2_4线段、角的轴对称性(1)教案
- 格式:doc
- 大小:41.00 KB
- 文档页数:2
lQABP§线段,角的轴对称性(1)教学案主备人:赵廷尧自主学习问题1:如图,线段AB ,通过折叠,能否是使点A 与点B 重合问题2:线段是轴对称图形吗上面操作中的折痕是什么 <问题3:在折痕上任意取一点C ,连接AC 、BC ,AC 与BC 的数量关系怎样你能证明吗通过以上三个问题的解决你知道了什么 几何语言:∵MN ⊥AB ,AC =BC ,∴_______(线段垂直平分线上的点到线段两 端的距离相等). "探究活动例1、线段的垂直平分线外的点,到这条线段两端的距离相等吗为什么变形:在例1的条件下:1、若AP=6,BP=4,求△QPB 的周长;2、若△QPB 的周长为12,△APB 的周长为17,求AB ; %3、若△QPB 的周长为12,AB =7,求△APB 的周长。
4、若△QCB 的周长为24,△APB 的周长与四边形BPQC 的周长之差为12,求CQA BC例2、如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若BC=25cm ,求△AEG的周长D FC ·例3、如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC的垂线分别与AD、BC相交于点E、F,连接AF.求证:AE=AF.(【课堂练习】:已知:如图,AB=AC=12 cm,AB的垂直平分线分别交AC、AB于D、E,△ABD的周长等于29 cm,求DC的长.\§线段,角的轴对称性(1)达 标 自 测班级 学号 姓名自测内容1.线段垂直平分线上的点到 距离相等。
2、如图,直线MN 是线段AB 的垂直平分线,垂足为D ,点P 是MN 上一点.若AB =10 cm ,则BD =_______cm ;若PA =10 cm ,则PB =_______cm .3.如图,在ΔABC 中,AB 的中垂线交AC 与点E ,若AC=9,AE:CE=2:1,则B 、E 两点间的距离是 。
lO PB AB A 2.4线段、角的轴对称性 (1)班级 姓名 学号【学习目标】1.经历探索线段的轴对称性的过程,进一步体会轴对称性的特征,发展空间观念。
2.探索证明线段的垂直平分线的性质。
3.运用线段的垂直平分线的性质解决相关问题。
【重点难点】重点:线段的轴对称性。
难点:线段的垂直平分线的性质及其应用。
【自主学习】读一读:课本P 51-P 52想一想:1.折纸使线段AB 两端点重合,并画出对称轴.2.对称轴上取一点P ,连接PA 、PB ,再沿对称轴对折,观察PA 、PB 有何数量关系?3.你能说明此结论的正确性吗?练一练: 利用网络画图中线段的垂直平分线【新知归纳】线段垂直平分线的性质:即:如图,∵直线l 是线段AB 的垂直平分线, 点P 在直线l 上∴ .【活动探究】例1.如图,己知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=10cm, 求△BCE的周长。
例2.如图,点A、B在直线m的同侧,点B'是点B关于m的对称点,A B'交m于点P.⑴A B'与AP+PB相等吗?为什么?⑵在m上再取一点Q,并连接AQ与QB,比较AQ+QB与AP+PB的大小,并说明理由.河流外婆家小孩家 【课堂检测】1.如图,已知AB 是线段CD 的垂直平分线,E 是AB 上的一点,如果∠ECD=55°,那么下 列说法错误的是( )A .EC=EDB .EF ⊥CDC .∠D=55°D .EC=CD3.如图,有一条河,河岸的同一侧住着一个小孩和他的外婆。
小孩每天上学前要到河边提一桶水送给外婆。
问题(1)若他想到河边某一点去取水,使得所走的两段路程相等。
请你画出取水点P 的位置。
问题(2)若他想到河边某一点去取水,使得所走的路程最短。
请你画出取水点Q 的位置。
【课后巩固】1.如图1:AB是线段CD的垂直平分线,则图中全等三角形对数有()A.2对 B.3对 C.4对 D.5对2.如图2,在△ABC中,∠ABC=∠C,∠A=50°,DE是AB的垂直平分线,E为垂足,交AC于点D,则∠ABD= °,∠DBC= °.3.如图3,在△ABC中,DE是BC的垂直平分线,交BC于E,交AC于D.若△ABD周长为10,AC=7,则AB长是 .图1图2 图34.已知:如图,在△ABC中,边AB、BC的垂直平分线m、n相交于点O。
课时NO: 主备人:审核人用案时间:年月日星期教学课题 2.2 轴对称的性质(2)教学目标1.会画已知点关于已知直线l的对称点,已知线段的对称线段,已知三角形的对称三角形;让学生先从“做数学”中体会“获取知识”的快乐;2.让学生们感受分类讨论的思想,体会方法的多样性和知识的丰富性.教学重点作已知图形的轴对称图形的一般步骤教学难点怎样确定已知图形的关键点并根据这些点作出对称图形.教学方法教具准备教学课件教学过程个案补充一. 自主先学:思考:如图,A、B、C 3点都在方格纸的格点位置上.请你再找一个格点D,使图中的4点组成一个轴对称图形.二.探究交流实践探索一以其中的个别对应点为例,去掉网格线,你能找出点C关于直线AB的对应点么?点A关于直线AB的对应点有吗?(分类讨论点在线上与点在线外作对应点的方法).AC关于直线AB的对称图形实践探索二你能画出线段AB关于直线l的对称图形么?如果直线l 外有线段AB ,那么怎样画出线段AB 关于直线l 的对称线段A 'B '?怎样画已知线段关于某直线对称的线段?怎样画已知三角形关于某直线对称的三角形?说说你的想法和根据,展开讨论,踊跃回答,并动手去做一做.实践探索三画出△ABC 关于直线MN 的对称图形实践探索四在图中,四边形ABCD 与四边形EFGH 关于直线l 对称.连接AC 、BD .设它们相交于点P .怎样找出点P 关于l 的对称点Q ?提示:成轴对称的两个图形的对应点也成轴对称.BCN问题1 在图2-11中连接AC、BD,画出它们的交点P,你能用折纸、扎孔的方法画出点P关于直线l的对称的点Q吗?问题2 你能用直尺和三角尺,根据“画点A关于直线l的对称的点A ”的方法画出点P关于直线l的对称的点Q.问题3 为什么EG和FH的交点就是与点P对称的点Q?三.交流展示请同学们用自己的语言再来复述一下画轴对称图形的方法.(1)先画对称轴,再画已知点关于对称轴的对称的点;(2)先画已知三角形的各顶点的对称的点,再画出关于对称轴对称的三角形;成轴对称的两个图形的对应点也成轴对称.四.小结与反思:课外作业:布置作业板书设计教后札记。
教案1.4线段、角的轴对称性(1)【学习目标】:1.经历探索线段的轴对称性的过程,进一步体验轴对称的特征,发展空间观念;2 .探索并掌握线段的垂直平分线的性质.【重点难点】:线段中垂线的性质和判定【预习指导】:自学课本18页到19页,回答下列问题并写下疑惑摘要问题1:线段是轴对称图形吗?为什么问题2线段的对称轴是什么?问题3已知线段MN=3cm ,直线l是MN的垂直平分线。
分别以M,N 为圆心,2cm的长为半径画弧,两弧相交于点G、H,并观察点G,H与直线l有什么关系?课堂活动活动一对折线段问题1:按要求对折线段后,你发现折痕与线段有什么关系?问题2:按要求第二次对折线段后,你发现折痕上任一点到线段两端点的距离有什么关系?结论:1__________________2__________________例题:P18 例1这是一道文字描述的几何说理题,对大多数同学来说容易理解,但不易叙述,因此要做一定的分析,如:你能读懂题目吗?题中已知哪些条件?要说明怎样一个结论?题中的已知条件和要说明的结论能画出图形来表示吗?根据图形你能说明道理吗?活动二用圆规找点问题1:你能用圆规找出一点Q,使AQ=BQ吗?说出你的方法并画出图形(保留作图痕迹),还能找出符合上述条件的点M吗?问题2:观察点Q、M,与直线l有什么关系?符合上述条件的点你能找出多少个?它们在哪里?结论:_____________________活动三用直尺和圆规作线段的垂直平分线1.按课本上19页的方法在书上作出线段的垂直平分线;2.同位可画出不同位置的线段,相互作出线段的垂直平分线结论:__________________【典题选讲】:已知:如图,AB=AC=12 cm,AB的垂直平分线分别交AC、AB于D、E,△ABD的周长等于29 cm,.求DC的长【学习体会】:【课堂练习】:1、如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若BC=25cm ,求△AEG的周长?2.在下图中分别作出点P 关于OA 、OB 的对称点C 、D ,连结C 、D 交OA 于M ,交OB 于N,若CD=5厘米,求ΔPMN 的周长.3、滨海政府为了方便居民的生活,计划在三个住宅小区A 、B 、C 之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等.C BA( 编写者:李晓红)· BO A。
2.4 线段,角的轴对称性(1)教案-2022-2023 学年苏科版八年级数学上册一、教学目标1.理解线段的定义和性质。
2.掌握线段的构造方法。
3.了解角的定义和性质。
4.掌握角的构造方法。
5.理解轴对称的概念。
6.掌握用折纸法进行轴对称构造的方法。
二、教学重难点1.理解轴对称和线段的定义和性质。
2.掌握线段和角的构造方法。
三、教学准备1.教材《苏科版八年级数学上册》。
2.讲台、黑板、彩色粉笔。
3.直尺、圆规。
四、教学过程1. 导入新知教师可以用一个实际生活中的例子引入本节课的内容。
例如,可以讲述如何用直尺和圆规来构造一个等腰三角形,然后向学生提问:你们觉得用直尺和圆规还可以用来做什么?2. 线段的定义和性质教师向学生介绍线段的定义和性质,并在黑板上示意绘制一个线段。
教师可以通过引导学生观察线段的两个端点、长度等特点,让学生了解线段的基本概念和性质。
3. 线段的构造方法教师向学生介绍线段的构造方法,并通过实际操作展示如何用直尺来构造一个给定长度的线段。
教师可以让学生跟随操作,自己尝试构造不同长度的线段,并与同桌讨论结果。
4. 角的定义和性质教师向学生介绍角的定义和性质,并在黑板上示意绘制一个角。
教师可以通过引导学生观察角的顶点、两条边等特点,让学生了解角的基本概念和性质。
5. 角的构造方法教师向学生介绍角的构造方法,并通过实际操作展示如何用直尺和圆规来构造一个给定角度的角。
教师可以让学生跟随操作,自己尝试构造不同角度的角,并与同桌讨论结果。
6. 轴对称的概念教师向学生介绍轴对称的概念,并在黑板上示意绘制一个轴对称的图形。
教师可以通过引导学生观察轴对称图形的特点,让学生了解轴对称的基本概念和性质。
7. 用折纸法进行轴对称构造教师向学生介绍用折纸法进行轴对称构造的方法,并通过实际操作展示如何用折纸法构造一个轴对称的图形。
教师可以让学生跟随操作,自己尝试构造不同的轴对称图形,并与同桌讨论结果。
8. 拓展练习教师布置一些拓展练习题,让学生独立完成,并在课堂上互相讨论、解答。
初中数学《线段、角的轴对称性》教案教学课题:1.4线段、角的轴对称性(一)教学时刻(日期、课时):教材分析:学情分析:教学目标:1.经历探究线段的轴对称性的过程,进一步体验轴对称的特点,进展空间观念;2 .探究并把握线段的垂直平分线的性质;3.了解线段的垂直平分线是具有专门性质的点的集合;4 在“操作---探究----归纳----说理”的过程中学会有条理地摸索和表达,提高演绎推理能力。
探究并把握线段的垂直平分线的性质线段的垂直平分线是具有专门性质的点的集合教学预备《数学学与练》集体备课意见和要紧参考资料页边批注加注名人名言苏州市第二十六中学备课纸第页教学过程一.新课导入问题1:线段是轴对称图形吗?什么缘故?探究活动:活动一对折线段问题1:按要求对折线段后,你发觉折痕与线段有什么关系?问题2:按要求第二次对折线段后,你发觉折痕上任一点到线段两端点的距离有什么关系?二.新课讲授结论:1.线段是轴对称图形,线段的垂直平分线是它的对称轴;2.线段的垂直平分线上的点到线段两端的距离相等(投影)例题:例1P21(投影)这是一道文字描述的几何说理题,对大多数同学来说容易明白得,但不易叙述,因此要做一定的分析,如:你能读明白题目吗?题中已知哪些条件?要说明如何样一个结论?题中的已知条件和要说明的结论能画出图形来表示吗?依照图形你能说明道理吗?活动二用圆规找点问题1:你能用圆规找出一点Q,使AQ=BQ吗?说出你的方法并画出图形(保留作图痕迹),还能找出符合上述条件的点M吗?问题2:观看点Q、M,与直线l有什么关系?符合上述条件的点你能找出多少个?它们在哪里?结论:到线段两端距离相等的点,在这条线段的垂直平分线上。
活动三用直尺和圆规作线段的垂直平分线1.按课本上的方法在书上作出线段的垂直平分线;2.同位可画出不同位置的线段,相互作出线段的垂直平分线加注名人名言苏州市第二十六中学备课纸第页一.巩固练习P23 习题1、2、3二.小结结论:线段的垂直平分线是到线段两端距离相等的点的集合这节课你学到了什么?页边批注加注名人名言板书设计作业设计事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。
苏科版数学八年级上册2.4《线段角的轴对称性》教学设计2一. 教材分析《苏科版数学八年级上册2.4《线段角的轴对称性》》这一节主要让学生理解线段和角的轴对称性质,学会运用轴对称性质解决实际问题。
教材通过丰富的实例,引导学生探究线段和角的轴对称性质,培养学生的动手操作能力和抽象思维能力。
二. 学情分析学生在七年级已经学习了轴对称的概念,对轴对称有了初步的认识。
但是,对于线段和角的轴对称性质,他们可能还比较陌生。
因此,在教学过程中,需要通过大量的实例和动手操作,让学生加深对线段和角的轴对称性质的理解。
三. 教学目标1.理解线段和角的轴对称性质。
2.学会运用轴对称性质解决实际问题。
3.培养学生的动手操作能力和抽象思维能力。
四. 教学重难点1.线段和角的轴对称性质的理解和运用。
2.如何引导学生发现和总结轴对称性质。
五. 教学方法1.实例教学:通过丰富的实例,让学生直观地感受线段和角的轴对称性质。
2.动手操作:让学生亲自动手操作,发现和总结线段和角的轴对称性质。
3.小组讨论:让学生分组讨论,培养学生的合作意识和沟通能力。
六. 教学准备1.准备相关的实例和图片。
2.准备一些线段和角的模型。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一些生活中的实例,如剪纸、折叠等,引导学生回顾轴对称的概念。
然后,提出本节课的主要学习内容:线段和角的轴对称性质。
2.呈现(10分钟)呈现一些线段和角的轴对称的实例,让学生直观地感受线段和角的轴对称性质。
同时,引导学生发现和总结线段和角的轴对称性质。
3.操练(10分钟)让学生分组讨论,每组选择一个线段或角,找出它的轴对称线,并动手操作验证。
然后,各组汇报自己的发现,全班交流。
4.巩固(10分钟)出示一些练习题,让学生运用轴对称性质解决问题。
同时,引导学生总结解题思路和方法。
5.拓展(10分钟)出示一些相关的实际问题,让学生运用轴对称性质解决问题。
如:设计一个轴对称的图案、计算线段的长度等。
For personal use only in study and research; not for commercial use2.4线段、角的轴对称性(1)教学目标:探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.教学重点:线段垂直平分线的性质.教学难点:应用线段垂直平分线的性质解决相关问题.一、预习导航1.线段是轴对称图形,______________________是它的对称轴.2.如图,线段AB 的垂直平分线l 交AB 于点O ,点P 在l 上.P A 与PB 相等吗?为什么?3.在第2题中,若P 不在l 上,结论还成立吗?4.线段垂直平分线的性质定理:____________________________________________.二、例题精讲:例1.如图,△ABC 中,BC=7,AB 的垂直平分线分别交AB 、BC 于点D 、E ,AC 的垂直平分线分别交AC 、BC 于点F 、G . 求△AEG 的周长. 例2.已知:如图,AB=AE ,BC=ED ,AF 垂直平分CD. 求证:∠B =∠E. 课堂练习:见课本52页练习 三、达标反馈1.如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段P A =5,则线段PB 的长度为( )A .6B .5C .4D .3第1题 第2题 第3题 第5题 2.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( )A .AB =AD B .AC 平分∠BCD C .AB =BDD .△BEC ≌△DEC 3.如图,AC =AD ,BC =BD ,则有( )A .AB 垂直平分CD B .CD 垂直平分ABC .AB 与CD 互相垂直平分 D .CD 平分∠ACB D F AB C E G A B C D E FPA B O l4.已知点P在线段AB的垂直平分线上,点Q在线段AB的垂直平分线外,则线段P A与PB_________,线段QA与QB__________.(填“相等”或“不相等”)5.如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,已知△BCE的周长是8,AC比BC长2,则AC长为__________.6.在△ABC中,边AB、BC、AC的垂直平分线相交于P,则P A、PB、PC的大小关系是__________.7.△ABC中,边AB的垂直平分线交AC于E,△ABC和△BEC的周长分别是24和14,则AB=______.8.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,求△ABC的周长.仅供个人参考仅供个人用于学习、研究;不得用于商业用途。
7.2简单的轴对称图形(1)教学案教学目标知识目标:1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念2、探索并了解角的平分线、线段垂直平分线的有关性质。
过程与方法:教师通过生活中的实际问题来达到让学生对简单轴对称图形的认识,从而培养学生的识图能力。
情感与价值观:通过分组讨论学习,使学生体会在解决问题的过程中与他人合作的重要性。
培养团结协作的精神。
教学重、难点:教学重点:1、角、线段是轴对称图形2、角的平分线、线段垂直平分线的有关性质教学难点:角的平分线、线段垂直平分线的有关性质教学过程:一、知识回顾1.什么是轴对称图形?2. 角是不是轴对称图形呢?如果是,它的对称轴在哪里?二、探索研究,充分发挥学生的主体作用探索1:角的对称性1、在准备好的三角形的每个顶点上标好字母;2、A、B、C。
把角A对折,使得这个角的两边重合。
3、在折痕(即平分线)上任意找一点C,4、过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足。
5、将纸打开,新的折痕与OB边交点为E。
教师要引导学生思考:我们现在观察到的只是角的一部分。
注意角的概念。
学生通过思考应该大部分都能明白角是轴对称图形这个结论。
问题2:在上述的操作过程中,你发现了哪些相等的线段?说明你的理由,在角平分线上在另找一点试一试。
是否也有同样的发现?实验结论:⑴角是轴对称图形,它的对称轴是它的平分线所在的直线;⑵角平分线的性质:角平分线上的点到这个角的两边的距离相等。
学生应该很快就找到相等的线段。
下面用我们学过的知识证明发现:巩固练习:1、在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么?2、如图,OC是∠AOB的平分线,点P在OC上,PO⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm,则PE=__________cm.3、如图,在△ABC中,,∠C=90°,AD平分∠BAC交BC于D,点D到AB的距离为5cm,则CD=_____cm.探索2:探索线段的对称性做一做:按下面步骤做:1、用准备的线段AB,对折AB,使得点A、B重合,折痕与AB 的交点为O。
第十三章《轴对称》教案一、本章主要内容:本章的主要内容是从生活中的图形入手,学习轴对称与其根本性质,欣赏、体验轴对称在现实生活中的广泛应用.通过具体实例认识轴对称、轴对称图形,探索简单图形之间的轴对称关系,能够按照要求画出简单平面图形〔点、线段、直线、三角形等〕关于给定对称轴的对称图形;认识并欣赏自然界和现实生活中的轴对称图形;理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上.了解等腰三角形的概念,探索并证明等腰三角形的性质定理;探索并掌握等腰三角形的判定定理;探索等边三角形的性质定理与等边三角形的判定定理;能初步应用本章所学的知识解释生活中的现象与解决简单的实际问题,在观察、操作、想象、论证、交流的过程中,开展空间观念,激发学习兴趣.二、教学目标:1、知识与技能①、通过具体实例认识轴对称、轴对称图形,探索轴对称的根本性质,理解对应点连线被对称轴垂直平分的性质②、了解线段垂直平分线的概念,探索并掌握其性质;了解等腰三角形、等边三角的有关概念,探索并掌握它们的性质以与判定方法2、过程与方法通过大量的现实生活右的图形来认识轴对称图形与轴对称的概念,让学生体验轴对称在现实生活中的广泛应用,在具体教学过程中,可在教材的根底上适当拓展,使内容更为丰富.3、情感与价值观通过本节学习,能初步应用本章所学的知识解释生活中的轴对称现象与解决简单的实际问题, 在观察、操作、想象、论证、交流的过程中,开展空间观念,提高思维能力,培养学生体会数学美感的价值观.三、教学重点:轴对称的性质、等腰三角形的性质和判定.四、教学难点:运用轴对称的思路分析识认复杂图形,进展推理论证.五、教学的几个建议:1、教学中要注意联系实际.2、教学中要注意通过比照加深概念的理解.3、满足学生多样化的学习需求,为学生提供个性化学习的时间和空间4、重视现代信息技术工具的应用六、教具准备:课件、电子白板、运程教育资源网七、课时安排:本章教学时间约需14课时,具体分配如下:13.1 轴对称------------------------------------------- 3课时13.2 画轴对称图形---------------------------------- 2课时13.3 等腰三角形------------------------------------5课时13.4 课题学习最短路径问题-------------------- 2课时数学活动复习与小结------------------------------------------- 2课时13.1 轴对称〔1〕一、教学目标:1、知识与技能:①、感受生活中对称现象的普遍性和对称美.②、掌握轴对称图形、关于直线对称的概念.③、会识别关于直线对称,并能找出对称轴.2、过程与方法:①、通过学习轴对称图形和关于直线对称,进一步认识几何图形的本质特征.②、通过学习轴对称图形和关于直线对称的区别和联系,进一步开展学生抽象概括能力.3、情感与价值观;通过学习轴对称图形和关于直线对称,体会他们在现实生活中的应用,激发学生的学习欲望,主动参与数学学习活动,提高学生的学习能力和审美能力.二、教学重点:掌握轴对称图形和关于直线轴对称的概念.三、教学难点:比拟观察得到轴对称图形和关于直线对称的区别和联系.四、教具准备:课件、电子白板、运程教育资源网.五、教学程序:〔一〕欣赏图片观察思考1、车标设计:2、图案欣赏:[通过展示图片,让学生初步感受轴对称,体会轴对称与现实生活的严密联系,激发学生的学习欲望,提高他们的学习积极性.]〔二〕动手操作探索新知1、观察动画合作交流〔课件〕:轴对称图形定义:2、新知应用提高能力①、下面图形是不是轴对称图形?②、下面四幅图中是轴对称的有几个?③、画出下面每个轴对称图形的对称轴④、下面是几家银行的标志,其中是轴对称图形的是?⑤、想一想:0-9十个数字中,哪些是轴对称图形?〔抢答〕0 1 2 3 4 5 6 7 8 9⑥、猜字游戏: 在艺术字中,有些汉字是轴对称的,你能猜一猜如下是哪些字的一半?〔图形参课件〕⑦、把一圆形纸片两次对折后,得到右图,然后沿虚线剪开,得到两局部,其中一局部展开后的平面图形是< >3、动手操作探讨对称轴条数[动手操作填写下表]A B C D图形形状是否轴对称图形对称轴的数量<条>4、合作交流归纳提高〔1〕有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条.〔2〕对称轴通常画成虚线,是直线,不能画成线段.〔三〕观察探索研究新知:1、观察下面的每对图形有共同特点?[学生通过观察、思考、合作交流,认识两个图形轴对称的本质特征,鼓励学生善于思考、勇于发现,培养合作意识.]2、两个图形成轴对称的定义:把_______沿着某一条直线折叠,如果它能够与_____图形____,那么就说这两个图形______________或者说这两个图形成轴对称.这条直线叫做_____.折叠后重合的点是对应点,叫做______.3、新知应用反应提高①、下面给出的每幅图形中的两个图案是轴对称?如果是,试着找出它们的对称轴,并找出一对对应点.[图形参课件]②、判断:成轴对称的两个图形全等?< >如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等?< >这两个图形对称?< >③、想一想:一辆汽车的车牌在水中的倒影如以下图,你能确定该车车牌的?〔四〕课堂小结归纳比拟:1、如果一个图形沿一条直线折叠,直线两旁的局部能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点叫做对称点.3<五>课堂练习应用提高1、有两条对称轴的轴对称图形是〔〕A. B. C. D.2、图案,对称轴有〔〕A.2条 B.4条C.8条D.无数条3、等边三角形有三条对称轴,其中一条是〔〕A.一边上的高线B.一个角的平分线C.一边上的中线D.一边上的高所在直线4、如下图案中,不是轴对称的是〔〕5、两个图形关于直线对称的是〔〕〔六〕布置作业:1、课本64页1、2、3题.2、练习册板书设计13.1 轴对称一、轴对称图形、关于直线对称的定义. 二、轴对称图形与关于直线对称的区别于联系.教学后记:13.1 轴对称〔2〕一、教学目标:1、知识与技能:①、掌握线段垂直平分概念.②、通过探究掌握两个图形关于直线对称的性质.③、掌握并会运用线段垂直平分线的性质和判定.2、过程与方法:①、通过对轴对称图形的研究理解轴对称的性质,进一步培养学生的抽象能力.②、通过类比角平分线的性质、判定与线段垂直平分线的性质、判定,加深对两者的理解,使学深感受类比的好处.3、情感与价值观;通过轴对称性质的学习加强学生对事物内在联系,增强学生创造美好生活的信心.二、教学重点:轴对称的性质、线段垂直平分线的性质与判定.三、教学难点:线段垂直平分线的性质与判定的描述.四、教具准备:课件、电子白板、运程教育资源网.五、教学程序:〔一〕创设情境引入新课问题情境:一节课我们共同研究了轴对称的定义,那么轴对称具有性质?与对称轴有关的知识有哪些呢?1、如果一个图形沿着一条直线,两侧的图形能够,这个图形就是轴对称图形.2、折痕所在的这条直线叫做______3、把一个图形沿着某一条直线,如果它能够,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做 〔二〕合作交流 探究新知探究一:线段的垂直平分线的概念、轴对称的性质:1.如图,ABC ∆与C B A '''∆关于直线MN 对称,点C B A ''',,分别是C B A ,,的对称点.试写出图中所有相等的线段和相等的角<不添字母>; 2.说明线段C C B B A A ''',,与MN 有关系?.3.猜测:叫做线段的垂直平分线?关于直线对称的两个图形有性质? 归纳:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线4、轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. 探究二:线段的垂直平分线的性质1、如图,直线l 垂直平分线段AB ,P 1,P 2,P 3,…是l 上的点,请猜测点P 1, P 2,P 3,… 到点A 与点B 的距离之间的数量关系. 问题1:你能用不同的方法验证这一结论? 问题2:你能用文字语言表示这一结论?2、归纳:线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等. 线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. [学生通过证明、比拟准确掌握线段垂直平分线的性质、判定.] 〔三〕课堂练习 应用提高 练习1、 如图,在△ABC 中,BC =8,AB 的中垂线 交BC 于D ,AC 的中垂线交BC 与E ,如此△ADE 的周长等 于______. 练习2 如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,AB ,AC ,CE 的长度有关系?AB +BD 与DE 有关系练习3如图,AB =AC ,MB =MC .直线AM 是线段 BC 的垂直平分线?〔四〕动手操作 发散思维1、尺规作图:如何用尺规作图的方法经过直线外一点作直线的垂线? 1、如图,过点P 画∠AOB 两边的垂线,并和 同桌交流你的作图过程. 〔五〕课堂小结 反应提高: 〔1〕本节课学习了哪些内容?〔2〕线段垂直平分线的性质和判定是如何得到的? 两者之间有关系? 〔3〕如何判断一条直线是否是线段的垂直平分线? 〔六〕课堂练习 应用新知1.点C 垂直于线段AB ,且CA =CB ,如此点C 是线段AB 的〔 〕A .中点B .延长线上的点C .垂线上的点D .垂直平分线上的点2.如下说法中错误的答案是〔 〕A .线段的对称轴是它的垂直平分线B .线段垂线上的点到线段两端点的距离相等C .到线段两端距离相等的点都在一条直线上D .轴对称图形的两个对称点到对称轴的距离相等ABlPP P A B CD E AB C D E A B C D M AB P3.如图,△ABC中,BC=10,AB、AC的垂直平分线分别交BC于D、E,如此△ADE的周长为_______.4.如图,AB的垂直平分线DE交BC于E,D是垂足,假如AD=6㎝,△ACE的周长为16㎝,如此△ABC的周长为________.5.如图,∠MON=450,角的内部有一点P,设点P关于OM的对称点为A,点P关于ON的对称点为B,〔1〕求证:OA⊥OB;〔2〕假如AB交OM于E,交ON于F,且AB=8cm,求△PEF的周长.6.如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,BD=BC.过点D作AB的垂线交AC于点E,CD交BE于点F.问BE垂直平分CD?为?〔七〕布置作业1、教材第65页习题第4、10题.2、练习册.板书13.1 轴对称一、段垂直平分线定义. 二、例题轴对称性质.线段垂直平分线定义:性质:判定:教学反思:13.1轴对称〔3〕一、教学目标:1、知识与技能:①、会用"尺规作图〞作线段的垂直平分线.②、会作图形成轴对称或对称图形的对称轴.2、过程与方法:通过对对称轴画法的研究,进一步培养学生的动手能力.3、情感与价值观;通过轴对称性质的学习加强学生对事物内在联系,增强学生创造美好生活的信心.二、教学重点:线段的垂直平分线的画法三、教学难点:对称轴的画法四、教具准备:课件、电子白板、运程教育资源网.五、教学程序:〔一〕、创设情境复习引入问题:1、轴对称的性质是?2、如何判断一条直线是否是线段的垂直平分线?3、有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴?〔二〕探究新知培养能力探究1、如图,点A 和点B 关于某条直线成轴对称, 你能作出这条直线?作法:如图.〔1〕分别以点A,B 为圆心,以大于AB的长为半径作弧,两弧相交于C,D 两点;〔2〕作直线CD.CD 就是所求作的直线.问题:这种作法的依据是?这种作图方法还有哪些作用?探究2、如果两个图形成轴对称,怎样作出图形的对称轴?[如果两个图形成轴对称,其对称轴是任何一对对应点所连线段的垂直平分线.因此,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.]探究3、你能作出这个五角星的其他对称轴?它共有几条对称轴?〔三〕新知应用发散思维练习1、作出如下图形的一条对称轴,和同学比拟一下,你们作出的对称轴一样?练习2、如图,角是轴对称图形?如果是,它的对称轴是?练习3、如图,与图形A 成轴对称的是哪个图形?画出它的对称轴.练习4.如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A′′B′′C′′关于直线EF对称.〔1〕画出直线EF;〔2〕直线MN与EF相交于点O,试探究∠BOB′′与直线MN、EF所夹锐角α的数量关系.拓展思维:如图,两个图形关于直线对称.如果只能用直尺和圆规两种画图工具,你能画出对称轴?在图1中画出,保存痕迹, 并说明你的依据;如果要求只能用直尺一种画图工具,你还能画对称轴?在图2中画出,保存痕迹,说明这次画图的依据.〔四〕课堂小结归纳提高:1、谈谈本节课的主要收获2、会轴对称图形、关于直线对称的对称轴的画法.〔五〕布置作业:1、课本66页9、12、13题2、练习册板书设计13.2 画轴对称图形 <1>一、教学目标:1、知识与技能:①、会作出图形经过一、两次轴对称的图形. ②、体会成轴对称图形全等,对称线段相等. ③、体会对称点所连线段被对称轴垂直平分.④、会利用作轴对称图形进展简单图案设计. 2、过程与方法:经历对称的变换的画图、观察、交流等活动理解其根本性质. 3、情感与价值观;通过利用轴对称作图和图案设计,开展实践能力.二、教学重点:利用轴对称作图三、教学难点:利用对称变换设计图案四、教具准备:课件、电子白板、运程教育资源网.五、教学程序:〔一〕、创设情境 引入新知问题1.在纸的左边局部,画出左手印,把这X 纸左右对折后描图,打开对折的纸进展观察,这两个手印成轴对称?你知道对称轴是? 问题2.在纸上画一个ABC ∆,在旁边任意画一条直线l ,分别作出顶点C B A ,,到直线l 的垂线段,然后将纸沿直线l 对折,描出ABC ∆与顶点到l 的垂线段,打开对折的纸进展观察.你能从中悟出怎样作一个图形关于某直线对称的对称图形? 〔二〕、探究新知 培养能力探究1、如下三幅图是怎样得到的?〔图形参课件〕[图形都可以看作是以它的一局部作为根底,经轴对称变换扩展而来.] 轴对称变换:由一个平面图形得到它的轴对称图形的过程. 探究2、利用轴对称变换设计美丽图案〔图形参课件〕 观察思考:你有发现?1、对称轴的方向和位置发生变化,得到图形的方向和位置也会发生变化.2、轴对称变换的特征:①.由一个平面图形可以得到它关于一条直线l 对称的图形,这个图形与原图形的形状、大小_______;②新图形上的每一点,都是原图形上的某一点关于直线l 的_______ ③.连接任意一对对应点的线段被对称轴______④成轴对称的两个图形中的任何一个可以看作由另一个图形经过___________后得到.⑤ 一个轴对称图形也可以看作以它的一局部为根底,经___________扩展而成的. 〔三〕、自我尝试 动手操作1、对称轴 l 和一个点A,你能作出点A 关于l 的对称点 A ´?2、如何画线段AB 关于直线l 的对称线段A ′B ′?3、课本67例1:如图,△ABC 和直线l,作出与△ABC 关于直线l 对称的图形. 拓展:如图,△ABC 和直线l,作出与△ABC 关于直线l 对称的图形.[教师通过电子白板展示图案,学生观看图片.学生先观察图形找出关键点,再作出它们的对称点,并连接.教师指导学生画图.]4、小结:作图形关于直线对称的图形的一般步聚:找点:确定图形中的一些特殊点 画点:画出特殊点关于直线的对称点 连线:连接对称点 〔四〕、课堂练习 应用提高1、小强从镜子中看到的电子表的读数如如下图 ,如此电子表的实际读数是________2、右面的数据是某个时间经过轴对称变换而得来的,请问它表示的时间是多少?3、如下各图中,画△AˊBˊCˊ,使△AˊBˊCˊ 与△ABC关于直线MN成轴对称图形.4、课本68页练习1、2题[学生通过观察、思考、动手、合作交流,培养学生的合作意识和思维能力.] 〔五〕、课堂小结 归纳提高通过今天的学习,你有收获与体会? 1、轴对称变换的定义; 2、轴对称变换的特征; 3、画图形关于直线的对称图 轴对称变换的特征:1、由一个平面图形可以得到它关于一条直线l 对称的图形,这个图形与原图形的形状、大小完全一样;2、新图形上的每一点,都是原图形上的某一点关于直线l 的对称点;3、连接任意一对对应点的线段被对称轴垂直平分. 〔六〕、布置作业 练习册板书设计MNN〔1〕 〔2〕 〔3〕13.2 画轴对称图形 <2>一、教学目标:1、知识与技能:①、会由一点求关于坐标轴对称的点坐标.②、掌握两点关于坐标轴对称的坐标规律. 2、过程与方法:在找两点关于坐标轴对称的坐标规律.的过程中,培养学生的语言表达能力、观察能力、归纳能力、养成良好的自觉探索的习惯,体会数形结合的思想. 3、情感与价值观;再找点、描点的过程中让学生体会数形结合的思想,激发学生学习数学的乐趣.二、教学重点:会由一点求关于坐标轴对称的点坐标.三、教学难点:找两点关于坐标轴对称的坐标规律.四、教具准备:课件、电子白板、运程教育资源网.五、教学程序:〔一〕、创设情境 引入新知思考:如图,是一副老城的示意图,其中西直门和东直门是关于中轴线对称的.如果以天安门为原点,分别以长安街和中轴线为x 轴和y 轴建立平面直角坐标系,根据如以下图的东直门的坐标,你能找到西直门的坐标?观察:图中两个圆脸与y 轴有位置关系? 〔二〕、探究新知 培养能力 探究1:如图,你能在平面直角坐标系中画出点A 、B 、C关于y 轴的对称点?〔图形参课件〕1、思考:关于y 轴对称的点的坐标具有怎样的关系?关于y 轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标相等. 2、练习:①、点P<-5, 4>与点Q 关于y 轴对称,如此点Q 的坐标为__________. ②、点M<a, -2>与点N<-3, b>关于y 轴对称,如此a=_____, b =_____. 探究2:如图,在平面直角坐标系中你能画出点A 、B 、C 关于x 轴的对称点?1、思考:关于x 轴对称的点的坐标具有怎样的关系?关于x 轴对称的点的坐标的特点是:横坐标相等,纵坐标互为相反数. 2、练习:①、点P<-4, 5>与点Q 关于x 轴对称,如此点Q 的坐标为__________.②、点M<a, -3>与点N<-2, b>关于x 轴对称,如此a=_____, b =_____. 交流合作:小结:在平面直角坐标系中,关于x 轴对称的点横坐标相等,纵坐标互为相反数.关于y 轴对称的点横坐标互为相反数,纵坐标相等.点〔x, y 〕关于x 轴对称的点的坐标为______.点〔x, y 〕关于y 轴对称的点的坐标为_______. 〔三〕、应用新知 提高能力1、完成下表2、点P<6, b+2>与点P ’<a+b, -3a>.假如点p 与点p ’关于x 轴对称,如此a=_____ b=_______.假如点p 与点p ’关于y 轴对称,如此a=_____ b=_______. 3、如图,四边形ABCD 的四个顶点的坐标分别为A 〔-5,1〕,B 〔-2,1〕,C 〔-2,5〕,D 〔-5,4〕,分别画出与四边形ABCD 关于x 轴和y 轴对称的图形.4、讨论归纳:画一个图形关于x 轴或y 轴对称的图形的方法和步骤.〔1〕求特殊点的坐标;〔2〕描点;〔3〕连线.5、学生练习:△ABC 的三个顶点的坐标分别为A<-3,5>,B<- 4,1>,C<-1,3>,作出△ABC 关于y轴对称的图形.〔四〕、课堂小结 归纳提高谈谈本节课的收获:这节课你学到了? 1、点〔x, y 〕关于x 轴对称的点的坐标为______.点〔x, y 〕关于y 轴对称的点的坐标为_______. 2、在平面直角坐标系中一个图形关于x 轴或y 轴的对称图形的画法.[先求出图形中的一些特殊点<如多边形的顶点>的对应点的坐标,描出并连接点,就可以得到这个图形的轴对称图形.] 〔五〕、课堂思考 发散思维如图,分别作出点P,M,N 关于直线x=1的对称点, 你能发现它们坐标之间分别有关系? 〔图形参课件〕 〔六〕布置作业1、课本71页2、3、5、7题. 2、练习册.13.2 画轴对称图形一、两点关于坐标轴对称的坐标规律. 二、例题:教学反思:13.3 等腰三角形〔1〕一、教学目标: 1、知识与技能:①、掌握等腰三角形"等边对等角〞的性质.点 <2,-3> <-1,2> <-6,-5> <0.5,1><4, 0>关于x 轴的对称点关于y 轴的对称点xy OAB C D②、掌握等腰三角形"三线合一〞的性质.③、归纳证明两个角相等的常用方法.2、过程与方法:①、通过实践、观察、证明等腰三角形的性质,培养学生推理能力.②、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力.3、情感与价值观;引导学生对图形的观察、发现、激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的信心.二、教学重点:等腰三角形的性质与应用.三、教学难点:等腰三角形的性质证明.四、教具准备:课件、电子白板、运程教育资源网.五、教学程序:〔一〕、创设情境引入新知学生都是操作,观察所得三角形的形状,〔二〕探究新知培养能力∆沿AD对折再展开,重复几次,观察图形1、问题:将等腰ABC①.图中有哪些相等的角?有哪些相等的线段?∆是不是轴对称图形?对称轴是?②.等腰ABC∆除两腰相等外,它的角有性质?用语言描述等腰三角形的这条性质并给与证明.③.等腰ABC∆中,AD有几种角色?各是?用语言描述等腰三角形的这条性质并给与证明.④.等腰ABC2、有关结论:①、有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.3、学生练习:①、等腰三角形一腰为3cm,底为4cm,如此它的周长是;②、等腰三角形的一边长为3cm,另一边长为4cm,如此它的周长是;③、等腰三角形的一边长为3cm,另一边长为8cm,如此它的周长是4、思考:等腰三角形是轴对称图形?[学生讨论交流得出]等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线.5、等腰三角形的性质性质1 :等腰三角形的两个底角相等.即等边对等角.性质2 :等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.即等腰三角形三线合一[学生通过观察、思考、描述、证明,鼓励学生善于思考、勇于发现,大胆尝试.培养学生的语言表达能力、观察能力、归纳能力、养成良好的自觉探索几何命题的习惯.]〔三〕课堂练习应用新知判断题:1、等腰三角形的顶角一定是锐角.2、等腰三角形的底角可能是锐角或者直角、钝角都可以.3、等腰三角形的顶角平分线一定垂直底边.4、等腰三角形的角平分线、中线和高互相重合.5、等腰三角形底边上的中线一定平分顶角解答题:1、如图,在△ABC中 ,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.2、如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30.求∠1和∠ADC的度数.〔四〕课堂小结归纳提高本节课学习了等腰三角形的那些知识:1、轴对称图形2、两个底角相等,简称"等边对等角〞3、顶角平分线、底边上的中线、和底边上的高互相重合,简称"三线合一〞4、解决等腰三角形问题时常用的辅助线5、学习的数学思想与方法:分类讨论和一题多解.〔五〕布置作业1、课本77页练习2、3题;81页1、2题.13.3 等腰三角形〔2〕一、教学目标:1、知识与技能:①、掌握并会运用"等角对等边〞判定等腰三角形.②、归纳证明两条线段相等的常用方法.2、过程与方法:通过推理证明等腰三角形的判定定理,开展学生的推理能力,培养学生分析、归纳问题的能力.体会解决等腰三角形问题的常用辅助线.3、情感与价值观;引导学生观察、发现等腰三角形的判定方法,让学生从观察中获得成功,在这个过程中体验学习的兴趣..二、教学重点:等腰三角形的判定定理.三、教学难点:等腰三角形判定定理的证明..四、教具准备:课件、电子白板、运程教育资源网.五、教学程序:〔一〕、创设情境复习引入1、等腰三角形的性质是?〔1〕等腰三角形的两个底角相等.〔可以简称:等边对等角〕〔2〕等腰三角形的顶角平分线与底边上的中线,底边上的高互相重合<等腰三角形三线合一>2 、等腰三角形的对称轴是?。
初中数学轴对称教案初中数学轴对称教案(精选10篇)作为一名优秀的教育工作者,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。
那么大家知道正规的教案是怎么写的吗?下面是小编整理的初中数学轴对称教案,欢迎阅读与收藏。
初中数学轴对称教案篇1教学目的1.使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。
2.通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。
重点、难点判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。
教学过程一、知识回顾问题1:轴对称图形的定义是什么?它是判断图形是否是轴对称图形的依据。
问题2:是否会画轴对称图形的对称轴?找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。
问题3:轴对称图形对称点的连线与对称轴有什么关系?轴对称图形对称点的连线被对称轴垂直平分。
问题4:线段垂直平分线、角平分线具有什么性质?线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。
问题5:等腰三角形有什么性质?等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60。
问题6:如何判断三角形是等腰三角形?等边三角形?如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60的三角形是等边三角形,有一个角是60的等腰三角形是等边三角形。
二、例题1.书本中下列是轴对称图形的有( )A.1个 D.2个 C.3个 D.4个2.所示,已知,OC平分AOB,D是OC上一点,DEOA,DFOB,垂足为E、F点,那么(1)DEF与DFE相等吗?为什么?(2)OE与OF相等吗?为什么?三、巩固练习所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,A=491454.求△BCD的周长和DBC度数。
简单的轴对称图形(一)〖教学目标〗1.经历探索简单图形轴对称的过程,进一步体验轴对称的特征,发展空间观念。
2.探索并了解角的平分线、线段垂直平分线的有关性质。
3.初步体验解决问题策略的多样性,发展创新能力。
4.经历猜想、折叠、观察、发现等数学活动过程,培养学生的动手能力和逻辑思考能力。
〖教材分析〗轴对称是现实生活中广泛存在的一种现象,也是探索一些图形的性质,认识、描述图形的形状和位置关系的必要手段之一。
本节课的教学内容是研究和学习角与线段的轴对称性。
教材通过分析角与线段的轴对称性,引导学生逐步了解和领略轴对称现象的共同规律,从而由学生自己得出结论,形成角与线段的轴对称性质,这样更有利于体现以学生为主体的教育思想。
重点:角的平分线、线段垂直平分线的有关性质。
难点:探索角的平分线和线段垂直平分线性质的过程。
〖学校及学生状况分析〗学校教学设备基本齐全,配有多媒体教室。
本校绝大多数学生来自城市,其中特别优秀的学生不多,学生学习水平属于中等。
〖教学设计〗(一)创设情境,激发学习兴趣1.交流:在小组里展示同学们制作或收集的轴对称图形作品,每个小组评出一幅最优秀的作品在全班展示。
2.欣赏:利用多媒体演示一些具有实际意义的轴对称现象,使同学们感受到现实生活中存在着大量的轴对称图形。
3.体验:利用多媒体的动画效果演示一些常见的几何图形,如等腰三角形、圆、正六边形,使学生亲身感受轴对称图形:沿对称轴折叠时,两旁的部分一定重合。
(二)探索和学习角的轴对称性探究一(全体活动)1.猜想:角是轴对称图形吗?如果是,你能找出它的对称轴吗?2.动手操作(投影展示步骤):(1)画一个角,标上字母A,O,B;(2)将这个角剪下来;(3)将角的两边重合后折叠;(4)展开。
3.讨论:在操作过程中,你发现了什么?4.明晰(利用动画效果验证学生的发现):(1)角是轴对称图形;(2)角的平分线所在的直线是它的对称轴。
探究二(小组活动)1.动手操作(投影展示步骤):(1)在角平分线OC上任取一点P;(2)过点P分别作角的两边OA和OB的垂线。
姓名: 班级2.4 线段、角的轴对称性本课重点(1)垂直平分线与角平分线的性质与判定 本课难点 (2)利用垂直平分线与角平分线的性质与判定解决实际问题全卷共25题,满分:120分,时间:90分钟一、单选题(每题3分,共30分)1.(2021·河北保定市·八年级期末)ABC 内一点P 到三边距离相等,则点P 一定是ABC ( ) A .三条角平分线的交点B .三边垂直平分线的交点C .三条高的交点D .三条中线的交点【答案】A【分析】根据角平分线上的点到角两边的距离相等即可求解.【详解】解:∵点P 到三边距离相等,∴点P 一定在三条角平分线的交点上,故选:A .【点睛】本题考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.2.(2021·河北保定市·八年级期末)如图,在ABC 中,BC 的垂直平分线分别交AC ,BC 于点D ,E ,若ABC 的周长为16,3BE =,则ABD △的周长为( )A .6B .10C .12D .20【答案】B 【分析】根据线段垂直平分线的性质可得BD CD =,BE CE =,即可得到10AB AC +=、ABD △的周长为AB AD BD AB AD CD AB AC ++=++=+,即可求解.【详解】解:∵DE 为BC 的垂直平分线,∴BD CD =,BE CE =,∵ABC 的周长为16,3BE =,∴10AB AC +=,∴ABD △的周长为10AB AD BD AB AD CD AB AC ++=++=+=,故选:B .【点睛】本题考查线段垂直平分线的性质,掌握线段垂直平分线的定义与性质是解题的关键.3.(2021·河南省实验中学八年级月考)元旦联欢会上,同学们玩抢凳子游戏,在与A 、B 、C 三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A 、B 、C 三名同学所在位置看作△ABC 的三个顶点,那么凳子应该放在△ABC 的( )A .三边中线的交点B .三条角平分线的交点C .三边上高的交点D .三边垂直平分线的交点 【答案】D【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边垂直平分线的交点上. 【详解】∵三角形的三条垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC 的三条垂直平分线的交点最合适,故选:D . 【点睛】本题主要考查了线段垂直平分线的性质的应用,理解基本性质是解题关键.4.(2021·吉林九年级二模)如图,在锐角三角形ABC 中,BC BA >,按以下步骤作图:①以点B 为圆心,BA 长为半径作圆弧,交AC 于点D ;②分别以点A 、D 为圆心,大于12AD 长为半径作圆弧,计两弧交于点E ;③作射线BE ,交AC 于点P ,若60A ∠=︒,则ABP ∠的大小为( )A .20︒B .25︒C .30D .35︒【答案】C【分析】根据作图步骤可知BP ⊥AC ,根据直角三角形两锐角互余的性质即可得答案.【详解】由作图步骤可知:BP ⊥AC ,∴∠BP A =90°,∵60A ∠=︒,∴ABP ∠=90°-∠A =30°,故选:C .【点睛】本题考查尺规作图——作垂线,熟练掌握各基本作图的步骤是解题关键.5.(2021·成都西川中学八年级期中)如图,AD 是△ABC 的角平分线,DF ⊥AB 于点F ,且DE =DG ,S △ADG =24,S △AED =18,则△DEF 的面积为( )A .2B .3C .4D .6【答案】B 【分析】过点D 作DH ⊥AC 于H ,根据角平分线的性质得到DH =DF ,进而证明Rt △DEF ≌Rt △DGH ,根据全等三角形的性质得到△DEF 的面积=△DGH 的面积,根据题意列出方程,解方程得到答案.【详解】解:过点D 作DH ⊥AC 于H ,∵AD 是△ABC 的角平分线,DF ⊥AB ,DH ⊥AC ,∴DH =DF ,在Rt △DEF 和Rt △DGH 中,DF DH DE DG =⎧⎨=⎩,∴Rt △DEF ≌Rt △DGH (HL ), ∴△DEF 的面积=△DGH 的面积,设△DEF 的面积=△DGH 的面积=S ,同理可证,Rt △ADF ≌Rt △ADH ,∴△ADF 的面积=△ADH 的面积,∴24-S =18+S ,解得,S =3,故选:B .【点睛】本题考查的是全等三角形的判定与性质、角平分线的性质,作辅助线构造出全等三角形并利用角平分线的性质是解题的关键.6.(2021·辽宁九年级二模)如图,将△ABC 绕点A 逆时针旋转得到AB C ''△,点C 的对应点为点C ',C B ''的延长线交BC 于点D ,连接AD .则下列说法错误的是( )A .△ABC △ABC ''≅ B .//AB BC ' C .CDC CAC ∠∠''=D .AD 平分BDB '∠【答案】B【分析】A 、根据旋转的性质即可判断;B 、由旋转角的任意性可以判断;C 、由三角形内角和为180︒且两个角相等即可判断;D 、利用角平分线的判定定理即可证明. 【详解】解:A 、由旋转的性质可知:△ABC △ABC ''≅,故A 正确,不符合题意;B 、''ABC 由ABC 绕A 旋转任意角度得到,'//AB BC ∴只是特殊情况,故B 错误,符合题意;C 、''ABC AB C ≌,'C C ∴∠=∠,''1801C AC C ∠=︒-∠-∠,'1802CDC C ∠=︒-∠-∠,''12,CDC CAC ∠=∠∴∠=∠,故C 正确,不符合题意;D 、过A 分别作',C D CB 的垂线,垂直分别是,EF ,''ABC AB C ≌,''BC B C ∴=,''ABC AB C S S =△△; 11''22B C AE BC AF ∴⨯⨯=⨯⨯,AE AF ∴=, ',AE C D AF CB ⊥⊥,AD ∴平分BDB '∠,故D 正确,不符合题意;故选:B .【点睛】本题考查了,旋转的性质、平行线的判定定理、三角形内角和、角平分线,解题的关键是:掌握相关定理依次进行判断.7.(2021·湖南八年级期末)如图,在ABC 中,90C ∠=︒,30B ∠=︒,以A 为圆心,任意长为半径画弧交AB于M 、AC 于N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于D ,下列四个结论:①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:1:3ACD ACB S S =△△.其中正确的有( )A.只有①②③B.只有①②④C.只有①③④D.①②③④【答案】D【分析】利用角平分线的性质以及各内角度数和三角形面积求法分别得出即可.【详解】解:根据作图过程可知AD是BAC∠的角平分线,①正确;∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,故②正确;∵∠B=30°,∠DAB=30°,∴AD=DB,∴点D在AB的中垂线上,故③正确;∵∠CAD=30°,∴CD=12AD,∵AD=DB,∴CD=12DB,∴CD=13CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,故④正确,故选D.【点睛】本题主要考查尺规作角平分线、角平分线的性质定理、三角形的外角以及等腰三角形的性质,熟练掌握有关知识点是解答的关键.8.(2021·广东七年级期末)如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE BC=,PG//AD交BC于F,交AB于G,①2ACB APB=∠∠;②S△P AC:S△P AB=PC:PB;③BP垂直平分CE;④∠PCF=∠CPF.其中正确的有()A.①②④B.①③④C.②③④D.①③【答案】B【分析】利用角平分线的性质以及已知条件对①②③④进行一一判断,从而求解.【详解】解:∵P A平分∠CAB,PB平分∠CBE,∴∠P AB=12∠CAB,∠PBE=12∠CBE,∵∠CBE=∠CAB+∠ACB,∠PBE=∠P AB+∠APB,∴∠ACB=2∠APB;故①正确;过P作PM⊥AB于M,PN⊥AC于N,PS⊥BC于S,∴PM=PN=PS,∴PC平分∠BCD,∵S △P AC :S △P AB =(12AC •PN ):(12AB •PM )=AC :AB ;故②不正确;∵BE =BC ,BP 平分∠CBE ∴BP 垂直平分CE ,故③正确;∵PG ∥AD ,∴∠FPC =∠DCP ∵PC 平分∠DCB ,∴∠DCP =∠PCF ,∴∠PCF =∠CPF ,故④正确.本题正确的有:①③④故选:B .【点睛】此题主要考查了角平分线的性质和定义,平行线的性质,线段的垂直平分线的判定,等腰三角形的性质等.9.(2021·内蒙古中考真题)如图,在Rt ABC 中,90ACB ∠=︒,根据尺规作图的痕迹,判断以下结论错误的是( )A .BDE BAC ∠=∠B .BAD B =∠∠C .DE DC =D .AE AC =【答案】B 【分析】先通过作图过程可得AD 平分∠BAC ,DE ⊥AB ,然后证明△ACD ≌△AED 说明C 、D 正确,再根据直角三角形的性质说明选项A 正确,最后发现只有AE =EB 时才符合题意.【详解】解:由题意可得:AD 平分∠BAC ,DE ⊥AB ,在△ACD 和△AED 中∠AED =∠C ,∠EAD =∠CAD ,AD =AD∴△ACD ≌△AED (AAS )∴DE =DC ,AE =AC ,即C 、D 正确;在Rt △BED 中,∠BDE =90°-∠B 在Rt △BED 中,∠BAC =90°-∠B ∴∠BDE =∠BAC ,即选项A 正确;选项B ,只有AE =EB 时,才符合题意.故选B .【点睛】本题主要考查了尺规作图、全等三角形的性质与判定、直角三角形的性质,正确理解尺规作图成为解答本题的关键.10.(2021·江西八年级期末)如图,在ABC 中,DE 是边AC 的垂直平分线,交AC 于点D ,交AB 于点E ,点P 是直线DE 上的一个动点,若5AB =,则PB PC +的最小值为( )A .5B .6C .7D .8【答案】A 【分析】由条件可得点A 是点C 冠以ED 的对称点,即求PB+PC 的最小值就是求PB+PA 的最小值,在点P 运动的过程中,P 与E 重合时有最小值.【详解】解:∵ED 是AC 的垂直平分线,∴PC+PB=PA+PB ,∵P 运动的过程中,P 与E 重合时有最小值,∴PB+PC 的最小值=AB=5.故选:A 【点睛】本题主要考查动点最短路径问题,结合对称,寻找对称点,判断最值状态是解题的关键.二、填空题(每题3分,共24分)11.(2021·静宁县阿阳实验学校八年级期末)如图,123,,l l l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 ____ 处.【答案】4.【分析】作直线l 1、l 2、l 3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P 1、P 2、P 3,内角平分线相交于点P 4,然后根据角平分线的性质进行判断.【详解】解:如图示,作直线l 1、l 2、l 3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P 1、P 2、P 3,内角平分线相交于点P 4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等. 故答案是:4.【点睛】本题考查了角平分线的性质,熟悉相关性质是解题的关键.12.(2021·全国九年级专题练习)如图,在△ABC中,AB=6,AC=8,BC=11,AB的垂直平分线分别交AB,BC于点D、E,AC的垂直平分线分别交AC,BC于点F、G,则△AEG的周长为__.【答案】11.【分析】根据线段垂直平分线的性质可得EA=EB,GA=GC,所以可求出△AEG的周长.【详解】解∵DE是线段AB的垂直平分线,∴EA=EB,同理,GA=GC,∴△AEG的周长=AE+EG+GA=EB+EG+GC=BC=11,故答案为:11.【点睛】本题考查了线段垂直平分线的性质.线段垂直平分线上的点到线段两端点的距离相等.13.(2021·全国八年级专题练习)已知:如图,点P在线段AB外,且P A=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则下列作法正确的是________.①作∠APB的平分线PC交AB于点C②过点P作PC⊥AB于点C且AC=BC③取AB中点C,连接PC④过点P作PC⊥AB,垂足为C【答案】①③④ 【分析】利用判断三角形全等的方法判断四个选项是否成立即可.【详解】解:①利用SAS 判断出△PCA ≌△PCB ,∴CA =CB ,∠PCA =∠PCB =90°,∴点P 在线段AB 的垂直平分线上,故正确; ②过线段外一点作已知线段的垂线,不能保证也平分此条线段,故错误;③利用SSS 判断出△PCA ≌△PCB ,∴∠PCA =∠PCB =90°,∴点P 在线段AB 的垂直平分线上,故正确;④利用HL 判断出△PCA ≌△PCB ,∴CA =CB ,∴点P 在线段AB 的垂直平分线上,故正确;故答案为:①③④.【点睛】此题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.14.(2021·广东八年级期末)在△ABC 中,AB =5,BC =8,AC =6,AD 平分∠BAC ,则S △ABD :S △ACD =___.【答案】5:6【分析】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,根据角平分线的性质得出DE =DF ,根据三角形的面积公式求出答案即可.【详解】解:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,∵AD 平分∠BAC ,∴DE =DF ,设DE =DF =R ,∵S △ABD =12AB DE ⨯⨯=152⨯⨯R ,S △ACD =12AC DF ⨯⨯=162R ⨯⨯, ∴S △ABD :S △ACD =5:6,故答案为:5:6.【点睛】本题考查了三角形的面积和角平分线的性质,注意:角平分线上的点到角的两边的距离相等. 15.(2021·四川八年级期末)如图,在Rt ABC 中,90C ∠=︒,利用尺规在BA ,BC 上分别截取BM BN =;分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在CBA ∠内部交于点E ;作射线BE 交AC 于点F .若2CF =,点H 为线段AB 上的一动点,则FH 的最小值是______.【答案】2【分析】如图,过点F 作FG ⊥AB 于G .根据角平分线的性质定理证明GF =FC =2,利用垂线段最短即可解决问题.【详解】解:如图,过点F 作FG ⊥AB 于G .由作图可知,FB 平分∠ABC ,∵GF ⊥BA ,FC ⊥BC ,∴GF =FC =2,根据垂线段最短可知,HF 的最小值为2,故答案为:2.【点睛】本题考查作图-基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2021·辽宁九年级二模)如图,在Rt ABC 中,90,22,C B PQ ∠∠=︒=︒垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:以点A 为圆心,以适当的长为半径作弧,分别交边AC ,AB 于点D ,E ;分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;作射线AF ,射线AF 与直线PQ 相交于点G ,则AGQ ∠的度数为__________度.【答案】56【分析】根据直角三角形两锐角互余得∠BAC =68°,由角平分线的定义得∠BAG =34°,由线段垂直平分线可得△AQG 是直角三角形,根据直角三角形两锐角互余即可求出∠AGQ .【详解】解:∵△ABC 是直角三角形,∠C =90°,∴∠B +∠BAC =90°,∵∠B =22°,∴∠BAC =90°−∠B =90°−22°=68°,由作法可知,AG 是∠BAC 的平分线,∴∠BAG =12∠BAC =34°,∵PQ 是AB 的垂直平分线,∴△AGQ 是直角三角形,∴∠AGQ +∠BAG =90°,∴∠AGQ =90°−∠BAG =90°−34°=56°,故答案为:56.【点睛】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质等知识,熟知角平分线和中垂线的尺规作法是解题的关键.17.(2021·山东济南市·七年级期末)如图,在ABC 中,120BAC ∠=︒,分别作AC ,AB 两边的垂直平分线PM 、PN ,垂足分别是点M 、N .以下说法正确的是______(填序号).①60P ∠=︒;②EAF B C ∠=∠+∠;③PE PF =;④点P 到点B 和点C 的距离相等.【答案】①②④【分析】根据垂直的定义、四边形内角和等于360°计算,判断①;根据线段垂直平分线的性质得到EC =EA ,FB =F A ,进而得到∠EAC =∠C ,∠F AB =∠B ,经过计算判断②;根据等腰三角形的性质判断③,根据线段垂直平分线的性质判断④.【详解】解:∵PM 垂直平分AC ,PN 垂直平分AB ,∴∠PMA =∠PNA =90°,∠BAC =120°∴∠P =360°-90°-90°-120°=60°,①说法正确;∵∠BAC =120°,∴∠B +∠C =180°-120°=60°,∵PM 垂直平分AC ,PN 垂直平分AB ,∴EC =EA ,FB =F A ,∴∠EAC =∠C ,∠F AB =∠B , ∴∠EAF =∠BAC -∠EAC -∠F AB =∠BAC -(∠B +∠C )=120°-60°=60°,∴ ∠EAF =∠B +∠C ,②说法正确;△ABC 不一定是等腰三角形,∴PE 与PF 的大小无法确定,③说法错误;连接PC 、P A 、PB ,∵PM 垂直平分AC ,PN 垂直平分AB ,∴PC =P A ,PB =P A ,∴PB =PC ,即点P 到点B 和点C 的距离相等,④说法正确,故答案为:①②④.【点睛】本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.18.(2021·四川成都铁路中学八年级期中)已知:△ABC 是三边都不相等的三角形,点P 是三个内角平分线的交点,点O 是三边垂直平分线的交点,当P 、O 同时在不等边△ABC 的内部时,那么∠BOC 和∠BPC 的数量关系是___.【答案】4360BPC ∠-︒【分析】根据三角形角平分线的性质以及三角形内角和定理,即可得到2180BAC BPC ∠=∠-︒;再根据三角形垂直平分线的性质以及三角形内角和定理,即可得到2BOC BAC ∠=∠,进而得出BOC ∠和BPC ∠的数量关系.【详解】解:BP 平分ABC ∠,CP 平分ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠180(=︒-11)22ABC ACB ∠+∠1180()2ABC ACB =︒-∠+∠ 1180(180)2BAC =︒-︒-∠1902BAC =︒+∠,即2180BAC BPC ∠=∠-︒; 如图,连接AO .点O 是这个三角形三边垂直平分线的交点,OA OB OC ∴==,OAB OBA ∴∠=∠,OAC OCA ∠=∠,OBC OCB ∠=∠,1802AOB OAB ∴∠=︒-∠,1802AOC OAC ∠=︒-∠,360()BOC AOB AOC ∴∠=︒-∠+∠360(18021802)OAB OAC =︒-︒-∠+︒-∠,22OAB OAC =∠+∠2BAC =∠2(2180)BPC =∠-︒4360BPC =∠-︒,故答案为:4360BPC ∠-︒.【点睛】本题考查了三角形的垂直平分线与角平分线,熟练掌握三角形的垂直平分线与角平分线的性质是解题的关键.三、解答题(19-22题每题9分,其他每题10分,共66分)19.(2021·山东八年级期末)某地有两所大学和两条相交的公路,如图所示(点M ,N 表示大学,OA ,OB 表示公路)现计划修建一座物资仓库到两所大学的距离相等,到两条公路的距离也相等.请你用尺规确定仓库所在的位置.【答案】作图见解析.【分析】根据题意,分别作AOB ∠的平分线和MN 的垂直平分线即可求得【详解】解:分别作AOB ∠的平分线和MN 的垂直平分线;作图步骤如下:①以O 为圆心,任意长度为半径作弧,交,OA OB 于两点,C D ,分别以,C D 为圆心,以大于12CD 为半径在角的内部分别作弧,交于一点E ,作射线OE ;②分别以,M N 为圆心,以大于12MN 为半径在MN 的两侧分别作弧,交于,F G ,作直线FG ;FG 与OE 的交点P 即为所求如图所示,P 在AOB ∠的平分线和MN 的垂直平分线的交点上,点P 就是仓库应该修建的位置.【点睛】本题考查了角平分线的性质,垂直平分线的性质,以及角平分线和垂直平分线的作图,熟练作图步骤是解题的关键.20.(2021·重庆南开中学七年级期末)如图,在Rt ABC 中,90ACB ∠=︒,点D 在BC 边上,连接AD ,点E 、F 分别为AB 边,AC 边上的点,连接DE 、DF ,使得DA 平分∠EDF ,且DE =DF ,过点D 作DG ⊥AB 于点G .(1)若DF //AB ,求证:AE =DE ;(2)求证:DG =CD .【答案】见详解【分析】(1)先利用平行线性质证得EAD ADF ∠=∠,再利用角平分线的定义证得EDA ADF ∠=∠,利用等量代换可得EDA EAD ∠=∠,即可得到答案AE =DE ;(2)先证AED AFD ≌,得EAD FAD ∠=∠,即可利用角平分线的性质得到答案.【详解】解:(1)∵//DF AB ∴EAD ADF ∠=∠∵DA 平分∠EDF ∴EDA ADF ∠=∠∴EDA EAD ∠=∠∴AE =DE .(2)∵EDA ADF ∠=∠,DE =DF ,AD=AD∴AED AFD ≌∴EAD FAD ∠=∠∵90ACB ∠=︒,DG ⊥AB ∴DG =CD .【点睛】本题考查了平行线的性质、角平分线的性质以及全等的应用,解题关键是利用性质找到角与角之间的关系.21.(2021·福建九年级一模)如图,将ABC 绕点A 按逆时针方向旋转DAC ∠的度数得到AED .(1)尺规作图:确定AED 的顶点E 的位置(保留作图痕迹,不写作法与证明过程);(2)连接AE,DE,设BC的延长线交DE于点G,连接AG.求证:AG平分DGB∠.【答案】(1)作图见解析,(2)证明见解析.【分析】(1)作∠EAB=∠DAC,截取AE=AB即可;(2)作AN⊥DE,AC⊥BC,交ED延长线于N,BG于M,证AN=AM即可.【详解】解:(1) 点E位置如图所示;(2)证明:作AN⊥DE,AC⊥BC,交ED延长线于N,BG于M,由旋转可知AED≌ABC,DE=BC,∴12AEDS DE AN=⋅,12ABCS BC AM=⋅,∴1122DE AN BC AM⋅=⋅,∴AN AM=,∴AG平分DGB∠.【点睛】本题考查了尺规作图和角平分线的判定,解题关键是明确尺规作图方法,熟练运用角平分线的判定证明.22.(2021.江苏八年级期中)如图,ABC中,边AB BC,的垂直平分线交于点P.==.(2)点P是否也在边AC的垂直平分线上?请说明理由.(1)求证:PA PB PC【答案】(1)见解析;(2)在,理由见解析【分析】(1)根据线段的垂直平分线的性质可求得,P A=PB,PB=PC,则P A=PB=PC.(2)根据线段的垂直平分线的性质的逆定理,可得点P在边AC的垂直平分线上.【详解】解:(1)证明:∵边AB、BC的垂直平分线交于点P,∴P A=PB,PB=PC.∴P A=PB=PC.(2)∵P A=PC,∴点P在边AC的垂直平分线上.【点睛】此题主要考查线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.23.(2021·湖南怀化市·八年级期末)如图.在△ABC中,∠C=90 °,∠A=30°.(1)用直尺和圆规作AB的垂直平分线,分别交AB、AC于D、E,交BC的延长线于F,连接EB.(不写作法,保留作图痕迹)(2)求证:EB平分∠ABC.(3)求证:AE=EF.【答案】见解析【分析】(1)先作线段AB的垂直平分线DE,再延长BC即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE,得到答案;(3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC,证得BE=EF,又因为AE= BE,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB ∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE ∴EB 平分∠ABC .(3)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB ∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC ∴BE=EF又∵AE= BE ∴AE=EF 【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形. 24.(2021·石家庄市第四十中学九年级二模)如图,在ABC 中,D 为BC 中点,DE BC ⊥交BAC ∠的平分线AE 于E ,EF AB ⊥于F ,EG AC ⊥交AC 的延长线于G .(1)求证:BF CG =;(2)若5AB =,3AC =,求AF 的长.【答案】(1)见解析;(2)4【分析】(1)连接BE 、EC ,证明Rt BFE △≌Rt CGE △即可;(2)证明Rt AEF Rt AEG △≌△,则AF AG =,继而求得AF 的长【详解】(1)证明:如图,连接BE 、EC ,∵ED BC ⊥,D 为BC 中点,∴BE EC =,∵EF AB ⊥,EG AG ⊥,且AE 平分FAG ∠,∴FE EG =,在Rt BFE △和Rt CGE △中,BE CE EF EG =⎧⎨=⎩,∴Rt BFE △≌Rt CGE △(HL )∴BF CG =. (2)解:在Rt AEF 和Rt AEG 中,AE AE EF EG =⎧⎨=⎩, ∴Rt AEF Rt AEG △≌△(HL ),∴AF AG =,∴2AB AC AF BF AG CG AF +=++-=,∴28AF =,∴4AF =.【点睛】本题考查了角平分线的性质,垂直平分线的性质,直角三角形全等的证明,全等三角形的性质,正确的作出辅助线是解题的关键.25.(2020·湖北)(1)模型:如图1,在ABC 中,AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,求证:::ADB ADC S S AB AC =△△.(2)模型应用:如图2,AD 平分EAC ∠交BC 的延长线于点D ,求证:::AB AC BD CD =.(3)类比应用:如图3,AB 平分DAE ∠,AE AD =,180D E ∠+∠=︒,求证:::BE CD AB AC =.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,12ADBS AB DE∆=,12ADCS AC DF∆=,即可得出ADBS∆:ADCS∆=AB:AC;(2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而可求出BD DEAB AE=,BD CDAB AD=,即可求解;(3)延长BE至M,使EM=DC,连接AM,根据题意可证△ADC≌△AEM,故而得出AE为∠BAM的角平分线,即AB AM ACBE EM DC==,即可得出答案;【详解】解:(1)∵AD平分∠BAC,DE⊥AB,DE⊥AC,∴DE=DF,∵12ADBS AB DE∆=,12ADCS AC DF∆=,∴ADBS∆:ADCS∆=AB:AC;(2)如图,在AB上取点E,使得AE=AC,连接DE 又∵AD平分∠CAE,∴∠CAD=∠DAE,在△ACD和△AED中,AC AECAD DAEAD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△AED(SAS),∴CD=DE且∠ADC=∠ADE,∴BD DEAB AE=,∴BD CDAB AD=,∴AB:AC=BD:CD;(3)如图延长BE至M,使EM=DC,连接AM,∵∠D+∠AEB=180°,又∵∠AEB+∠AEM=180°,∴∠D=∠AEM,在△ADC与△AEM中,AD AED AEMDC EM=⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△AEM(SAS),∴∠DAC=∠EAM=∠BAE,AC=AM,∴AE为∠BAM的角平分线,故AB AM ACBE EM DC==,∴BE:CD=AB:AC;【点睛】本题考查了全等三角形的判定与性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键;。
_________________________________.的周,厘米,的垂直平分线..如图,要在公路旁设一个公交车的停车站,停车站应设在什么地方,,边BC的垂直平分线分别交AB、AC于点2.4线段、角的轴对称性(2)课型:新授课主备人:董兰审核人:凌林授课时间:2014.9二次备课【学习目标】1.探索并证明线段垂直平分线的性质定理的逆定理,会用尺规作线段的垂直平分线;2.能利用所学知识提出问题并解决实际问题;3.经历探索线段的轴对称的过程,在“操作——探究——归纳——证明”的过程中培养思考的严谨性和表达的条理性.【学习重点】利用线段的轴对称性探索线段垂直平分线的性质定理的逆定理.【学习难点】灵活运用线段垂直平分线的性质解决实际问题.【预习作业】1.线段的垂直平分线上的点_____________________________________.2.到线段两端距离相等的点,在_________________________________.3.如图.∵QA=QB.∴____________________________.4.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点5.如图,在△ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F∵点P是AB边垂直平线上的一点∴_____ =_________ ().同理,PB=______.∴______ = ______(等量代换).∴点P在AC的垂直平分线上.(到线段两端距离相等的点,在这条线段的______________________)∴AB,BC,AC的垂直平分相交于同一点.6.有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处)你能根据图形用符号语言表示你发现的结论吗?在线段的垂直平分线上的点都具有同一个性质而毫无例外;反之,具有这一性质的点都在这条线段的垂直平分线上而无一遗漏。
2.4 线段、角的轴对称性(1)
学习目标:
1.知道线段的垂直平分线的概念,知道成轴对称的两个图形全等,对称轴是对称点的连线的垂直平分线.
2.经历探索轴对称的性质的活动的过程,进一步发展空间观点,以及有条理地思考和表达的水平. 教学过程: 一、创设情境:
1.复习提问:什么是轴对称图形,线段是轴对称图形吗?为什么? 二、探索活动 实践探索一
1.在一张薄纸上画一条线段AB ,操作并思考:线段是轴对称图形吗?如果是,对称轴在哪里?为什么?
2.你能画出线段AB 的对称轴吗?说明理由。
实践探索二
上图中,线段AB 的垂直平分线l 交AB 于点O ,点P 是l 上任意一点,P A 与PB 相等吗?为什么?通过证明,你发现了什么?用语言描述你得到的结论. 总结:线段垂直平分线上的点有什么特点? 实践探索三
试判断:线段的垂直平分线外的点到这条线段两端的距离相等吗?
引导学生展开讨论:
1.你能读懂题目吗?题中已知哪些条件?要说明怎样一个结论? 2.请你利用题中的已知条件和要说明的结论画出图形.
3.根据图形你能证明吗?试一试,让学生自己作图,讨论研究,并给出结论和证明. 教师点评,给出解答过程:
解:线段的垂直平分线外的点,到这条线段两端的距离不会相等. 如图,在线段AB 的垂直平分线l 外任取一点P ,连接P A 、PB ,设P A 交l 于点Q ,连接QB .
根据“线段的垂直平分线上的点到线段两端的距离相等”,因为点Q 在AB 的垂直平分线上,所以QA =QB .
于是P A =PQ +QA =PQ +QB .因为三角形的两边之和大于第三边,所以PQ +QB >PB ,即P A >PB .
三、实践应用:课本52页练习1、2 四、例题教学:
Q
l
P
B
A
天才由于积累,聪明在于勤奋。
2
E
D
C
B
A
例1已知:如图,AB =AC =12 cm ,AB 的垂直平分线分别交AC 、AB 于D 、E ,△ABD 的周长等于29 cm ,
求DC 的长.
例2 右图所示,直线MN 和DE 分别是线段 AB 、BC 的垂直平分线,它们交于P 点.P A 和 PC 相等吗?
为什么?
五、课堂小结 六、课堂反馈
1.已知点P 在线段AB 的垂直平分线上,点Q 在线段AB 的垂直平分线外,则线段PA 与PB______,线段QA 与QB________(填“相等”或“不相等” )。
2.如图,在△ABC 中,BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,△ABC 的周长为18厘米,△ABE 的周长为10厘米, 则BD 长为多少?为什么?
3.如图,△ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,AC 的垂直平分线分别交AC 、BC 于点F 、G ,若BC=25cm ,求△AEG 的周长?
G
E
D F
A B
C
教学反思: E
D
N
M
P
C B
A。