NPN和PNP三极管的区别
- 格式:doc
- 大小:27.50 KB
- 文档页数:2
三极管npn和pnp的知识三极管是一种重要的电子器件,常用于电子电路中的放大、开关等功能。
它分为npn型和pnp型两种基本类型。
我们来了解一下npn型三极管。
npn型三极管由两个n型材料夹持一个p型材料组成,其中n型材料称为发射极,另一个n型材料称为集电极,p型材料则称为基极。
npn型三极管的工作原理是:当发射极与基极之间施加正向电压时,使得基极处于正向偏置状态,此时发射极与基极之间的结电容会发生反向偏置,从而导致电流通过发射极流入基极。
当发射极与集电极之间施加正向电压时,形成一个电子注,电流从发射极注入到基极,再从基极注入到集电极,实现了电流的放大。
因此,npn型三极管可以用作放大器、开关等电路中的关键元件。
接下来,我们来了解一下pnp型三极管。
pnp型三极管由两个p 型材料夹持一个n型材料组成,其中p型材料称为发射极,另一个p型材料称为集电极,n型材料则称为基极。
pnp型三极管的工作原理与npn型三极管相反。
当发射极与基极之间施加负向电压时,使得基极处于负向偏置状态,此时发射极与基极之间的结电容会发生正向偏置,从而导致电流通过发射极流入基极。
当发射极与集电极之间施加负向电压时,形成一个电子注,电流从集电极注入到基极,再从基极注入到发射极,实现了电流的放大。
因此,pnp型三极管也可以用作放大器、开关等电路中的关键元件。
虽然npn型和pnp型三极管的工作原理相反,但它们的基本结构和特性相似。
三极管的放大功能主要依靠其特殊的结构和工作原理来实现。
在放大器电路中,三极管可以将输入信号的能量放大到输出端,实现信号的放大。
在开关电路中,三极管可以控制电流的开关状态,实现电路的开关功能。
除了放大和开关功能外,三极管还具有其他一些特点。
例如,三极管的输出电流与输入电流之间存在一定的比例关系,这个比例关系称为电流放大倍数。
电流放大倍数越大,三极管的放大效果越好。
此外,三极管还具有输入电阻和输出电阻的特性,输入电阻决定了输入信号对三极管的影响程度,输出电阻决定了三极管输出信号的稳定性。
如何判断pnp还是npn
可以通过以下几种方法来判断pnp还是npn:
1.外观区分法:首先PNP型贴片三极管的外壳要比NPN(D882)型外壳高得多,另外NPN型贴片三极管外壳有一个突出的标记,其次PNP型贴片三极管的2号和3号引脚是P极接高电位,NPN型贴片三极管的2号和3号引脚是N极,接低电位,也就是两者的引脚是刚好相反的。
2.万能电表区分法:将电表的红表笔连接贴片三极管的某一个引脚,黑表笔先后分别连接另外两个引脚便可以检测出两个电阻值,若两个电阻值都小于几百欧,进行第二步测试,将红黑表笔对调,重复测试一次,若测出电阻值很大,则说明这是PNP型贴片三极管,如果不满足上述情况,那说明这是NPN型贴片三极管。
3.箭头朝内PNP:导通电压顺箭头过,电压导通,电流控制。
三级管的用法特点:对于PNP而言,e极电压只要高于b级0.7V以上,这个三极管e级和c级之间就可以顺利导通。
也就是说,控制端在b 和e之间,被控端是e和c之间。
同理,NPN型三极管的导通电压是b极比e极高0.7V,总之是箭头的始端比末端高0.7V就可以导通三极管的e极和c极。
4.箭头是指EB小控制电流的方向:当小电流从B(基极)流至E(发射极)时(B为+,E为-),大电流开始从C至E流动。
流动时只能是单方向(C为+,E为-),有像二极管的整流作用。
对于NPN:当小电流从B(基极)流至E(发射极)时(B为+,E为-),
大电流开始从C至E流动。
流动时只能是单方向(C为+,E为-),有像二极管的整流作用。
通过以上方法可以判断出pnp还是npn。
1.PNP型晶体管PNP晶体管是另一种类型晶体管。
它的工作原理和NPN晶体管相似,只是在基区运动并放大信号的多数载流子是空穴而不是电子。
PNP晶体管的发射结要正偏,基区的电压要比发射区的电压要高,而集电极要是多数载流子空穴通过,集电区的电压要比基区的要低。
这一点和NPN晶体管的极间电位正好相反。
在双极模拟集成电路中要应用NPN-PNP互补设计以及某些偏置电路极性的要求,需要引入PNP结构的晶体管。
如横向PNP管广泛应用于有源负载、电平位移等电路中。
它的制作可与普通的NPN管同时进行,不需附加工序。
在横向PNP管中,发射区注入的少子(空穴)在基区中流动的方向与衬底平行,故称为横向PNP 管。
纵向PNP管其结构以P型衬底作集电区,集电极从浓硼隔离槽引出。
N型外延层作基区,用硼扩散作发射区。
由于其集电极与衬底相通,在电路中总是接在最低电位处,这使它的使用场合受到了限制,在运放中通常只能作为输出级或输出缓冲级使用。
2.Plug and Play在PnP技术出现之前,中断和I/O端口的分配是由人手工进行的,您想要这块声卡占用中断5,就找一个小跳线在卡上标着中断5的针脚上一插。
这样的操作需要用户了解中断和I/O端口的知识,并且能够自己分配中断地址而不发生冲突,对普通用户提出这样的要求是不切实际的。
PnP技术就是用来解决这个问题的,PnP技术将自动找到一个不冲突的中断和I/O地址分配给外部设备,而完全不需要人工干预。
但是如果您读懂了上面关于中断冲突的那一部分,您就应该了解,在中断资源非常紧张的今天,即使是PnP技术,也不一定能找到一个合适的中断分配给您刚刚插入的设备,所以尽量释放那些没有必要的中断,对PnP正常工作也是很有帮助的。
有些PnP冲突来源于主板的设计。
许多主板上有一个AGP插槽、五个PCI插槽和两个ISA插槽,而其中的AGP插槽一般是和一个PCI插槽共用一个中断的,也就是这两个槽的中断可以是合理的任何值,但必须是相同的,当您在AGP槽上插了显示卡,如果您还在同中断的PCI槽上插了一块声卡的话,就一定会产生中断冲突。
判断npn和pnp的例题(最新版)目录1.NPN 和 PNP 晶体管的结构和特点2.NPN 和 PNP 晶体管的判别方法3.例题讲解:如何判断 PNP 和 NPN 晶体管正文一、NPN 和 PNP 晶体管的结构和特点PN 和 PNP 晶体管是两种常见的三极管,它们在电路设计中有着广泛的应用。
两者的主要区别在于结构和电流放大方向。
1.NPN 晶体管:NPN 晶体管的结构为两个 N 型半导体与一个 P 型半导体相互连接,其中 N 型半导体为基极、发射极和集电极。
这种结构使得 NPN 晶体管具有电流放大功能,可以实现从发射极到集电极的电流控制。
2.PNP 晶体管:PNP 晶体管的结构为两个 P 型半导体与一个 N 型半导体相互连接,其中 P 型半导体为基极、发射极和集电极。
与 NPN 晶体管相反,PNP 晶体管的电流放大方向是从集电极到发射极。
二、NPN 和 PNP 晶体管的判别方法在实际应用中,我们需要对 NPN 和 PNP 晶体管进行判别,以便正确连接电路。
以下是判别 NPN 和 PNP 晶体管的方法:1.观察电路图标记:NPN 晶体管的电路图标记为向内晶体管,即发射极、基极和集电极的连接方向;PNP 晶体管的电路图标记为向外晶体管,即集电极、基极和发射极的连接方向。
2.测量管子电流:在未知的晶体管上,通过测量发射极电流、集电极电流和基极电流的大小,可以判断晶体管的类型。
对于 NPN 晶体管,发射极电流小于集电极电流;对于 PNP 晶体管,发射极电流大于集电极电流。
三、例题讲解:如何判断 PNP 和 NPN 晶体管假设我们有一个未知的晶体管,通过测量发现发射极电流为 2mA,集电极电流为 4mA,基极电流为 1mA。
我们可以根据这些数据来判断这个晶体管是 PNP 还是 NPN 类型的。
根据上述判别方法,我们可以得出:发射极电流(2mA)小于集电极电流(4mA),因此这个晶体管是 NPN 类型的。
npn和pnp的辨别方法【原创版3篇】目录(篇1)1.引言2.NPN和PNP的原理介绍3.NPN和PNP的区别4.NPN和PNP的应用场景5.结论正文(篇1)一、引言在电子电路中,NPN和PNP是两种重要的晶体管。
本篇文章将介绍这两种晶体管的基本原理、区别和应用场景。
二、NPN和PNP的原理介绍PN(Negative Pump)和PNP(Positive Pump)分别代表了两种不同的电流流动方向。
NPN(Negative Pump)型晶体管在基极和发射极之间有电流流动,而PNP(Positive Pump)型晶体管在基极和发射极之间有电流流动。
三、NPN和PNP的区别1.电流方向:NPN型晶体管在基极和发射极之间有电流流动,而PNP 型晶体管在基极和发射极之间有电流流动。
2.符号:NPN型晶体管的符号是在发射极和集电极之间加上一层半导体材料,而PNP型晶体管的符号是在发射极和集电极之间加上一层半导体材料。
3.电压:NPN型晶体管的电压是从基极到发射极,而PNP型晶体管的电压是从基极到发射极。
4.电流控制:NPN型晶体管需要较大的基极电流才能产生较大的集电极电流,而PNP型晶体管需要较小的基极电流就能产生较大的集电极电流。
5.输入阻抗:NPN型晶体管的输入阻抗较低,而PNP型晶体管的输入阻抗较高。
6.输出功率:NPN型晶体管的输出功率较大,而PNP型晶体管的输出功率较小。
7.耗散功率:NPN型晶体管的耗散功率较大,而PNP型晶体管的耗散功率较小。
8.工作温度:NPN型晶体管的工作温度较高,而PNP型晶体管的工作温度较低。
四、NPN和PNP的应用场景1.NPN型晶体管通常用于控制大电流,适用于需要较大输出功率的应用。
例如,用于驱动电机、加热器等大功率设备。
2.PNP型晶体管通常用于控制小电流,适用于需要较小输出功率的应用。
例如,用于控制LED灯、音频放大器等小功率设备。
3.NPN型晶体管在数字电路中应用广泛,常用于实现逻辑门电路。
NPN和PNP作为开关管的设计技巧以及全系列三极管参数1.1 NPN与PNP的区别NPN和PNP主要是电流方向和电压正负不同。
NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。
PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC<VB<VE。
1.2 NPN和PNP作为开关的使用三极管做开关时,工作在截至和饱和两个状态。
一般是通过控制三极管的基极电压Ub来控制三极管的导通与断开。
NPN型 PNP型图1 NPN与PNP如上图1所示,对于NPN来说,使Ube<Uon,三极管断开,Ube>Uon,三极管导通,其中一般Ue接地,则只需控制Ub,使Ub>Uon即可使之导通。
对于PNP来说,使Ueb<Uon,三极管断开,Ueb>Uon,三极管导通,其中一般Uc 接地,所以要使三极管导通既要控制Ue又要控制Ub使Ueb>Uon才行。
所以一般是Ue为某个固定电压值,只通过控制Ub来就可以控制三极管的导通与断开。
对比NPN与PNP可知:NPN做开关时,适合放在电路的接地端使用,如图2里面Q6; PNP做开关时,适合放在电路的电源端使用,如图3。
我们一般使用芯片I/O口来控制LED灯,I/O口的逻辑电平一般为高电平3 V左右,低电平为0.3V左右。
因此可以直接控制NPN管开关,如图2里面的Q6;一般不直接控制PNP管,如图3。
我们前控板设计LED的控制电路采用如下图2的NPN三极管对地较为合适,并且双色灯最好是使用共阳双色灯。
以双色灯的控制为例,如下图2所示图2 双色灯的控制图2中Q6,Q4是放在发光二极管的接地端只需要Ub>0.7V即可导通。
图3 电源的控制图3中Q35就放在电源端,E为固定12V,只需控制B极来导通三极管。
以下是普遍用法:NPN基极高电压,集电极与发射极短路.低电压,集电极与发射极开路.也就是不工作。
PNP与NPN三极管的区别2个PN结的方向不一致。
PNP是共阴极,即两个PN结的N结相连做为基极,另两个P结分别做集电极和发射极;电路图里标示为箭头朝内的三极管。
NPN则相反。
接近开关NPN和PNP区别先要搞清楚PNP、NPN 表示的意思是什么。
P表示正、N表示负。
PNP表示平时为高电位,信号到来时信号为负。
NPN表示平时为低电位,信号到来时信号为高电位输出.接近开关和光电开关只是检测电路不同输出相同。
至于PLC接线,一般用NPN的较多。
但多数的日本的PLC有日本型、世界型、和通用型。
进入中国的多数为世界型和通用型。
可直接用NPN 型。
接近开关和光电开关的电源正端接电源正、负接公共端、输出接PLC的输入端。
PLC的输入类型是分漏式和源式的,前者指的是正信号输入(可直接用PNP),后者指的是负信号输入(可直接用NPN),否则必须用继电器转换后输入。
传感器的型式不一而足,不过一般用得最多的是两线跟三线的,两线的跟负载串联。
三线的多为开集极输出,三根线分别为正负电源和输出晶体管的集电极。
传感器的NPN和PNP 是根据输出晶体管的型号来的。
NPN的负载是接在正电源与集电极之间,而PNP是接在集电极与负电源之间的。
要用万用表来判断传感器的型号,需要先给它一个负载,再根据它的输出电压来判断。
PNP与NPN型传感器根本的区别在哪?PNP与NPN型传感器其实就是利用三极管的饱和和截止,输出两种状态,属于开关型传感器。
但输出信号是截然相反的,即高电平和低电平。
NPN输出是低电平0,PNP输出的是高电平1。
PNP与NPN型传感器(开关型)分为六类:1、NPN-NO(常开型)2、NPN-NC(常闭型)3、NPN-NC+NO(常开、常闭共有型)4、PNP-NO(常开型)5、PNP-NC(常闭型)6、PNP-NC+NO(常开、常闭共有型)PNP与NPN型传感器一般有三条引出线,即电源线VCC、0V线,out信号输出线。
1、PNP类PNP是指当有信号触发时,信号输出线out和电源线VCC连接,相当于输出高电平的电源线。
一、回顾历史1.电子管在晶体管出现之前,有一种作用和晶体管类似的器件,叫做电子管。
1904年,世界上第一只电子二极管在英国物理学家的手下诞生了。
电子管,是一种最早期的电信号放大器件。
一种被封闭在玻璃容器(一般为玻璃管)中的阴极电子发射部分、控制栅极、加速栅极、阳极(屏极)引线被焊在管基上,利用电场对真空中的控制栅极注入电子调制信号,并在阳极获得对信号放大或反馈振荡后的不同参数信号数据。
电子管用于早期的电视机、收音机扩音机等电子产品,近年来逐渐被半导体材料制作的放大器和集成电路取代,但目前在一些高保真的音响器材中,仍然使用低噪声、稳定系数高的电子管作为音频功率放大器件。
电子管优缺点:缺点:体积大、功耗大、发热厉害、寿命短、电源利用效率低、结构脆弱而且需要高压电源等缺点。
优点:负载能力强、线性性能优于晶体管、工作频率高,高频大功率领域优于晶体管。
电子的体积很大(相对晶体管),当年(1946年)世界第一台计算机,使用1.8W个电子管搭建而成,占地150平方米,重达30吨,耗电功率约150千瓦。
2.晶体管由于电子管存在许多缺点,人类就发明了比电子管更先进的晶体管。
晶体管是一种固体半导体器件,包括二极管、三极管、场效应管、晶闸管等。
具有检波、整流、放大、开关、稳压、信号调制等多种功能。
1947年12月16日贝尔实验室制造出第一个晶体管。
第一枚晶体管模型:晶体管作为一种可变电流开关,能够基于输入电压控制输出电流。
与普通机械开关不同,晶体管利用电讯号来控制自身的开合,而且开关速度可以非常快,实验室中的切换速度可达100GHz以上。
3.三极管三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,属于晶体管中的一种。
三极管是一种控制电流的半导体器件。
其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。
三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
NPN和PNP三极管的区别(转)NPN和PNP主要就是电流方向和电压正负不同,说得“专业”一点,就是“极性”问题。
NPN 是用B→E 的电流(IB)控制C→E 的电流(IC),E极电位最低,且正常放大时通常C 极电位最高,即VC > VB > VEPNP 是用E→B 的电流(IB)控制E→C 的电流(IC),E极电位最高,且正常放大时通常C 极电位最低,即VC < VB < VE总之VB 一般都是在中间,VC 和VE 在两边,这跟通常的BJT 符号中的位置是一致的,你可以利用这个帮助你的形象思维和记忆。
而且BJT的各极之间虽然不是纯电阻,但电压方向和电流方向同样是一致的,不会出现电流从低电位处流行高电位的情况。
如今流行的电路图画法,"阳上阴下”,也就是“正电源在上负电源在下”。
那NPN电路中,E 最终都是接到地板(直接或间接),C 最终都是接到天花板(直接或间接)。
PNP电路则相反,C 最终都是接到地板(直接或间接),E 最终都是接到天花板(直接或间接)。
这也是为了满足上面的VC 和VE的关系。
一般的电路中,有了NPN的,你就可以按“上下对称交换”的方法得到PNP 的版本。
无论何时,只要满足上面的6个“极性”关系(4个电流方向和2个电压不等式),BJT电路就可能正常工作。
当然,要保证正常工作,还必须保证这些电压、电流满足一些进一步的定量条件,即所谓“工作点”条件。
对于NPN电路:对于共射组态,可以粗略理解为把VE当作“固定”参考点,通过控制VB来控制VBE(VBE=VB-VE),从而控制IB,并进一步控制IC(从电位更高的地方流进C极,你也可以把C极看作朝上的进水的漏斗)。
对于共基组态,可以理解为把VB当作固定参考点,通过控制VE来控制VBE(VBE=VB-VE),从而控制IB,并进一步控制IC。
如果所需的输出信号不是电流形式,而是电压形式,这时就在C 极加一个电阻RC,把IC 变成电压IC*RC。
NPN和PNP三极管的区别
NPN和PNP主要就是电流方向和电压正负不同,说得“专业”一点,就是“极性”问题。
NPN 是用B→E 的电流(IB)控制C→E 的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC > VB > VE
PNP 是用E→B 的电流(IB)控制E→C 的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC < VB < VE
总之VB 一般都是在中间,VC 和VE 在两边,这跟通常的BJT 符号中的位置是一致的,你可以利用这个帮助你的形象思维和记忆。
而且BJT的各极之间虽然不是纯电阻,但电压方向和电流方向同样是一致的,不会出现电流从低电位处流行高电位的情况。
如今流行的电路图画法,通常习惯“男上女下”,哦不对,“阳上阴下”,也就是“正电源在上负电源在下”。
那NPN电路中,E 最终都是接到地板(直接或间接),C 最终都是接到天花板(直接或间接)。
PNP电路则相反,C 最终都是接到地板(直接或间接),E 最终都是接到天花板(直接或间接)。
这也是为了满足上面的VC 和VE的关系。
一般的电路中,有了NPN的,你就可以按“上下对称交换”的方法得到PNP 的版本。
无论何时,只要满足上面的6个“极性”关系(4个电流方向和2个电压不等式),BJT电路就可能正常工作。
当然,要保证正常工作,还必须保证这些电压、电流满足一些进一步的定量条件,即所谓“工作点”条件。
对于NPN电路:
对于共射组态,可以粗略理解为把VE当作“固定”参考点,通过控制VB来控制VBE(VBE=VB-VE),从而控制IB,并进一步控制IC(从电位更高的地方流进C极,你也可以把C极看作朝上的进水的漏斗)。
对于共基组态,可以理解为把VB当作固定参考点,通过控制VE来控制VBE(VBE=VB-VE),从而控制IB,并进一步控制IC。
如果所需的输出信号不是电流形式,而是电压形式,这时就在C 极加一个电阻RC,把IC 变成电压IC*RC。
但为满足VC>VE,RC 另一端不接地,而接正电源。
而且纯粹从BJT本身角度,而不考虑输入信号从哪里来,共射组态和共基组态其实很相似,反正都是控制VBE,只不过一个“固定” VE,改变VB,一个固定VB,改变VE。
对于共射组态,没有“固定参考点”了,可以理解为利用VBE随IC或IE变化较小的特性,使得不论输出电流IE怎么变化(当然也有个限度),VE基本上始终跟随VB变化(VE=VB-VBE),VB升高,VE也升高,VB降低,VE也降低,这就是电压跟随器的名称的由来。
PNP电路跟NPN是对称的,例如:
对于共射组态,可以粗略理解为把VE当作“固定”参考点,通过控制VB来控制VEB(VEB=VE-VB),从而控制IB,并进一步控制IC(从C极流向电位更低的地方,你也可以把C极看作朝下的出水管)。
对于共基组态,可以理解为把VB当作固定参考点,通过控制VE来控制VEB(VEB=VE-VB),从而控制IB,并进一步控制IC。
……
上面所有的VE的“固定”二字都加了引号。
因为E点有时是串联负反馈的引入点,这时VE也是变化的,但这个变化是反馈信号,即由VB变化这个因造成的果。