第4章公钥密码算法
- 格式:ppt
- 大小:529.00 KB
- 文档页数:83
公钥密码算法
公钥密码算法是一种非对称加密算法,它使用一对公钥和私钥来加密和解密信息。
公钥密码算法的基本原理是:用户A将
要发送的信息使用用户B的公钥进行加密,然后发送给用户B,用户B收到信息后,使用自己的私钥进行解密,从而获得
原始信息。
公钥密码算法的安全性主要取决于公钥和私钥的安全性,因此,在使用公钥密码算法之前,需要先生成公钥和私钥。
一般来说,生成公钥和私钥的过程可以分为以下几个步骤:
1. 选择一个大质数p和一个小质数q,并计算出n=pq;
2. 选择一个大于1小于n的整数e,使得e与(p-1)(q-1)互质;
3. 计算出d,使得ed=1 mod (p-1)(q-1);
4. 将公钥(n,e)和私钥(n,d)发布出去。
在使用公钥密码算法进行加密时,可以使用以下步骤:
1. 将要发送的信息m转换成一个整数M,使得0<M<n;
2. 计算出密文C,C=M^e mod n;
3. 将密文C发送给接收方。
在使用公钥密码算法进行解密时,可以使用以下步骤:
1. 接收方收到密文C后,计算出明文M,M=C^d mod n;
2. 将明文M转换成原始信息m。
公钥密码算法的安全性取决于公钥和私钥的安全性,因此,在使用公钥密码算法时,应该采取有效的措施来保护公钥和私钥,以防止被攻击者破解。
例如,可以采用数字签名技术来验证公钥和私钥的真实性,以及采用加密技术来保护公钥和私钥,以防止被攻击者窃取。
公钥密码算法公钥密码算法是现代密码体系最通用的加密算法,称为非对称加密方式,公钥和私钥总是成对出现的,用公钥加密则私钥可以用来解密,或者反过来。
标准的RSA的加密算法利用的是大数质因数分解困难的特点,其数学原理十分简单。
{(XQ−1)P−1≡1(modP)(XP−1)Q−1≡1(modQ)⇒X(P−1)×(Q −1)≡1(modPQ)⇒XM≡1(modN)⇒XE×D≡X(modN)⇒YD≡X(mod N)其中密文Y、公钥E和大数N都是公开的,但是没有私钥D就无法得到X,破解需要对N进行质因数分解反推出P和Q,因为大数质因数分解需要穷举,因此密码在很长的时限内都是安全的。
从原理可以看出,加密和解密是完全对称的,如果用私钥加密,而用公钥解密的过程称为电子签名,因为别人没有私钥,就无法伪造签名者的消息和身份信息了。
一般网银和网上交易等金融相关的密码体系采用加密和电子签名相结合的方式,对用户密码用银行等服务端的公钥加密后再和用户名等信息一起用用户的私钥进行电子签名,服务端再分别用用户的公钥和银行的私钥解密,用数字证书的方式传递公钥。
而一般的网站登录多采用MD5值来存储和比对密码,虽然理论上从MD5值无法得到密码的明文,但仍然存在撞库的风险,黑客收集普通人常用的一些密码组合转换为MD5值来反推,因此尽量不要使用电话号码、名字缩写、生日组合之类的简单密码,网银密码用单独的密码不要和其他网站的密码一样。
RSA是目前最常用的公钥加密算法,但并没有从理论上证明破译RSA的难度与大数分解难度等价,有数学家认为RSA密码存在漏洞,而且在计算能力越来越强的计算机面前,仍然需要寻找更安全的加密方式。
ECC(Elliptic Curves Cryptography椭圆曲线密码)也是一种公钥密码算法,ECC能用更短的密钥长度来提供同等或更高的安全级别,其数学原理比较复杂,简单的说是利用椭圆曲线上点群的离散对数问题的困难性(并不懂这句话的意思),有机会再慢慢学习吧。
公钥密码算法学号:0900250114 姓名:李荣亮摘要:古往今来,通信中的安全保密问题一直受到广泛关注。
历史上,交战双方在通信安全、保密和密码破译方面的优势均被认为是取得战争胜利的关键因素之一。
今天,随着互联网的发展,人类进入信息化时代,现代通信涉及各个行业,信息安全已成为人人都关心的问题,敏感信息的安全传输越来越受到人们的关注,这就促使密码学揭去了神秘的面纱,为更广泛的领域和大众服务。
一、公钥密码学概述。
公开密钥密码算法的提出是整个密码学历史上最大的而且也许是最唯一真正的变革。
从最初一直到现代,几乎所有密码系统都建立在基本的替代和置换工具的基础上。
在用了数千年的本质上可以手算完成的算法之后,常规的密码学随着转轮加密/解密机的发展才出现了一个重大进步。
机电式变码旋转软件使得极其复杂的密码系统被研制出来。
有了计算机后,更加复杂的系统被设计出来。
但是不管是转轮机还是后来的DES(数据加密标准),虽然代表了重要的进展,却仍然依赖于替代和置换这样的基本工具。
公钥密码学则与以前的所有方法都截然不同。
一方面公开密钥算法基于数学函数而不是替代和置换,更重要的是,公开密钥密码学是非对称的,它用到两个不同的密钥,而对称的常规加密则只使用一个密钥。
使用两个密钥对于保密通信,密钥分配和鉴别等领域都有着深远的影响。
公钥密码算法中的密钥依性质划分,可分为公钥和私钥两种。
用户或系统产生一对密钥,将其中的一个公开,称为公钥;另一个自己保留,称为私钥。
任何获悉用户公钥的人都可用用户的公钥对信息进行加密与用户实现安全信息交互。
由于公钥与私钥之间存在的依存关系,只有用户本身才能解密该信息,任何未受授权用户甚至信息的发送者都无法将此信息解密。
在近代公钥密码系统的研究中, 其安全性都是基于难解的可计算问题的。
如:(1)大数分解问题;(2)计算有限域的离散对数问题;(3)平方剩余问题;(4)椭圆曲线的对数问题等。
基于这些问题, 于是就有了各种公钥密码体制。
密码学中的公钥密码算法及其应用密码学是一门研究通信安全和信息保密的科学,而公钥密码学算法则是其中最为重要的一种算法。
公钥密码学算法是指在加密和解密过程中,使用不同的密钥来实现。
本文将介绍公钥密码学算法的基本概念和应用。
一、公钥密码学算法概述公钥密码学算法也称为非对称密码学算法,它是一种使用两个密钥来进行加密和解密的算法。
这两个密钥是一对,一个称为公钥,一个称为私钥。
其中,公钥是公开的,任何人都可以知道,私钥则是秘密的,只有拥有者才会知道。
公钥密码学算法的加密过程是这样的:发送方使用接收方的公钥对数据进行加密,接收方使用自己的私钥对加密数据进行解密。
这样,就可以保证通信内容的安全性和保密性。
二、公钥密码学算法的分类公钥密码学算法分为两种类型:基于离散对数问题的算法和基于椭圆曲线问题的算法。
1、基于离散对数问题的算法基于离散对数问题的算法包括RSA和DH两种算法。
RSA算法是由三位数学家Rivest、Shamir和Adleman于1977年发明的。
它主要是利用了大数分解的难度来保证信息的安全性,而公钥就是由两个大素数的乘积得出的。
DH算法是Diffie和Hellman在1976年提出来的,它主要是利用数论中离散对数问题的难度来保证信息的安全性,而公钥则是通过一定计算得出的。
2、基于椭圆曲线问题的算法基于椭圆曲线问题的算法包括ECIES和ECDSA两种算法。
ECIES算法是可扩展加密标准中的一种,它主要是利用椭圆曲线上的点运算来实现加密和解密,公钥就是椭圆曲线上的一个点。
ECDSA算法是可扩展数字签名算法中的一种,它主要是利用椭圆曲线上的点运算来实现数字签名的生成和验证。
三、公钥密码学算法的应用公钥密码学算法在信息安全领域有着广泛的应用,下面介绍几个常见的应用场景。
1、TLS/SSL协议TLS/SSL协议是一种用于保护互联网通信安全的协议。
在TLS/SSL协议中,使用公钥密码学算法来实现通信内容加密和身份认证的过程,从而保证通信的安全性和保密性。
公钥密码算法 rsa公钥算法描述与实现RSA公钥密码算法是一种广泛应用于加密和数字签名领域的公钥加密算法。
RSA算法是由RonRivest、AdiShamir和LeonardAdleman 在1977年提出的。
该算法的安全性基于大数分解问题的困难性,也就是说,如果一个大素数可以被分解出来,那么相应的公钥也可以被破解出来。
因此,RSA算法的安全性在很大程度上依赖于素数的选择。
RSA算法的加密和解密过程都是用公钥和私钥进行的。
公钥用于加密,私钥用于解密。
具体的加密过程如下:假设Alice要向Bob发送一条消息m,先将消息编码为一个整数M,然后用Bob的公钥进行加密,得到密文C。
具体的加密过程为C = M^e mod n,其中e为Bob 的公钥指数,n为Bob的公钥模数。
解密过程如下:Bob用自己的私钥进行解密,得到明文M。
具体的解密过程为M = C^d mod n,其中d为Bob的私钥指数,n为Bob的公钥模数。
RSA算法的实现需要进行大数运算。
在实现过程中,可以使用任意精度整数库(如GMP库)来进行大数运算。
具体的实现步骤如下: 1. 选择两个大素数p和q,并计算它们的积n = pq。
这个数就是公钥模数。
2. 计算欧拉函数φ(n) = (p - 1) × (q - 1)。
3. 选择一个整数e,使得1 < e < φ(n)且e与φ(n)互质。
这个数就是公钥指数。
4. 计算e的模逆元d,使得de ≡ 1 mod φ(n)。
这个数就是私钥指数。
5. Bob将n和e公开,作为公钥。
6. Alice用Bob的公钥(n, e)加密消息,得到密文C。
7. Bob用自己的私钥d解密密文C,得到明文M。
RSA算法的安全性在很大程度上依赖于素数的选择。
为了增强RSA算法的安全性,可以采取以下措施:1. 选择更长的密钥长度。
通常情况下,RSA算法的密钥长度是1024位或2048位。
2. 选择更大的素数。