaluated based on the measured data. The analysis results verify the effectiveness of the proposed energy management strategy and the good economics of the regenerative braking energy utilization scheme.Key words:Heavy-haul railway;regenerative braking energy;hybrid energy storage system;economy1 引言2019年,全国铁路货运总发送量完成43.98亿吨,增长7.2%[1]。
制动装置一般可分为两大组成部分:之宇文皓月创作(1)“制动机”——发生制动原动力并进行把持和控制的部分。
(2)“基础制动装置”——传送制动原动力并发生制动力的部分。
列车制动在把持上按用途可分为两种。
(l)“经常使用制动”——正常情况下为调节或控制列车速度,包含进站停车所施行的制动。
其特点是作用比较缓和而且制动力可以调节,通常只用列车制动能力的20%~80%,多数情况下只用50%左右。
(2)“紧急制动”—一紧急情况下为使列车尽快停住而施行的制动(在我国,也称“非常制动”),其特点是作用比较迅猛,而且要把列车制动能力全部用上。
从司机实施制动(将制动手柄移至制动位)的瞬间起,到列车速度降为零的瞬间止,列车所驶过的距离,称为列车“制动距离”。
这是综合反映列车制动装置的性能和实际制动效果的主要技术指标。
闸瓦制动,又称踏面制动,是自有铁路以来使用最广泛的一种制动方式。
它用铸铁或其他资料制成的瓦状制动块(闸瓦)紧压滚动着的车轮踏面,通过闸瓦与车轮踏面的机械摩擦将列车的动能转变成热能,消散于大气,并发生制动力。
其他制动方式除闸瓦制动外,铁路机车车辆还有一些其他制动方式。
(一)盘形制动盘形制动(摩擦式圆盘制动)是在车轴上或在车轮辐板正面装上制动盘,一般为铸铁圆盘,用制动夹钳使合成资料制成的两个闸片紧压制动盘正面,通过摩擦发生制动力,把列车动能转酿成热能,消散于大气。
参看图4—1-4。
与闸瓦制动相比,盘形制动有下列主要优点:(1)可以大大减轻车轮踏面的热负荷和机械磨耗。
(2)可按制动要求选择最佳“摩擦副”(采取闸瓦制动时,作为“摩擦副”一方的车轮的构造和材质不克不及根据制动的要求来选择),盘形制动的制动盘可以设计成带散热筋的,旋转时它具有半强迫通风的作用,以改善散热性能,为采取摩擦性能较好的合成资料闸片创造了有利的条件,适宜于高速列车。
(3)制动平稳,几乎没有噪声。
但是,盘形制动也有它缺乏之处:(1)车轮踏面没有闸瓦的磨刮,轮轨粘着将恶化,所以,还要考虑加装踏面清扫器(或称清扫闸瓦),或采取以盘形为主、盘形加闸瓦的混合制动方式,否则,即使有防滑器,制动距离也比闸瓦制动要长。
. . . . . .
条件 再生反馈电压必须高于直流牵引电网电压 再生制动能量可被本列车的辅助设备吸收利用,也可提供相邻列车使用
再生制动能量循环利用主要有储能和逆变两种方式:储能所采用的技术主要有蓄电池储能、电容储能、飞轮储能3种;而能量回馈所采用的技术主要是逆变至中压网络和低压网络两类。 (1)蓄电池储能 蓄电池储能系统如图所示,该装置是将制动能量吸收到电池介质中,当供电区间有列车需要取流时,再将所储存的能量释放出去,由于蓄电池本身的特点充放电电流小,瞬间不能大功率充放电,所以该装置体积较大电池处于频繁充放电状态将影响其使用寿命,储能容量相对较少。
(2)飞轮储能型 采用飞轮储能方式的吸收装置由储能飞轮电机、IGBT斩波器、直流快速断路器、电动隔离开关、传感器和控制模块等组成。该装置直接接在变电所正负母线间或接触网和回流轨间,其核心技术是利用核物理工业的物质分离衍生技术而制造的飞轮,该装置设置在真空壳体,飞轮经过特殊材料和加工工艺制成的轴支撑在底部结构上。 . . . . . . 近几年,英国UPT电力公司生产的成熟运营的飞轮储能型产品,在电力系统、巴士公司、英国、纽约部分地铁均有应用。国大学某实验室有类似的小功率产品研制,但飞轮的机械参数难以达到国外的水平,无法在工程中投入使用。该产品的优点:有效利用了再生制动能量,节能效益好;并可取消(或减少)车载制动电阻,降低车辆自重,提高列车动力性能;直接接在接触网或变电所正负直流母线间,再生电能直接在直流系统转换,对交流供电系统不会造成影响。该产品的缺点:飞轮是高速转动的机械产品,对制造工艺要求很高,需采用真空环境和特殊轴类制造技术,成本较高。使用寿命是否能满足要求,维护维修是否方便,另外国无成熟技术和产品等都成为制约其推广的因素。 (3)超级电容储能 以已经投入运行的地铁5号线为例简单说明超级电容储能的应用。 当具有再生制动能力的车辆在变电站能量存储系统附近释放能量时,牵引网网压上升,能量存储系统的调节器可探测到这种情况,并将牵引网系统中暂时多余的能量存储到电容器中,使牵引网网压保持在限定围。若车辆在变电站能量存储系统附近起动或加速,牵引网网压下降,此时,能量存储系统的调节器将能量从存储系统输送回牵引网系统中,保持牵引网网压稳定。在直流牵引网的空载状态下,能量存储系统从牵引系统吸收一部分能量,通过这种方式可以帮助车辆起动。 . .
. . . .
储能系统的基本工作原理如下:+SlAl—Sl为隔离开关,维护设备时,可将系统从干线牵引网隔离开来。并可使用+SlA2—Q0断路器隔离系统。+SlA2—QO断路器发生故障导致短路时,熔断器+S1Fl将熔断。充电时,与+SlA2—QO断路器并联的预充电路(+S 1 A 1—F l、+S1Al—K1和+S1A1—Rl和)将对间接电容器(Czk)进行“软”预充,避免充电冲击电流太大损坏设备。间接电容器为一组直流滤波电容器。牵引网产生瞬变电压时,+S3—L 1滤波电抗器将保护能量存储系统。此外,该电抗器将牵引网和变流单元的谐波电流有效地分隔开来。+S3—G l、+S3—G2是变流单元的2个变流器模块(图2),每个变流器模块分别包括2条变流器分路,共4条变流器分路对能量的总量及流向进行调节控制。+S 3—Fl、+S3—F2、+S3—F3,+S3—F4为带熔断器的手动隔离开关,+S 4—L1、+S4—L2、 . . . . . . +S4—L3、+S4—L4为平波电抗器。进行设备维修时将系统从牵引网隔离出来以后,使用由+S3—V1和S9—R1组成的放电支路对能量存储系统进行放电。+S5—E1……+S8—E8为储能双层电容器。双层电容器特点:高动态充电容量,具有频繁充放电能力,免维护,高效率,可分级控制储能容量。 该系统的应用具有明显优势:能量存储系统先进、高性能的控制回路,在实时检测到牵引网的网压波动达到设定的条件后,能够快速地启动充放电装置,对牵引网进行充、放电;而同时由于采用了能够快速进行充放电的双层电容器,整套装置能够对牵引网的电能变化做出及时反应,从而改善牵引网供电质量,满足车辆起动和制动需要。地铁5号线的14座牵引变电所均预留安装再生电能吸收装置,从目前4套再生电能吸收装置的运行情况来看,在改善牵引网供电质量、提高车辆舒适性方面,效果良好,达到了设计目的。地铁5号线变电所的一套再生电能吸收装置设备采购费用为51O余万元人民币,造价昂贵。因此,在计划采用这种设备时需要考虑经济效益,对近期和长期经济效益、社会效益要综合比较,最终确定是否可行。随着产品的大规模化生产以及电子产品的飞速发展,类似产品的价格必将大幅下降,相信不久的将来再生电能吸收技术能在地铁领域得到大面积应用,成为轨道交通牵引供电技术发展的方向。 其次是逆变装置以及相关技术 (1)逆变至中压网络的应用 本方案采用如图1所示原理图。虚线框中的部分即所提出的再生制动能量回馈系统,从主接线上看,该系统与牵引供电支路并列布置在交流中压电网和直流牵引母线之间。系统包含1台多重化变压器以及多个四象限PWM变流器模块,整套装置与传统的二极管整流机组并列布置。系统的多重化变压器一次侧通过高压开关柜QFac与交流中压电网相连,其低压侧每套绕组都与一个四象限变流器模块交流侧相连,四象限变流直流侧则并联在一起后通过直流开关柜QFdc和负极柜QCdc与直流牵引母线相连。 . .
. . . . 系统检测直流母线电压,当确定有车辆制动且直流母线电压超过设置的门槛值时,进入回馈模式。此时装置将多余的再生制动能量通过各重IGBT变流器以及多重化变压器回馈到交流中压电网,此时装置能量的流动方向是从牵引直流母线流向交流中压电网,且交流中压电网侧的功率因数接近-1。 针对目前城轨供电系统再生制动能量回馈的几个问题,该方案提出了基于多重化四象限变流器的制动能量回馈系统。仿真和样机试制表明,该系统可以在满足电网兼容性要求的前提下实现制动能量回馈至中压电网的功能,加之所述系统与现有牵引供电系统并列连接,并与中压交流电网和直流牵引网之间相互间兼容性好,有着较大实际意义和推广价值。
(2)逆变至低压压负荷网络 逆变至低压网络利用再生制动能量逆变回馈装置来逆变多余的再生制动能量,采用直流牵引网的电压作为能量控制策略依据,提出DC/AC变换器电压外环、电流环的SVPWM控制策略;运用Matlab/Simlulink搭建了一个750V直流电气化铁路等效模型仿真平台,并通过仿真和实验验证了该控制策略的可行性和有效性。再生制动能量逆变回馈装置能满足地铁列车再生制动能量吸收利用及稳定直流牵引网电压要求,实现车辆再生制动能量回馈利用。 图1示出再生制动能量逆变回馈装置主电路。该系统由三相交流电源经降压变压器降压后与二极管构成不可控整流来模拟变电所直流牵引供电系统,整流器输出24脉动整流电压到直流牵引供电网,电路后端加入逆变器和电机,通过控制电机运行的不同状态来模拟地铁运行工况,再生制动能量逆变回馈装置并联在直流母线电压端。
在三相静止对称坐标系数学模型中,因为并网逆变器的交流侧均为时变交流量,所以对控制系统的设计比较复杂。为使控制系统的设计变简单,可通过坐标变换转换到与电网基波频率同步旋转的d,q坐标系下。这样,经过坐标旋转变换后,三相对称静止坐标系中的基波正弦量将转化为同步旋转坐标系中的直流变量。这里对电压源型逆变器采用输出电流控制,在与电网电压矢量同步旋转的d,q坐标系下,应用同步矢量电流PI控制器对逆变器输出电流实施闭环控制,实现有功和无功的解祸控制,达到逆变器输出单位功率因数并网的目的。图2示出 . . . . . . DC/AC控制的流程图,采用基于SVPWM的双环控制结构,直流牵引网的电压采用外环控制,而环控制逆变器输出电流。
外环控制直流牵引网电压,实际直流牵引网电压叽与给定电压叽'的差值作为直流电压PI调节器的输入,其输出作为对应有功功率的d轴电流参考值ia*,通过调节逆变器传送到电网的有功功率,使直流牵引网电压工作在给定参考电压。环为电流控制环,在与电网电压矢量同步旋转的d,q坐标系统下,利用两个PI调节器对逆变器输出电流的d,q轴分量进行解祸控制,PI调节器的输出分别为Ud*和Uq*。根据Ud*和Uq*及电网电压矢量旋转角度的值,利用7段式SVPWM算法即可得三相参考电压Ua,Ub,Uc的调制波形。设置iq*=0使逆变器输出功率因数为1。该装置的驱动电路将无桥Boost的PFC和半桥谐振LLC电路有机结合,具有器件少,成本低,无电解电容,控制简单,输入功率因数高等优点。
由上述分析可知: 电容储能型或飞轮储能型再生制动能量吸收装置主要采用IGBT 逆变器将列车的再生制动能量吸收到大容量电容器组或飞轮电机中,当供电区间有列车起动或加速需要取流时,该装置将所储存的电能释放出去并进行再利用。该类吸收装置的电气系统主要包括储能电容器组或飞轮电机、IGBT 斩波器、直流快速断路器、电动隔离开关、传感器和微机控制单元等。该装置充分利用了列车再生制动能量, 节能效果好, 并可减少列车制动电阻的容量。其主要缺点是要设置体积庞大的电容器组和转动机械飞轮装置作为储能部件,因此应用实例较少。 逆变回馈型再生制动能量吸收装置主要采用电力电子器件构成大