当前位置:文档之家› 实验十八 等厚干涉现象的研究

实验十八 等厚干涉现象的研究

实验十八 等厚干涉现象的研究
实验十八 等厚干涉现象的研究

实验十八 等厚干涉现象的研究

实验目的

1.观察牛顿环产生的等厚干涉条纹,加深对等厚干涉现象的认识。

2.掌握测量平凸透镜曲率半径的方法。

实验器材

读数显微镜,牛顿环仪,钠光灯。

实验原理

牛顿环是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现,所以叫牛顿环。在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度、厚度和角度,检验试件表面的光洁度,研究机械零件内应力的分布以及在半导体技术中测量硅片上氧化层的厚度等。

牛顿环仪是由曲率半径较

大的平凸透镜L 和磨光的平玻璃板P 叠和装在金属框架F 中

构成,如图18-1所示。框架边上有三个螺旋H ,用来调节

L 和P 之间的接触,以改变干

涉条纹的形状和位置。调节H

时,螺旋不可旋得过紧,以免

接触压力过大引起透镜弹性形

变,甚至损坏透镜。

如图18-2所示平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环(如图18-3所示),称为牛顿环。由于同一干涉

环上各处的空气层

118—

厚度是相同的,因此它属于等厚干涉。???

?? 由图18-2可见,如设透镜的曲率半径为R,与接触点O相距为r处空气层的厚度为d,其几何关系式为:

222)(r d R R +-=

2

222r d Rd R ++-=

由于R>>d,可以略去d 2得 R

r d 22

= (18-1) ?? 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃板上反射会有半波损失,从而带来λ/2的附加光程差,所以总光程差为 ?? 22λ+

=?d (18-2) 产生暗环的条件是:

?? ?=(2k+1)2

λ (18-3) 其中k=0,1,2,3,...为干涉暗条纹的级数。综合(18-1)、(18-2)和(18-3)式可得第k级暗环的半径为: ?? λkR r k =2 (18-4)

由(18-4)式可知,如果单色光源的波长λ已知,测出第m级的暗环半径rm ,即可得出平凸透镜的曲率半径R;反之,如果R已知,测出rm 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层中有了尘埃,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环的半径rm 和rn 的平方差来计算曲率半径R。

因为?? rm 2=mRλ , rn 2=nRλ

两式相减可得?? λ)(22n m R r r n m -=-

所以?? λ)(22n m r r R n m --=或λ

)(422n m D D R n m --= (18-5) ?? 由上式可知,只要测出Dm 与Dn (分别为第m 与第n 条暗环的直径)的值,就能算出R或λ。这样就可避免实验中条纹级数难于确定的困难,利用后一计算式还可克服确定条纹中心位置的困难。

实验步骤

(一)清点主要仪器

1.测量显微镜 ( )

2.钠光灯 ( )

3.牛顿环 ( )

4.光具座( )

5.读数小灯( )

6.聚光镜

(二)测量

1.调整牛顿环装置,观察干涉现象。

(1)放置好仪器,然后点燃钠光灯使灯管预热,调整牛顿环装置上的三颗螺钉,用肉眼观察,牛顿环刚好在装置的中心,并且是一系列的同心圆。

(2)将牛顿环装置放置在读数显微镜镜筒正下方。

(3)待钠光灯正常发光后,调节读数显微镜下底座平台高度(底座可升降),使45度玻璃片正对钠灯窗口,并且同高。

(4)在目镜中观察从空气层反射回来的光,整个视场应较亮,颜色呈钠光的黄色,如果看不到光斑,可适当调节45度玻璃片的倾斜度及平台高度(一般实验室事先已调节好,不可随意调节),直至看到反射光斑,并均匀照亮视场。

(5)调节目镜,在目镜中看到清晰的十字准线的像。

(6)转动物镜调节手轮,调节显微镜镜筒与牛顿环装置之间的距离。先将镜筒下降,使45度玻璃片接近牛顿环装置但不能碰上,然后缓慢上升,直至在目镜中看到清晰的十字准线和牛顿环像。

(7)调整牛顿环装置的位置,并适当转动测微手轮,使显微镜目镜内的叉丝正对牛顿环的中心。

2.测量牛顿环的直径。

沿一个方向转动读数显微镜的测微手轮,使显微镜的十字叉丝向一个方向移动,当移动到第18级时,把测微手轮往相反方向转动,至叉丝的竖线刚好对准第17级暗环的边缘时,即在显微镜读数标尺上记下此时的位置(读数)。继续转动测微手轮,依次测出16、15、14、13与7、6、5、4、3各级暗环的位置(读数),继续向同一方向转动测微手轮,当叉丝经过中央暗斑而到达另一边的第3级暗环时,又开始记录,并依次记下3、4、5、6、7与13、14、15、16、17各级暗环的读数,将各次测量数据记录在表①中。

(三)列数据表格

数据处理要求:

已知该待测平凸透镜曲率班半径为4.0米,求出百分误差。

注意事项

1.使用读数显微镜时,为避免引进螺距差,移测时必须向同一方向旋转,中途不可倒退。

2.调节H时,螺旋不可旋得过紧,以免接触压力过大引起透镜弹性形变。

3.实验完毕应将牛顿环仪上的三个螺旋松开,以免牛顿环变形。

4.因为牛顿环纹较宽,叉丝不易对齐中间,但环纹的边缘一般较清晰,所以测量时一般使叉丝对齐环纹的边缘,但要注意:测左边环纹时,若叉丝对齐环纹外侧边缘,则测右边环纹时,叉丝对齐环纹内侧边缘.同理测左边环纹时,若叉丝对齐环纹内侧边缘,则测右边环纹时,叉丝对齐环纹外侧边缘.(为什么?)思考讨论

1.牛顿环干涉条纹一定会成为圆环形状吗?其形成的干涉条纹定域在何处?

2.从牛顿环仪透射出到环底的光能形成干涉条纹吗?如果能形成干涉环,则与反射光形成的条纹有何不同?

3.实验中为什么要测牛顿环直径,而不测其半径?

4.实验中为什么要测量多组数据且采用多项逐差法处理数据?

5.实验中如果用凹透镜代替凸透镜,所得数据有何异同?

大物实验报告光的等厚干涉

大学物理实验报告 实验名称:光的等厚干涉 学院:机电工程学院 班级:车辆151班 姓名:吴倩萍 学号:5902415034 时间:第8周周三下午3:45开始 地点:基础实验大楼313 一、实验目的: 1.观察牛顿环和劈尖的干涉现象。 2.了解形成等厚干涉现象的条件及特点。 3.用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验仪器: 牛顿环装置、钠光灯、读数显微镜、劈尖等。 三、实验原理:

在平面玻璃板BB上放置一曲率半径为R的平凸透镜AOA,两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现象称为等厚干涉。 1.用牛顿环测量平凸透镜表面的曲率半径 (1)安放实验仪器。(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。将牛顿环仪放在显微镜的平台上,调节45°玻璃板,以便获得最大的照度。(3)调节读数显微镜调焦手轮,直至在显微镜内能看到清晰的干涉条纹的像。适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。(4)转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。将数据填入表中,显然,某环左右位置读数之差即为该环的直径。用逐差法求出R,并计算误差。 2.用劈尖干涉法则细丝直径 (1)将被测细丝夹在两块平板玻璃的一端,另一端直接接触,形成劈尖,然后置于读数显微镜载物台上。(2)调节叉丝方位

等厚干涉实验报告(2)

大学物理实验报告(等厚干涉) 、实验目的: 1?、观察牛顿环和劈尖的干涉现象。 2、了解形成等厚干涉现象的条件极其特点。 3、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验原理: 1.牛顿环 牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。 当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空 气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示: 设射入单色光的波长为入,在距接触点r k处将产生第k级牛顿环,此处对应的空气膜厚度为d k,则空 气膜上下两界面依次反射的两束光线的光程差为 - 扎 =2nd k 亠— 2 式中,n为空气的折射率(一般取1),入/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。 下界面上的两束反射光的光程差存在两种情况: 根据干涉条件,当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上 2k K=1,2,3,….,明环

(2k 1) 2K=0,1,2,….,暗环

2 2 2 由上页图可得干涉环半径r k,膜的厚度d k与平凸透镜的曲率半径R之间的关系R =(R-d k) - r k o o 由于dk远小于R,故可以将其平方项忽略而得到2Rd k二r k o结合以上的两种情况公式,得到: *5 r k =2Rd k二kR,, k= 0,1,2…,暗环 由以上公式课件,r k与d k成二次幕的关系,故牛顿环之间并不是等距的,且为了避免背光因素干扰, 般选取暗环作为观测对象。 而在实际中由于压力形变等原因,凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面;另外镜 要作图求出斜率4R,,代入已知的单色光波长,即可求出凸透镜的曲率半径R o 2.劈尖 将两块光学平玻璃叠合在一起,并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行) 则在两块玻璃之间形成以空气劈尖,如下图所示: 当单色光垂直射入时,在空气薄膜上下两界面反射的两束光发生干涉;由于空气劈尖厚度相等之处是平行于两玻璃交线的平行直线,因此干涉条纹是一组明暗相间的等距平行条纹,属于等厚干涉。干涉条件如下: k =2d k - =(2k 1) 2 k=0, 1,2,… 可知,第k级暗条纹对应的空气劈尖厚度为 面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。而使用差值法消去附加的光程差,用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。由上可得: 2 2 d m — d n R 二--------- 4(m - n) ■ 式中,D m、D n分别是第m级与第n级的暗环直径,由上式即可计算出曲率半径由于式中使用环数差m-n代替了级数k,避免了圆环中心及暗环级数无法确定的问题。 凸透镜的曲率半径也可以由作图法得出。测得多组不同的D m和m,根据公式D2m = 4R m , 可知只 Hi

大学物理实验报告-等厚干涉

得分教师签名批改日期深圳大学实验报告 课程名称:大学物理实验(一) 实验名称:实验等厚干涉 学院:物理科学与技术学院 专业:课程编号: 组号:16 指导教师: 报告人:学号: 实验地点科技楼509 实验时间:2011 年06 月20 日星期一 实验报告提交时间:年月日

1、实验目的 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 2、实验原理 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________

大学物理实验课后答案

实验一霍尔效应及其应用 【预习思考题】 1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。 霍尔系数,载流子浓度,电导率,迁移率。 2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型? 以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。 3.本实验为什么要用3个换向开关? 为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电 流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。总之,一共需要3个换向开关。 【分析讨论题】 1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行? 若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。 2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源? 误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。 实验二声速的测量 【预习思考题】 1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定? 答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。由数显表头读出每一个电压最大值时的位置,即对应的波节位置。因此在系统处于共振的条件下进行声速测定,可以容易和准确地测定波节的位置,提高测量的准确度。 2. 压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的? 答:压电陶瓷超声换能器的重要组成部分是压电陶瓷环。压电陶瓷环由多晶结构的压电材料制成。这种材料在受到机械应力,发生机械形变时,会发生极化,同时在极化方向产生电场,这种特性称为压电效应。反之,如果在压电材料上加交

光的等厚干涉实验报告

大连理工大学 大学物理实验报告 姓名学号实验台号 实验时间 2008 年 11 月 04 日,第11周,星期二第 5-6 节 实验名称光的等厚干涉 教师评语 实验目的与要求: 1.观察牛顿环现象及其特点,加深对等厚干涉现象的认识和理解。 2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。 3.掌握读数显微镜的使用方法。 实验原理和内容: 1.牛顿环 牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。 当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度 递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜 的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的 同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚 度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示:

设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为 2 2λ δ+ =k k nd 式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。 根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况: 2 ) 12(2 22 2λ λ λ δ+= + =k k d k k 由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系 222)(k k r d R R +-=。 由于dk 远小于R , 故可以将其平方项忽略而得到2 2k k r Rd =。 结合以上 的两种情况公式, 得到: λkR Rd r k k ==22 , 暗环...,2,1,0=k 由以上公式课件, r k 与d k 成二次幂的关系, 故牛顿环之间并不是等距的, 且为了避免背光因素干扰, 一般选取暗环作为观测对象。 而在实际中由于压力形变等原因, 凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面; 另外镜面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。 而使用差值法消去附加的光程差, 用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。 由上可得: λ )(422n m D D R n m --= 式中, D m 、D n 分别是第m 级与第n 级的暗环直径, 由上式即可计算出曲率半径R 。 由于式中使用环数差m-n 代替了级数k , 避免了圆环中心及暗环级数无法确定的问题。 凸透镜的曲率半径也可以由作图法得出。 测得多组不同的D m 和m , 根据公式m R D m λ42=, 可知只要作图求出斜率λR 4, 代入已知的单色光波长, 即可求出凸透镜的曲率半径R 。 2. 劈尖 将两块光学平玻璃叠合在一起, 并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行), 则在两块玻璃之间形成以空气劈尖, 如下图所示: K=1,2,3,…., 明环 K=0,1,2,…., 暗环

等厚干涉牛顿环实验报告材料97459

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一.实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二.实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

等厚干涉现象的观测

实验一光的等厚干涉现象的观测 【目的与任务】 1、学习使用移测显微镜; 2、观察光的等厚干涉现象,研究等厚干涉现象的规律和条件; 3、利用等厚干涉测量平凸透镜的曲率半径和微小厚度; 4、学习用逐差法处理实验数据的方法。 【仪器与设备】 移测显微镜(又称读数显微镜、比长仪)、牛顿环仪、低压钠灯。 1、移测显微镜结构如图1所示。它由光学部分和机械部分构成,光学部分是一个长焦距显微镜,机械部分主要是底座、由丝杆带动的滑台以及读数标尺等。其测长原理与千分尺相同,可以精确读到0.01mm,估读到0.001mm。 2、移测显微镜的操作方法: (1)将移测显微镜安放平稳,大致对准待测物; (2)反复调整显微镜目镜,直到能够看清目镜里的叉丝; (3)缓慢调节物镜的调焦手轮使显微镜聚焦,直到清楚地看到待测物,并尽可能消除视差;(消除视差的判断标准:当眼睛左右移动时,通过显微镜看去,叉丝和待测物的像之间无相对移动。) (4)转动鼓轮手柄使显微镜移动,让叉丝对准被测起点,记录一读数,继续转动鼓轮手柄使叉丝对准被测终点,再记录此时的读数,两次读数之差即被测两点的间距。 3、牛顿环仪:是一种干涉装置。由一曲率半径相当大的平凸透镜放在光学玻璃平板(平晶)的上面构成,如图2所示。 【原理与方法】 1、牛顿环干涉现象 牛顿环是牛顿于1657 年在制作天文望远镜时,偶然将一个望远镜的物镜放在平玻璃上

图3b :反射光束形成的干涉图样 图3a :反射光束形成牛顿环的光路图 图4a :透射光束形成牛顿环的光路图 图4b :透射光束形成的干涉图样 发现的,由图2知在透镜的凸面与平板玻璃之间形成以接触点O 为中心向四周逐渐增厚的空气薄膜,离O 点等距离的地方厚度相同。等厚膜的轨迹是以接触点O 为中心的圆。若以波长为λ的单色光垂直照射到该装置上时,其中一部分光线在空气膜上表面反射,一部分在空气膜下表面反射,因此产生两束具有一定光程差的相干光,当它们相遇后就产生干涉现象。因在膜厚度相同的地方具有相同的光程差,所以形成的干涉条纹为膜的等厚各点的轨迹。当在反射方向观察时(见如图3a ),将会看到一组以接触点为中心的明暗相间的圆环形干涉图样,且中心是一暗斑,如图3b 所示。如果在透射方向观察(见如图4a ),则看到的干涉图样与反射光的干涉图样的光强分布恰为互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环,如图4b 所示。这种干涉现象为牛顿最早发现,故称为牛顿环。显然,牛顿环是等厚干涉。 设透镜的曲率半径为R ,第m 级干涉圆环的半径为m r ,其相应的空气膜厚度为m d ,对图3b 由反射光束形成的干涉图样而言,空气膜上、下表面两反射光的光程差为 22m d λ?=+ (1) 这里假定空气的折射率等于1(以下推导均同),其中,2λ是空气膜下表面反射光线由光

大物实验报告-光的等厚干涉

大学物理实验报告实验名称:光的等厚干涉 学院:机电工程学院 班级:车辆151班 姓名:吴倩萍 学号:5902415034 时间:第8周周三下午3: 45开始 地点:基础实验大楼313

一、实验目的: 1?观察牛顿环和劈尖的干涉现象。 2?了解形成等厚干涉现象的条件及特点。 3?用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚 度。 二、实验仪器: 牛顿环装置、钠光灯、读数显微镜、劈尖等。 三、实验原理: 在平面玻璃板BB上放置一曲率半径为R的平凸透镜AOA,两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现 象称为等厚干涉。 1.用牛顿环测量平凸透镜表面的曲率半径 (1)安放实验仪器。(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。将牛顿环仪放在显微镜的平台上,调节45 °玻璃板,以便获得最大的照度。(3)调节读数显微镜调焦手轮,直至在显微镜内能看到清晰的干涉条纹的像。适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。(4)

转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第 24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。将数据填入表中,显然,某环左右位置读数之差即为该环的直径。用逐差法求出R,并计算误差。 2.用劈尖干涉法则细丝直径 (1)将被测细丝夹在两块平板玻璃的一端,另一端直接接触, 形成劈尖,然后置于读数显微镜载物台上。( 2)调节叉丝方位 和劈尖放置方位,使镜筒移动方向与干涉条纹相垂直,以便准确测出条纹间距。(3)用读数显微镜测出20条暗条纹间的垂直距离I,再测出棱边到细丝所在处的总长度L,求出细丝直径do (4) 重复步骤3,各测三次,将数据填入自拟表格中。求其平均值o 四、实验内容: 观察牛顿环 (1)接通钠光灯电源使灯管预热。 (2)将牛顿环装置放置在读数显微镜镜筒下,并将下面的反射 镜置于背光位置。 (3)待钠光灯正常发光后,调节光源的位置,使450半反射镜正对钠灯窗口,并且同高。

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 This manuscript was revised on November 28, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的

一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环

实验十一等厚干涉现象的研究

实验十一 等厚干涉现象的研究 一、实验目的 1.观察牛顿环产生的等厚干涉条纹,加深对等厚干涉现象的认识。 2.掌握测量平凸透镜曲率半径的方法。 二、实验仪器 读数显微镜,牛顿环仪,钠光灯。 三、仪器构造说明 牛顿环仪是由曲率半径约为200~900厘米的待测平凸透镜L 和磨光的平玻璃板 P 叠和装在金属框架F 中构成,如图5—6-1所示。框 架边上有三个螺旋H ,用来 调节L 和P 之间的接触,以 改变干涉条纹的形状和位置。调节H 时,螺旋不可旋 得过紧,以免接触压力过大引起透镜弹性形变,甚至损坏透镜。 四、实验原理 如图5—6-2所示,在平面玻璃板BB '上放置一曲率半径为R 的平凸透镜AOA ',两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束 2 在空气表面层附近相遇产生干涉,空气层厚度相等处形成相同的干涉条纹,这种干涉现象称为等厚干涉。此等厚干涉条纹最早由牛顿发现,故称为牛顿环。在干涉条纹上,光程差相等处,是以接触点O 为中心,半径为r 的明暗相间的同心圆,r 、h 、R 三者关系为 h R r h -=22 (5-6-1) 因 R ?h (R 为几米,h 为几分之一厘米)。 所以 : R r h 22≈ 光程差为: 2 2λ δ- =h (5-6-2) 即: 2 2λ δ-= R r (5—6—3) 1 65—— 图 2 65——图 入射光'

(5—6—3)式是进入透镜的光束,光束1先由透镜凸面反射回去,光束2穿过透镜进入空气膜后,由平面玻璃板反射形成的光程差,式中λ/2为额外光程差。 在反射光中见到的亮环 2 222λ λ?=-k R r k (5-6-4) 在反射光中见到的暗环 2 )12(22λ λ?-=-k R r k (5-6-4) 式中k =0,1,2,…, 从上观察,以中心暗环为准,则有 ???=R k r k λ2 λ ?=k r R k 2 (5—6—5) 可见,测出条纹的半径r ,依(5—6—5)式便可计算出平凸透镜的半径R 。 五、实验内容 1.观察牛顿环 (1)接通钠光灯电源使灯管预热。 (2)将牛顿环装置放置在读数显微镜镜筒下,镜筒置于读数标尺中央约25厘米处。 (3)待钠光灯正常发光后,调节读数显微镜下底座平台高度(底座可升降),使45度玻璃片正对钠灯窗口,并且同高。 (4)在目镜中观察从空气层反射回来的光,整个视场应较亮,颜色呈钠光的黄色,如果看不到光斑,可适当调节45度玻璃片的倾斜度(一般实验室事先已调节好,不可随意调节)及平台高度,直至看到反射光斑,并均匀照亮视场。 (5)调节目镜,在目镜中看到清晰的十字准线的像。 (6)转动物镜调节手轮,调节显微镜镜筒与牛顿环装置之间的距离。先将镜筒下降,使45度玻璃片接近牛顿环装置但不能碰上,然后缓慢上升,直至在目镜中看到清晰的十字准线和牛顿环像。 2.测量21环到30环的直径 (1)粗调仪器,移动牛顿环装置,使十字准线的交点与牛顿环中心重合。 (2)放松目镜紧固螺丝(该螺丝应始终对准槽口),转动目镜使十字准线中的一条线与标尺平行,即与镜筒移动方向平行。 (3)转动读数显微镜读数鼓轮,镜筒将沿着标尺平行移动,检查十字准线中竖线与干涉环的切点是否与十字准线交点重合,若不重合,按步骤(1)、(2)再仔细调节(检查左右两侧测量区域)。 (4)把十字准线移到测量区域中央(25环左右),仔细调节目镜及镜筒的

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告 一、实验题目:迈克尔逊干涉仪 二、实验目的: 1. 了解迈克尔逊干涉仪的结构、原理和调节方法; 2. 观察等倾干涉、等厚干涉现象; 3. 利用迈克尔逊干涉仪测量He-Ne激光器的波长; 三、实验仪器: 迈克尔逊干涉仪、He-Ne激光器、扩束镜、观察屏、小孔光阑四、实验原理(原理图、公式推导和文字说明): 在图M 2′是镜子M 2 经A面反射所成的虚像。调整好的迈克尔逊干涉仪,在 标准状态下M 1、M 2 ′互相平行,设其间距为d.。用凸透镜会聚后的点光源S是 一个很强的单色光源,其光线经M 1、M 2 反射后的光束等效于两个虚光源S 1 、S 2 ′ 发出的相干光束,而S 1、S 2 ′的间距为M 1 、M 2 ′的间距的两倍,即2d。虚光源 S 1、S 2 ′发出的球面波将在它们相遇的空间处处相干,呈现非定域干涉现象,其 干涉花纹在空间不同的位置将可能是圆形环纹、椭圆形环纹或弧形的干涉条纹。 通常将观察屏F安放在垂直于S 1、S 2 ′的连线方位,屏至S 2 ′的距离为R,屏上 干涉花纹为一组同心的圆环,圆心为O。 设S 1、S 2 ′至观察屏上一点P的光程差为δ,则 )1 /) (4 1 ( ) 2 ( 2 2 2 2 2 2 2 2 2 - + + + ? + = + - + + = r R d Rd r R r R r d R δ (1) 一般情况下d R>>,则利用二项式定理并忽略d的高次项,于是有

??? ? ??+++=? ??? ??+-++?+=)(12)(816)(2)(4222 22222222222 2 r R R dr r R dR r R d R r R d Rd r R δ (2) 所以 )sin 1(cos 22θθδR d d + = (3) 由式(3)可知: 1. 0=θ,此时光程差最大,d 2=δ,即圆心所对应的干涉级最高。旋转微调鼓轮使M 1移动,若使d 增加时,可以看到圆环一个个地从中心冒出,而后往外扩张;若使d 减小时,圆环逐渐收缩,最后消失在中心处。每“冒出”(或“消失”)一个圆环,相当于S 1、S 2′的距离变化了一个波长λ大小。如若“冒出”(或“消失”)的圆环数目为N ,则相应的M 1镜将移动Δd ,显然: N d /2?=λ (4) 从仪器上读出Δd 并数出相应的N ,光波波长即能通过式(4)计算出来。 2. 对于较大的d 值,光程差δ每改变一个波长所需的θ的改变量将减小,即两相邻的环纹之间的间隔变小,所以,增大d 时,干涉环纹将变密变细。 五、实验步骤 六、实验数据处理(整理表格、计算过程、结论、误差分析): m m 105-5?=?仪 N=30

等厚干涉 物理实验报告

入射光 ' 图1 华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 等厚干涉 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 14 实验指导老师 实验评分 一、实验目的: 观察牛顿环产生的等厚干涉条纹,加深对等厚干涉现象的认识。 二、实验原理: 牛顿环 在平面玻璃板BB '上放置一曲率半径为R 的平凸透镜AOA ',两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现象称为等厚干涉。在干涉条纹上,光程差相等处,是以接触点O 为中心,半径为r 的明暗相间的同心圆,其暗环的条件为:λkR r =2 (1) 其中k 为暗环级数,λ为单色光的波长。可见,测出条纹的半径r ,依(1)式便可计算出平凸透镜的半径R 。 三、实验仪器: 读数显微镜,牛顿环仪,汞光灯。 四、实验内容: 观察牛顿环 (1)接通钠光灯电源使灯管预热。 (2)将牛顿环装置放置在读数显微镜镜筒下,并将下面的反射镜置于背光位置。 (3)待钠光灯正常发光后,调节光源的位置,使450半反射镜正对钠灯窗口,并且同高。 (4)在目镜中观察从空气层反射回来的光,整个视场应较亮,颜色呈钠光的黄色,如果看不到光斑, 可适当调节45度半反射镜的角度及钠灯的高度和位置,直至看到反射光斑,并均匀照亮视场。 (5)调节目镜,在目镜中看到清晰的十字叉丝线的像。 (6)放松目镜紧固螺丝,转动目镜使十字叉丝线中的一条线与标尺平行,即与镜筒移动方向平行。 (7)转动物镜调节手轮(注意:要两个手轮一起转动)调节显微镜镜筒与牛顿环装置之间的距离。 先将镜筒下降,使45度半反射镜接近牛顿环装置但不能碰上,然后缓慢上升,直至在目镜中看到清晰的牛顿环像。 测量暗环的直径 (1)移动牛顿环装置,使十字叉丝线的交点与牛顿环中心重合。 (2)转动读数鼓轮,使十字准线从中央缓慢向左移至第31暗环(边移边数,十字叉丝竖线对准一环 数一环,不易数错),然后反方向自31暗环向右移动,使叉丝竖线依次对准30、29、28、27、

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 Final revision on November 26, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在 一块光学玻璃平板(平镜)上构成的,如图。平凸透 镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两

光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为

大学物理实验等厚干涉

《等厚干涉》参考答案和评分标准 预习报告(20分) 一.实验目的 a.复习与巩固等厚干涉原理,观察等厚干涉现象; b.利用牛顿环测量透镜球面的曲率半径; c.学会如何消除误差、正确处理数据的方法。 二. 实验仪器 读数显微镜、牛顿环装置、钠光灯 三. 实验原理 1.等厚干涉原理 2.利用牛顿环测一个球面镜的曲率半径 四. 实验内容和步骤 1.调整仪器 2.定性观察牛顿环 3.测量牛顿环各级直径,求出待测曲率半径及算出误差 评分要点: 1、要有实验名称、实验目的、实验原理、实验内容和步骤。(5分) 2、实验原理的书写要求用以自己的语言,言简意赅的语言表述清楚。(5分) 3、要绘制好填充测量数据所需要的表格。(5分)

4、报告的书写要整洁规范。(5分) 数据采集与实验操作(40分) 评分要点: 1、不能用手直接摸牛顿环的表面。(2分) 2、是否调出清楚的牛顿环。(10分) 3、对实验的原理是否掌握。(10分) 4、实验操作的熟练程度。(13分) 5、是否读出合理的数据。(5分) (注:实验后没有整理仪器及登记仪器使用情况另扣10分)数据记录和数据处理(30分) 08 .0= ? = , .0 R m R05 m

R=0.88±0.05(m) E =6% 评分要点: 1、是否列表记录数据,数据记录是否规范、清晰(10分) 2、数据处理过程是否完整(10分) 3、是否得出正确答案(R 在合理的范围5分,误差处理5分) 六.思考题 (10分) (1)、测量时,若实际测量的是弦长,而不是牛顿环的直径,则对测量结果会有何影响?为什么? 答:如图, 直线 AB 为实际测量的方向,与实际的圆心O 距离为OA 则AC 2-AB 2=(OC 2-OA 2)-(OB 2-OA 2)= OC 2-OB 2 所以(2AC )2-(2AB )2= (2OC )2-(2OB )2 即弦长的平方差等于直径的平方差。 所以对测量结果没有影响。 (2)、为什么相邻两暗环(或亮环)之间的距离,靠近中心的要比边缘的大? 答一: k k R k k R kR R k r r r kR r k k κ++= -+=-+=-=?=+1)1()1(1λλλλλ 所以靠近中心(k 越小,r ?越大)的环间距要比边缘的大。

试验十八光的等厚干涉试验

实验九光的等厚干涉一一牛顿环 等厚干涉是薄膜干涉的一种。当薄膜层的上下表面有一很小的倾角时,从光源发出的 光经上下表面反 射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条 纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所 发现,但由于他主张的微粒学说而未能对它做出正确的解释。光的等厚干涉原理在生产实 践中具有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微小长度、 厚度和角度,检验物体表面的光洁度、平整度等。 【实验目的】 1?观察光的等厚干涉现象,了解等厚干涉的特点。 2?学习用干涉方法测量平凸透镜的曲率半径。 3.掌握读数显微镜的使用方法。 4?学习用逐差法处理数据。 【实验原理】 牛顿环是由一块曲率半径较大的平凸玻璃,以其凸面放在一块光学平板玻璃上构成的, 这样平凸玻璃的凸面和平板玻璃的上表面之间形成了一个空气薄层,其厚度由中心到边缘 逐渐增加,当平行单色光垂直照射到牛顿环上,经空气薄膜层上、下表面反射的光在凸面 处相遇将产生干涉。其干涉图样是以玻璃接触点为中心的一组明暗相间的同心圆环 (如图9-2 所示)。这一现象是牛顿发现的,故称这些环纹为牛顿环。 如图9-1所示,设平凸玻璃面的曲率半径为 R ,与接触点0相距为r 处的空气薄层厚度 e,那么由几何关系: 2 2 R = (R-e) R ? e ,所以e 2项可以被忽略,有 2 r e 二 2R 现在考虑垂直入射到r 处的一束光,它经薄膜层上下表面反射后在凸面处相遇时其光程 + r 2 = R 2 -2Re + e 2 + r 2 (9-1) 图9-1产生牛顿环的光路示意图 图9-2牛顿环

相关主题
文本预览
相关文档 最新文档