值.
分析:1∈A→a=1或a2=1→验证互异性
解:因为1∈A,所以a=1或a2=1,即a=±1,当a=1时,a=a2,集合A中
只有一个元素,所以a≠1;当a=-1时,集合A中含有两个元素1,-1,
符合互异性,所以a=-1.
1.本例中若去掉条件“1∈A”,其他条件不变,则实数a的取值范
围是什么?
解:由题意a和a2组成含有两个元素的集合,则a≠a2,解得a≠0且
A.0∈A B.a∉A C.a∈A D.a=A
解析:∵集合A中只含有一个元素a,
∴a属于集合A,即a∈A.
答案:C
)
3.由x2,x3组成一个集合A,A中含有两个元素,则实数x的取值可
以是(
)
A.0 B.-1 C.1 D.-1或1
解析:验证法:若x=0,x2=0,x3=0,不合题意;
若x=1,x2=1,x3=1,不合题意;
(1)1
N+;(2)-3
(3)
(5)-
Q;(4)
N;
Q;
R.
答案:(1)∈ (2)∉ (3)∈ (4)∉ (5)∈
【思考辨析】
判断下列说法是否正确,正确的在它后面的括号里画“ ”,错
误的画“×”.
(1)如果小明的身高是1.78 m,那么他应该是由高个子学生组
成的集合中的一个元素.( × )
么是,要么不是,两者必居其一,且仅居其一,故“等边三角形的
全体”能组成集合;同理可得,(2)能组成集合;(3)能组成集合;
(4)“聪明的人”没有明确的判断标准,对于某个人算不算聪明
无法客观判断,因此“聪明的人”不能组成集合;同理可得,(5)不能 Nhomakorabea成集合.