气缸的作用和原理.
- 格式:doc
- 大小:351.50 KB
- 文档页数:13
气缸的作用和原理气缸是很多机械设备、发动机中常见的部件,其作用是将压缩气体的能量转化为机械能,从而驱动其他部件运动。
气缸的原理主要包括气缸的工作过程、构造和压力作用等方面,下文将详细介绍。
1.转化能量:气缸通过将高压气体进行膨胀作功,将膨胀的功转化为机械能,从而为机械设备提供驱动力。
例如,在内燃发动机中,气缸将高压气体的能量转化为活塞的往复运动,进而带动曲轴旋转,实现引擎的工作。
2.控制物体运动:气缸可以通过控制进气和排气的开关,来控制活塞的运动,从而使被驱动物体实现特定的运动轨迹和速度。
在一些机械装置中,气缸可以将既定运动规律的压缩空气输出,实现物体的正反转、上下运动等。
3.压力传递:气缸可以提供较高的输出压力,用于推动和压实物体。
例如,气动锤、气动钻等工具常用气缸提供的高压气体驱动,通过敲击或旋转来完成特定的工作任务。
气缸的原理:气缸的工作原理主要体现在气体的压力作用、密封性以及活塞和气缸体的相对运动等方面。
1.压力作用:气缸内部通过压缩空气或其他气体,使气体处于一定的压力状态。
通过控制进气和排气的开关,可以调节气缸内气体的压力大小和变化规律。
在内燃发动机中,定期进行进气、压缩、点火和排气等工作过程,使气缸内的燃料和空气混合物爆炸产生高温高压气体。
2.密封性:为了保证气缸内部的压力不会泄漏,气缸需要具备良好的密封性。
气缸内设置了活塞和缸套,活塞与缸套之间形成间隙,通过气缸盖和活塞环等部件的密封,使压缩气体不会在活塞和缸套之间泄漏。
同时,气缸底部为了将活塞与销轴上的连杆连接,需设置气缸底面和连杆的连接孔,这种连接孔也需要具备较好的密封性。
3.活塞与气缸体的相对运动:气缸内部活塞可相对于气缸体实现往复直线运动。
活塞通过链接活塞销和连杆传递动力。
进气期和排气期,活塞位于上死点;压缩期和爆炸推动活塞向下运动,从而旋转曲轴。
在工作过程中,气缸不断地进行气体压缩和膨胀的往复运动。
当气缸处于膨胀状态时,气体推动活塞产生力,力通过连杆传递给被驱动物体;而当气缸处于压缩状态时,活塞由被驱动物体的力推动向气缸内压缩气体。
气缸工作原理
气缸工作是指通过气体的压缩和膨胀来产生动力的一种装置。
气缸通常由一个活塞和一个固定在气缸内的缸体组成。
工作原理如下:
1. 进气阶段:当气缸内的活塞向下移动时,气缸顶部的进气阀门打开,允许空气或混合气体进入气缸。
这个过程的目的是将可燃物质引入到气缸,为后续的燃烧提供燃料。
2. 压缩阶段:当活塞到达最低点后,开始上升。
上升过程中,进气阀门关闭,此时气缸内的容积减小,空气被压缩。
由于理想气体状态方程的作用,气体的压力会随着体积的减小而增加。
在这个过程中,压缩气体的温度也会增加。
3. 燃烧阶段:当活塞到达最高点时,进气和排气阀门同时关闭。
此时,一个火花塞产生的火花引燃压缩气体,引起爆炸。
爆炸产生的高温和高压气体推动活塞向下移动,并通过连杆传递动力。
4. 排气阶段:随着活塞向下移动,活塞下方的排气阀门打开,将燃烧产生的废气排出气缸。
排气完成后,活塞再次向上移动,进入下一个工作循环。
通过不断重复上述的工作循环,气缸能够不断地产生动力。
气缸广泛应用于内燃机、压缩机和液压系统等领域,是许多机械设备中不可或缺的重要部件。
气缸的基本原理气缸是一种常见的工业设备,用于将气体能量转化为机械能。
它是由活塞、气缸体以及进气、排气系统组成的。
在工业应用中,气缸通常使用压缩空气作为动力源。
下面将详细介绍气缸的工作原理。
1. 活塞运动原理气缸内部放置了一个活塞,活塞可以在气缸内沿着轴向运动。
当气缸内进入了压缩空气时,空气通过进气口进入气缸内部,迫使活塞沿着一定方向运动,从而产生机械能。
活塞通常是一个圆筒形的金属零件,它紧密地配合在气缸体内。
活塞底部有一个活塞杆,活塞杆由一个连接螺钉与活塞相连。
活塞通过活塞杆与其他设备连接,使机械能能够传递到其他部件。
2. 进气系统与排气系统气缸的工作需要进气系统和排气系统的配合。
进气系统负责将压缩空气引入气缸,而排气系统将排出的废气排出气缸。
进气系统由进气阀或进气口组成。
在活塞运动过程中,当活塞朝着进气阀的方向运动时,进气阀打开,压缩空气进入气缸,填充到气缸内部;当活塞朝着排气阀的方向运动时,进气阀关闭,防止空气逆流。
排气系统也是类似的原理,由排气阀或排气口组成。
当活塞朝着排气阀的方向运动时,排气阀打开,排出气缸内的废气;当活塞朝着进气阀的方向运动时,排气阀关闭,防止气体逆流。
3. 活塞运动相关的力学原理活塞的运动受到力学原理的支配。
在活塞行进的过程中,活塞上的力分为两个部分:一部分是由压缩空气通过进气系统施加在活塞上的力,称为气体压力;另一部分是机械系统对活塞施加的力,包括惯性力、摩擦力等。
活塞受到的总力通过活塞杆传递给其他部件。
如果活塞杆连接到一个连杆,活塞运动会带动连杆转动,从而产生机械能。
4. 工业应用气缸广泛应用于工业生产中的各个领域,如机械制造、汽车制造、工程机械等。
以下列举几个典型的应用场景:•气动机械:气缸作为驱动装置,用于控制执行机构的运动,如气动推动装置、气动门窗等。
•汽车引擎:气缸是汽车发动机的核心部件之一。
发动机内部的活塞在气缸内上下运动,通过连杆传递动力,推动汽车前进。
气缸的工作原理及应用工作原理气缸是一种常见的机械元件,广泛应用于各种机械系统中。
它的工作原理主要基于液压或气压的原理。
在液压系统中,气缸通过液压油的作用将能量转化为机械运动。
当液压油进入气缸时,液压油对活塞施加一定的力,使活塞产生位移,从而实现物体的推拉运动。
在气压系统中,气缸则通过气体的压力来产生力和位移。
气压进入气缸后,会将活塞向前推动,或者将活塞向后拉动,从而完成物体的推拉运动。
气缸的内部结构主要包括气缸筒、活塞、密封圈等部件。
活塞与气缸筒之间通过密封圈密封,以防止气体或液体泄漏。
应用领域气缸作为一种常见的工业控制元件,被广泛应用于各个领域。
1.工业自动化领域•机床:气缸被用于控制机床的进给、退刀等操作,实现自动化加工。
•机械手:气缸作为机械手的动力源,控制机械手的运动和抓取动作。
•输送线:气缸用于驱动输送线上的传送带,实现物料的自动输送。
•电子生产线:气缸控制设备的定位、夹持、抓取等动作,提高生产效率。
2.交通运输领域•汽车制造:气缸被广泛应用于汽车制动系统、悬挂系统等部件的控制。
•火车制动:火车的制动系统中使用气缸来控制制动盘或制动鼓的压紧力。
•船舶系统:气缸用于控制舵机的运动,实现船舶的转向操作。
3.农业领域•农业机械:气缸作为农业机械的动力源,用于控制各种作业部件的运动,如拖拉机上的翻地器、割草机上的刀片等。
•温室种植:气缸可以控制温室窗户的开关,调节温室内的温度和通风。
4.建筑工程领域•混凝土搅拌机:气缸控制搅拌筒的升降和旋转,实现混凝土的搅拌。
•升降机:气缸被用于控制升降机的门的开合和升降。
5.医疗设备领域•医用设备:气缸用于控制医疗设备的升降、扩张等动作,如手术台、X光机等。
除以上领域外,气缸还被应用于航空航天、军事设备、家用电器等多个领域,因其结构简单、操作稳定、可靠性高而备受青睐。
综上所述,气缸作为一种重要的机械元件,在工业生产和日常生活中发挥着重要的作用。
我们需要根据具体需求,选择适用的气缸类型和规格,提高工作效率,推动科技进步。
单作用气缸和双作用气缸单作用气缸的工作原理是:当气缸腔内的压缩空气通过进气口流入时,推力活塞被迫向外推动,达到执行工作的效果。
当推力活塞达到限位位置时,排气口打开,气体从气缸腔中排出,同时外力推动推力活塞返回初始位置,完成一个工作循环。
1.功能简单:由于只有一个气缸腔,结构相对简单,容易制造和维护。
2.推力仅在一方向:单作用气缸只能产生推力,不能产生拉力,适用于一些只需要单方向推动的工作环境。
3.反向需要外力:在活塞返回的过程中,需要外力来推动活塞返回到初始位置。
4.节约能源:由于只在一个方向上产生推力,所以只需要压缩空气的一部分来进行工作,相对节约能源。
双作用气缸:与单作用气缸相比,双作用气缸具有两个气缸腔,可以在两个方向上产生推力,无需外力辅助返回。
它也是通过压缩空气来推动活塞,从而产生直线运动。
双作用气缸的工作原理是:当气缸腔A内的压缩空气通过进气口流入时,推力活塞被迫向外推动,产生一种方向的推力。
当需要改变方向时,通过控制气路将气缸腔A的压缩空气排放,并将气缸腔B的进气口打开,此时压缩空气进入气缸腔B,推动活塞在相反的方向上产生另一种推力。
当需要停止运动时,通过控制气路关闭进气口和排气口,活塞停止移动在任一位置。
双作用气缸具有以下特点:1.功能全面:双作用气缸可以在两个方向上产生推力,既能完成推力工作,又能进行拉力工作。
2.高效率:由于不需要外力来推动活塞返回,双作用气缸的工作效率相对更高。
3.控制灵活:双作用气缸通过控制气路的开关来实现方向的改变,控制系统灵活方便。
4.能耗相对较高:由于在两个方向上都需要消耗一部分压缩空气,相对于单作用气缸来说,能耗稍高一些。
双作用气缸广泛应用于需要推拉作业的场景,例如机械夹具、液压缸、冲压机、汽车制动系统等。
根据工作需求的不同,可以选择不同口径和推力的双作用气缸来满足需求。
总结:。
气缸得结构及基本原理一、气缸气缸种类气压传动中将压缩气体得压力能转换为机械能得气动执行元件。
气缸有作往复直线运动得与作往复摆动得两类。
作往复直线运动得气缸又可分为单作用、双作用、膜片式与冲击气缸4种。
①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。
它得密封性能好,但行程短。
④冲击气缸:这就是一种新型元件。
它把压缩气体得压力能转换为活塞高速(10~20米/秒)运动得动能,借以作功。
冲击气缸增加了带有喷口与泄流口得中盖。
中盖与活塞把气缸分成储气腔、头腔与尾腔三室。
它广泛用于下料、冲孔、破碎与成型等多种作业。
作往复摆动得气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于280°。
此外,还有回转气缸、气液阻尼缸与步进气缸等。
二、气缸得作用:将压缩空气得压力能转换为机械能,驱动机构作直线往复运动、摆动与旋转运动。
三、气缸得分类:直线运动往复运动得气缸、摆动运动得摆动气缸、气爪等。
四、气缸得结构:气缸就是由缸筒、端盖、活塞、活塞杆与密封件组成,其内部结构如图所示:五、SMC气缸原理图(1)缸筒缸筒得内径大小代表了气缸输出力得大小。
活塞要在缸筒内做平稳得往复滑动,缸筒内表面得表面粗糙度应达到Ra0、8um。
对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力与磨损,并能防止锈蚀。
缸筒材质除使用高碳钢管外,还就是用高强度铝合金与黄铜。
小型气缸有使用不锈钢管得。
带磁性开关得气缸或在耐腐蚀环境中使用得气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。
SMC CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。
(2)端盖端盖上设有进排气通口,有得还在端盖内设有缓冲机构。
杆侧端盖上设有密封圈与防尘圈,以防止从活塞杆处向外漏气与防止外部灰尘混入缸内。
气缸的原理各种气缸的原理气缸是一种常见的气动执行元件,常用于工业领域的自动化设备和机械装置中。
气缸的原理是利用气体压力来产生线性运动,从而驱动负载实现所需的机械动作。
下面就介绍几种常见的气缸原理及其应用。
1. 普通气缸的原理:普通气缸是一种最常见的气动执行元件,它的工作原理是利用压缩空气在气缸内形成推力,推动气缸内的活塞产生线性运动。
当气缸内充满了压缩空气时,活塞受到压力作用向前运动,当气缸内的空气释放时,活塞受到外部负载的作用而向后运动。
普通气缸的工作原理非常简单,适用于各种线性推动场合,如挤压、夹持、推拉等。
2. 双向气缸的原理:双向气缸是一种特殊类型的气动执行元件,其原理是通过在气缸内交替充放压缩空气来产生连续的推拉运动。
双向气缸的工作原理是利用气体在气缸内的两端产生的压力差来推动活塞产生来回运动,从而实现正反向推拉。
双向气缸广泛应用于需要频繁来回运动的场合,如输送机、推拉装置、自动门等。
3. 旋转气缸的原理:旋转气缸是一种将气动能转化为旋转运动的气动执行元件,其工作原理是通过压缩空气产生的推力来驱动旋转气缸内的齿轮或齿条产生旋转运动。
通过调节气缸内压力和气缸外负载的大小,可以控制旋转气缸的旋转速度和角度。
旋转气缸广泛应用于需要旋转驱动的场合,如阀门控制、扭转装置、旋转工作台等。
4. 阻尼气缸的原理:阻尼气缸是一种将气动能转化为阻尼运动的气动执行元件,其工作原理是在气缸内设置特殊的阻尼装置,通过控制气缸内压力和气缸外负载的大小来实现阻尼效果。
阻尼气缸广泛应用于需要缓冲减震的场合,如升降平台、装卸设备、防撞装置等。
5. 膜片气缸的原理:膜片气缸是一种利用薄膜和气压产生运动的气动执行元件,其工作原理是通过在气缸内气压的变化使薄膜产生弯曲运动,从而驱动负载实现机械动作。
膜片气缸具有结构简单、体积小、响应速度快的特点,广泛应用于需要快速响应的场合,如原料输送、阀门控制、传感器触发等。
总之,气缸作为一种重要的气动执行元件,其原理多种多样。
气缸工作原理
气缸是一种常见的机械装置,用于将压缩空气或气体转化为机械能。
它能将气体的压力转化为运动能,并且在许多工业和机械应用中发挥着重要作用。
气缸的工作原理可以分为四个基本步骤:进气、压缩、爆发和排出。
进气过程是通过气缸的进气阀开启,允许气体进入气缸。
进气阀会在正压作用下开启,而在负压作用下关闭,从而实现进气。
然后,气缸的活塞开始向上移动,将气体压缩至一定程度。
在此过程中,气缸的排气阀关闭,防止气体逆流。
当气缸的活塞到达最高点时,爆发发生,即点火系统会引燃混合气体,产生爆炸,将压力转化为机械能。
最后,排气阀开启,将废气排出气缸,活塞向下移动,准备进行下一次工作循环。
气缸的工作原理基于压力差,即气体从高压区域向低压区域移动。
通过不断的循环过程,气缸能够实现连续的机械运动。
为了确保气缸的正常工作,需要准确控制进气、放气和点火的时机和顺序。
气缸的应用非常广泛,例如在内燃机中,气缸用于将燃料混合物压缩,引发爆炸,并将产生的能量转化为活塞的运动能。
在液压系统中,气缸用于转换液压能为机械能,实现各种运动控制。
此外,在工业生产中,气缸还可以用于夹持、推动、拉动等各种操作。
总之,气缸通过压力差将气体压缩和转化为机械能,实现各种
机械运动。
它在多个领域中发挥着重要的作用,并且具有较高的效率和可靠性。
气缸的工作原理气缸是一种常见的机械装置,广泛应用于汽车发动机、工业设备以及机械制造领域。
它的工作原理是将压缩空气或气体转化为机械能,实现各种工作任务。
下面将详细介绍气缸的工作原理及其组成部分。
一、气缸的组成部分1. 气缸体:气缸体是气缸的主要组成部分,通常由铸铁或铝合金制成。
它具有一个中空的圆筒形状,内部有一个光滑的孔道,称为气缸腔。
气缸体上通常还有进气口和排气口,用于控制气体的进出。
2. 活塞:活塞是气缸内部移动的部件,通常由铝合金制成。
它与气缸体之间有一定的间隙,以便活塞能够在气缸内自由运动。
活塞上有一个密封环,用于防止气体泄漏。
3. 活塞杆:活塞杆是连接活塞和曲轴的部件,通常由钢材制成。
它通过活塞销与活塞相连接,同时与曲轴相连,将活塞的往复运动转化为曲轴的旋转运动。
4. 气门:气门是控制气体进出的部件,通常由金属制成。
气门有进气门和排气门两种类型,通过开闭气门来控制气缸内气体的进出。
5. 气门弹簧:气门弹簧是用于控制气门开闭的弹簧,通常由钢材制成。
它通过一端连接气门,另一端连接气门座,使气门能够在气缸的工作过程中快速开闭。
二、气缸的工作原理是基于压力差的作用。
当气缸内的气体被压缩时,气体的压力增加,从而产生了压力差。
根据压力差的作用,气缸可以实现以下几种工作方式:1. 压缩:当气缸内的活塞向气缸腔内移动时,气体被压缩,从而增加了气体的压力。
这种工作方式常见于内燃机中,通过压缩混合气体来提高燃烧效率。
2. 扩张:当气缸内的活塞向气缸腔外移动时,气体被扩张,从而减小了气体的压力。
这种工作方式常见于汽车发动机的排气过程,通过排气门将燃烧产生的废气排出。
3. 推动:当气缸内的气体被压缩后,通过活塞杆将压缩气体的机械能传递给其他装置,实现推动的功能。
例如,气缸可以用于驱动液压缸或活塞泵,将压缩气体的能量转化为液体的压力能。
4. 控制:气缸可以通过控制气门的开闭来实现对气体流动的控制。
例如,气缸可以用于控制汽车发动机的进气和排气过程,以实现燃烧的调节和功率的控制。
气缸的种类和工作原理
气缸的种类和工作原理介绍如下:
一、种类
1.单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压
推动活塞产生推力伸出,靠弹簧或自重返回。
2.双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
3.膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。
它的密封性能好,但行程短。
4.冲击气缸:这是一种新型元件。
它把压缩气体的压力能转换为活塞高
速(10~20m/s)运动的动能,借以做功。
5.无杆气缸:没有活塞杆的气缸的总称。
有磁性气缸,缆索气缸两大类。
做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。
此外,还有回转气缸、气液阻尼缸和步进气缸等。
二、工作原理
在气压传动中,通常采用容积型活塞式气动马达。
它利用工作腔的容积变化来转化能量,通过端盖上的气孔口和排气口等的交替进排气,在工作腔内周期性地产生变化着的压力,从而使马达连续地旋转。
气缸的工作腔由缸筒、端盖和活塞等零件构成。
无杆气缸和工作腔
固定在一起的称“定置气缸”;与工作腔往复运动相对应的称“移动气缸”。
在气动系统中,由于机构的结构特征和工作原理不同,常用气缸有各种各样的结构形式。
气缸用压缩空气来做功,它结构简单、工作可靠。
用它可以实现往复直线运动,旋转运动和摆动等。
单作用气缸单作用气缸只有一腔可输入压缩空气,实现一个方向运动。
其活塞杆只能借助外力将其推回;通常借助于弹簧力,膜片张力,重力等。
其原理及结构见下图图:单作用气缸1—缸体;2—活塞;3—弹簧;4—活塞杆;单作用气缸的特点是:1)仅一端进(排)气,结构简单,耗气量小。
2)用弹簧力或膜片力等复位,压缩空气能量的一部分用于克服弹簧力或膜片张力,因而减小了活塞杆的输出力。
3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气缸相比,有效行程小一些。
4)气缸复位弹簧、膜片的张力均随变形大小变化,因而活塞杆的输出力在行进过程中是变化的。
由于以上特点,单作用活塞气缸多用于短行程。
其推力及运动速度均要求不高场合,如气吊、定位和夹紧等装置上。
单作用柱塞缸则不然,可用在长行程、高载荷的场合。
1.2.2 双作用气缸双作用气缸指两腔可以分别输入压缩空气,实现双向运动的气缸。
其结构可分为双活塞杆式、单活塞杆式、双活塞式、缓冲式和非缓冲式等。
此类气缸使用最为广泛。
1)双活塞杆双作用气缸双活塞杆气缸有缸体固定和活塞杆固定两种。
其工作原理见图42.2-3。
缸体固定时,其所带载荷(如工作台)与气缸两活塞杆连成一体,压缩空气依次进入气缸两腔(一腔进气另一腔排气),活塞杆带动工作台左右运动,工作台运动范围等于其有效行程s的3倍。
安装所占空间大,一般用于小型设备上。
活塞杆固定时,为管路连接方便,活塞杆制成空心,缸体与载荷(工作台)连成一体,压缩空气从空心活塞杆的左端或右端进入气缸两腔,使缸体带动工作台向左或向左运动,工作台的运动范围为其有效行程s的2倍。
适用于中、大型设备。
图42.2-3 双活塞杆双作用气缸a)缸体固定;b)活塞杆固定1—缸体;2—工作台;3—活塞;4—活塞杆;5—机架双活塞杆气缸因两端活塞杆直径相等,故活塞两侧受力面积相等。
当输入压力、流量相同时,其往返运动输出力及速度均相等。
2)缓冲气缸对于接近行程末端时速度较高的气缸,不采取必要措施,活塞就会以很大的力(能量)撞击端盖,引起振动和损坏机件。
为了使活塞在行程末端运动平稳,不产生冲击现象。
在气缸两端加设缓冲装置,一般称为缓冲气缸。
缓冲气缸见图42.2-4,主要由活塞杆1、活塞2、缓冲柱塞3、单向阀5、节流阀6、端盖7等组成。
其工作原理是:当活塞在压缩空气推动下向右运动时,缸右腔的气体经柱塞孔4及缸盖上的气孔8排出。
在活塞运动接近行程末端时,活塞右侧的缓冲柱塞3将柱塞孔4堵死、活塞继续向右运动时,封在气缸右腔内的剩余气体被压缩,缓慢地通过节流阀6及气孔8排出,被压缩的气体所产生的压力能如果与活塞运动所具有的全部能量相平衡,即会取得缓冲效果,使活塞在行程末端运动平稳,不产生冲击。
调节节流阀6阀口开度的大小,即可控制排气量的多少,从而决定了被压缩容积(称缓冲室)内压力的大小,以调节缓冲效果。
若令活塞反向运动时,从气孔8输入压缩空气,可直接顶开单向阀5,推动活塞向左运动。
如节流阀6阀口开度固定,不可调节,即称为不可调缓冲气缸。
图42.2-4 缓冲气缸1—活塞杆;2—活塞;3—缓冲柱塞;4—柱塞孔;5—单向阀6—节流阀;7—端盖;8—气孔气缸所设缓冲装置种类很多,上述只是其中之一,当然也可以在气动回路上采取措施,达到缓冲目的。
1.2.3 组合气缸组合气缸一般指气缸与液压缸相组合形成的气-液阻尼缸、气-液增压缸等。
众所周知,通常气缸采用的工作介质是压缩空气,其特点是动作快,但速度不易控制,当载荷变化较大时,容易产生“爬行”或“自走”现象;而液压缸采用的工作介质是通常认为不可压缩的液压油,其特点是动作不如气缸快,但速度易于控制,当载荷变化较大时,采用措施得当,一般不会产生“爬行”和“自走”现象。
把气缸与液压缸巧妙组合起来,取长补短,即成为气动系统中普遍采用的气-液阻尼缸。
气-液阻尼缸工作原理见图42.2-5。
实际是气缸与液压缸串联而成,两活塞固定在同一活塞杆上。
液压缸不用泵供油,只要充满油即可,其进出口间装有液压单向阀、节流阀及补油杯。
当气缸右端供气时,气缸克服载荷带动液压缸活塞向左运动(气缸左端排气),此时液压缸左端排油,单向阀关闭,油只能通过节流阀流入液压缸右腔及油杯内,这时若将节流阀阀口开大,则液压缸左腔排油通畅,两活塞运动速度就快,反之,若将节流阀阀口关小,液压缸左腔排油受阻,两活塞运动速度会减慢。
这样,调节节流阀开口大小,就能控制活塞的运动速度。
可以看出,气液阻尼缸的输出力应是气缸中压缩空气产生的力(推力或拉力)与液压缸中油的阻尼力之差。
图42.2-5 气-液阻尼缸1—节流阀;2—油杯;3—单向阀;4—液压缸;5—气缸;6—外载荷气-液阻尼缸的类型有多种。
按气缸与液压缸的连接形式,可分为串联型与并联型两种。
前面所述为串联型,图42.2-6为并联型气-液阻尼缸。
串联型缸体较长;加工与安装时对同轴度要求较高;有时两缸间会产生窜气窜油现象。
并联型缸体较短、结构紧凑;气、液缸分置,不会产生窜气窜油现象;因液压缸工作压力可以相当高,液压缸可制成相当小的直径(不必与气缸等直径);但因气、液两缸安装在不同轴线上,会产生附加力矩,会增加导轨装置磨损,也可能产生“爬行”现象。
串联型气-液阻尼缸还有液压缸在前或在后之分,液压缸在后参见图42.2-5,液压缸活塞两端作用面积不等,工作过程中需要储油或补油,油杯较大。
如将液压缸放在前面(气缸在后面),则液压缸两端都有活塞杆,两端作用面积相等,除补充泄漏之外就不存在储油、补油问题,油杯可以很小。
图42.2-6 并联型气-液阻尼缸1—液压缸;2—气缸按调速特性可分为:1)慢进慢退式;2)慢进快退式;3)快进慢进快退式。
其调速特性及应用见表42.2-3。
就气-液阻尼缸的结构而言,尚可分为多种形式:节流阀、单向阀单独设置或装于缸盖上;单向阀装在活塞上(如挡板式单向阀);缸壁上开孔、开沟槽、缸内滑柱式、机械浮动联结式、行程阀控制快速趋近式等。
活塞上有挡板式单向阀的气-液阻尼缸见图42.2-7。
活塞上带有挡板式单向阀,活塞向右运动时,挡板离开活塞,单向阀打开,液压缸右腔的油通过活塞上的孔(即挡板单向阀孔)流至左腔,实现快退,用活塞上孔的多少和大小来控制快退时的速度。
活塞向左运动时,挡板挡住活塞上的孔,单向阀关闭,液压缸左腔的油经节流阀流至右腔(经缸外管路)。
调节节流阀的开度即可调节活塞慢进的速度。
其结构较为简单,制造加工较方便。
图42.2-8为采用机械浮动联接的快速趋近式气-液阻尼缸原理图。
靠液压缸活塞杆端部的T形顶块与气缸活塞杆端部的拉钩间有一空行程s1,实现空程快速趋近,然后再带动液压缸活塞,通过节流阻尼,实现慢进。
返程时也是先走空行程s1,再与液压活塞一起运动,通过单向阀,实现快退。
图42.2-7 活塞上有挡板式单向阀的气-液阻尼缸图42.2-8 浮动联接气-液阻尼缸原理图1—气缸;2—顶丝;3—T形顶块;4—拉钩;5—液压缸图42.2-9 是又一种浮动联接气-液阻尼缸。
与前者的区别在于:T形顶块和拉钩装设位置不同,前者设置在缸外部。
后者设置在气缸活塞杆内,结构紧凑但不易调整空行程s1(前者调节顶丝即可方便调节s1的大小)。
1.2.4 特殊气缸(1)冲击气缸图42.2-9 浮动联接气-液阻尼缸冲击气缸是把压缩空气的能量转化为活塞、活塞杆高速运动的能量,利用此动能去做功。
冲击气缸分普通型和快排型两种。
1)普通型冲击气缸普通型冲击气缸的结构见图42.2-10。
与普通气缸相比,此种冲击气缸增设了蓄气缸1和带流线型喷气口4及具有排气孔3的中盖2。
其工作原理及工作过程可简述为如下五个阶段(见图42.2-11):第一阶段:复位段。
见图42.2-10和图42.2-11a,接通气源,换向阀处复位状态,孔A进气,孔B排气,活塞5在压差的作用下,克服密封阻力及运动部件重量而上移,借助活塞上的密封胶垫封住中盖上的喷气口4。
中盖和活塞之间的环形空间C经过排气小孔3与大气相通。
最后,活塞有杆腔压力升高至气源压力,蓄气缸内压力降至大气压力。
第二阶段:储能段。
见图42.2-10和图42.2-11b,换向阀换向,B孔进气充入蓄气缸腔内,A孔排气。
由于蓄气缸腔内压力作用在活塞上的面积只是喷气口4的面积,它比有杆腔压力作用在活塞上的面积要小得多,故只有待蓄气缸内压力上升,有杆腔压力下降,直到下列力平衡方程成立时,活塞才开始移动。
式中 d——中盖喷气口直径(m);p30——活塞开始移动瞬时蓄气缸腔内压力(绝对压力)(Pa);p20——活塞开始移动瞬时有杆腔内压力(绝对压力)(Pa);G——运动部件(活塞、活塞杆及锤头号模具等)所受的重力(N);D——活塞直径(m);d1——活塞杆直径(m);Fƒ0——活塞开始移动瞬时的密封摩擦力(N)。
若不计式(42.2-1)中G和Fƒ0项,且令d=d1,,则当时,活塞才开始移动。
这里的p20、p30均为绝对压力。
可见活塞开始移动瞬时,蓄气缸腔与有杆腔的压力差很大。
这一点很明显地与普通气缸不同。
图42.2-10 普通型冲击气缸第三阶段:冲击段。
活塞开始移动瞬时,蓄气缸腔内压力p30可认为已达气源压力ps,同时,容积很小的无杆腔(包括环形空间C)通过排气孔3与大气相通,故无杆腔压力p10等于大气压力pa。
由于pa/ps大于临界压力比0.52 8,所以活塞开始移动后,在最小流通截面处(喷气口与活塞之间的环形面)为声速流动,使无杆腔压力急剧增加,直至与蓄气缸腔内压力平衡。
该平衡压力略低于气源压力。
以上可以称为冲击段的第I区段。
第I区段的作用时间极短(只有几毫秒)。
在第I区段,有杆腔压力变化很小,故第I区段末,无杆腔压力p 1(作用在活塞全面积上)比有杆腔压力p2(作用在活塞杆侧的环状面积上)大得多,活塞在这样大的压差力作用下,获得很高的运动加速度,使活塞高速运动,即进行冲击。
在此过程B口仍在进气,蓄气缸腔至无杆腔已连通且压力相等,可认为蓄气-无杆腔内为略带充气的绝热膨胀过程。
同时有杆腔排气孔A通流面积有限,活塞高速冲击势必造成有杆腔内气体迅速压缩(排气不畅),有杆腔压力会迅速升高(可能高于气源压力)这必将引起活塞减速,直至下降到速度为0。
以上可称为冲击段的第Ⅱ区段。
可认为第Ⅱ区段的有杆腔内为边排气的绝热压缩过程。
整个冲击段时间很短,约几十毫秒。
见图42.2-11c。
图42.2-11 普通型冲击气缸的工作原理1—蓄气缸;2—中盖;3—排气孔;4—喷气口;5—活塞第四阶段:弹跳段。
在冲击段之后,从能量观点来说,蓄气缸腔内压力能转化成活塞动能,而活塞的部分动能又转化成有杆腔的压力能,结果造成有杆腔压力比蓄气-无杆腔压力还高,即形成“气垫”,使活塞产生反向运动,结果又会使蓄气-无杆腔压力增加,且又大于有杆腔压力。