八年级数学下册3图形的平移与旋转3.3中心对称习题课件(新版)北师大版
- 格式:ppt
- 大小:604.01 KB
- 文档页数:9
北师大版数学八年级下册3.3《中心对称》教案一. 教材分析《中心对称》是北师大版数学八年级下册第3.3节的内容,本节主要让学生了解中心对称的概念,理解中心对称图形的性质,并学会运用中心对称解决一些实际问题。
教材通过实例引入中心对称的概念,然后引导学生探究中心对称图形的性质,最后通过一些练习题巩固所学知识。
二. 学情分析学生在学习本节内容前,已经学习了平面几何的基本概念,如点、线、角等,并掌握了一些基本的几何性质。
同时,学生也学习了图形的轴对称,对对称概念有一定的理解。
但是,中心对称与轴对称有所不同,学生可能需要一定的时间来理解和掌握。
三. 教学目标1.让学生了解中心对称的概念,理解中心对称图形的性质。
2.培养学生运用中心对称解决实际问题的能力。
3.培养学生合作探究的学习精神,提高学生的几何思维能力。
四. 教学重难点1.中心对称的概念和性质。
2.运用中心对称解决实际问题。
五. 教学方法采用问题驱动法、合作探究法、案例教学法等,引导学生通过实例认识中心对称,探究中心对称图形的性质,并运用中心对称解决实际问题。
六. 教学准备1.准备一些中心对称的实例,如圆、平行四边形等。
2.准备一些中心对称图形的性质的练习题。
3.准备一些实际问题,如在实际图形中寻找中心对称等。
七. 教学过程1.导入(5分钟)通过展示一些实例,如圆、平行四边形等,引导学生观察这些图形的特征,让学生初步认识中心对称。
2.呈现(10分钟)呈现中心对称的定义和性质,引导学生理解和记忆。
3.操练(10分钟)让学生通过练习题,运用中心对称的性质解决问题,巩固所学知识。
4.巩固(5分钟)通过一些实际问题,让学生运用中心对称解决实际问题,加深对中心对称的理解。
5.拓展(5分钟)引导学生思考中心对称在实际生活中的应用,让学生学会学以致用。
6.小结(5分钟)让学生总结本节课所学的内容,加深对中心对称的理解。
7.家庭作业(5分钟)布置一些有关中心对称的练习题,让学生课后巩固所学知识。
图形的平移平移的概念1.下列生活现象中,不是平移现象的是()A.站在运行着的电梯上的人B.左右推动推拉窗C.躺在火车上睡觉的旅客D.正在荡秋千的小明2.在下列图形中,哪组图形中的右图是由左图平移得到的()A.B.C.D.3.下列四幅图案可以看作是以图案中某部分为基本图形平移得到的是()A.B.C.D.平移的性质4.如图,将直线11沿着AB的方向平移得到直线l2,若∠1=55°,则∠2的度数是()A.125°B.55°C.90°D.50°5.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF6.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=.7.如图,△A′B′C′是由△ABC平移而得到的.已知AB=6,CC′=12,∠BAC=95°,∠ACB=45°,则∠A′B′C′=,A′B′=,BB′=.8.如图,平移三角形ABC,使点A移动到点A′.(1)画出平移后的三角形A'B'C';(2)AA′和BB′的位置关系和数量关系是.练习1.如图所示,线段b向右平移3格,再向上平移格,能与线段重合.2.如图,将△ABC沿BC方向平移3cm得到△DEF,若四边形ABFD的周长为22cm,则△ABC的周长为cm.3.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为800m,且桥宽忽略不计,则小桥的总长为m.4.把直角梯形ABCD沿BA方向平移得到梯形A′B′C′D′,CD与B′C′相交于点E,BC=20cm,EC =5cm,EC′=4cm,猜想图中阴影部分的面积与哪个四边形的面积相等,并求出阴影部分的面积.5.如图,△ABC,△CEF都是由△BDE平移得到的图形.A、C、F三点在同一条直线上.已知∠D=70°,∠BED=45°.(1)BE=AF成立吗?请说明你的理由;(2)求∠ECF的度数.6.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n∁n D n(n>2).(1)求AB1=,AB2=.(2)若AB n的长为56,求n=.平移的坐标变换沿x(y)轴方向平移的坐标变化1.在平面直角坐标系中,点A的坐标为(1,2),将点A向右平移3个单位长度后得到A′,则点A′的坐标是( )A.(−2,2)B.(1,5)C.(1,−1)D.(4,2)2.在平面直角坐标系中,将点P(3,6)向下平移8个单位后,得到的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.将三角形各顶点的纵坐标分别加3,横坐标不变,连接三点所成的新三角形图形()A. 向左平移3个单位得到B. 向右平移3个单位得到C. 向下平移3个单位得到D. 向上平移3个单位得到4.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.综合平移与坐标变化5.如图,已知△ABC在平面直角坐标系中的位置如图所示,将△ABC先向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是( )A. (5,−2)B. (1,−2)C. (2,−1)D. (2,−2)6.在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,−1)处,则此平移可以是( )A. 先向右平移5个单位,再向下平移1个单位B. 先向右平移5个单位,再向下平移3个单位C. 先向右平移4个单位,再向下平移1个单位D. 先向右平移4个单位,再向下平移3个单位7.线段CD是由线段AB平移得到的。
北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如左图是新疆维吾尔自治区第十四届运动会的会徽.平移此会徽中的图形,可以得到的是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.在平面直角坐标系中,将点A(3,−2)向右平移4个单位长度后的对应点的坐标是()A.(−1,−2)B.(7,−2)C.(3,−6)D.(3,2)4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为14cm,则四边形ABFD的周长为()A.14cm B.17cm C.20cm D.23cm5.在平面直角坐标系中,以原点为中心,若将点Q(4,5)按逆时针方向旋转90°得到点P,则P的坐标是()A.(−5,4)B.(−4,−5)C.(−5,−4)D.(5,−4)6.如图,在△ABD中∠BAD=90°,将△ABD绕点A逆时针旋转后得到△ACE,此时点C恰好落在BD边上.若∠BAC=48°,则∠E的度数为()A.20°B.24°C.28°D.32°7.如图,△ABC的边BC长为5cm.将△ABC向上平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为()A.50cm2B.25cm2C.20cm2D.10cm28.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上.将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(3,0),B(0,4),点B2024的坐标为()A.(12132,0)B.(12144,4)C.(12140,4)D.(12152,0)二、填空题9.在平面直角坐标系中,已知点A(2a−b,−8)与点B(−2,a+3b)关于原点对称,a+b=.10.为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为600m,且桥宽忽略不计,则小桥总长为m.11.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置AB=9,DO=4阴影部分面积为35,则平移距离为.12.在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,其中,点A的对应点为点C,若C(3,a),D(b,1),则a−b的值为.13.如图,将△ABC沿BA方向平移得到△DEF.若DB=15,AE=2则平移的距离为.14.如图,在Rt△ABC中∠ACB=90°,AC=4,BC=5将△ABC绕点A逆时针旋转α(0°<α<90°)得到△ADE,延长BC交ED于点F.若∠EAB=90°,则线段EF的长为.15.如图,在△ABC,∠C=90°,将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上,连接BB′,若∠BB′C′=35°,则∠BAC=°.16.如图,△ABC的顶点坐标分别为A(2,4),B(0,1),C(0,4),将△ABC绕某一点旋转可得到△A′B′C′,△A′B′C′的三个顶点都在格点上,则旋转中心的坐标是.三、解答题17.如图,在4×4的方格中,有4个小方格被涂黑成“L形”.(1)在图1中再涂黑4格,使新涂黑的图形与原来的“L形“关于对称中心点O成中心对称;(2)在图2和图3中再分别涂黑4格,使新涂黑的图形与原来的“L形”所组成的新图形既是轴对称图形又是中心对称图形(两个图各画一种).18.如图,在△ABC中∠B=40°,∠BAC=80°将△ABC绕点A逆时针旋转一定角度后得到△ADE.(1)求∠E的度数;(2)当AB∥DE时,求∠DAC的度数.19.如图,在12×8的正方形网格中,每个小正方形的边长都是1个单位长度,点A,B,C,O都在格点上.按下列要求画图:(1)画出将△ABC向右平移8个单位长度后的△A1B1C1;(2)画出将△ABC以点O为旋转中心、顺时针旋转90°后的△A2C2B2(3)△A1B1C1与△A2C2B2是否成轴对称?若是,请画出对称轴.20.如图,在△ABC中∠BAC=80°,三个内角的平分线交于点O.(1)∠BOC的度数为________.(2)过点O作OD⊥OB交BC于点D.①探究∠ODC与∠AOC之间的数量关系,并说明理由;②若∠ACB=60°,将△BOD绕点O顺时针旋转α得到△B′OD′(0°<α<90°),当B′D′所在直线与OC平行时,求α的值.21.如图,在平面直角坐标系中,已知A(−1,0),B(3,0),M为第三象限内一点.(1)若点M(2−a,2a−10)到两坐标轴的距离相等.①求点M的坐标;②若MN∥AB且MN=AB,求点N的坐标.(2)若点M为(n,n),连接AM,BM.请用含n的式子表示三角形AMB的面积;(3)在(2)的条件下,将三角形AMB沿x轴方向向右平移得到三角形DEF(点A,M的对应点分别为点D,E),若三角形AMB的周长为m,四边形AMEF的周长为m+4,求点E的坐标(用含n的式子表示).22.如图,在锐角△ABC中∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,K为射线CD上一点CK=BE.①求证:BD=BK;②求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.参考答案1.解:根据平移的性质可知:能由如图经过平移得到的是B.故选:B2.解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形又是中心对称图形,故符合题意;C、是轴对称图形,但不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选B.3.解:将点A(3,−2)向右平移4个单位长度后的对应点的坐标是(3+4,−2),即(7,−2)故选:B.4.解:由平移的性质得:AD=BE=CF=3cm,AC=DF∵△ABC的周长为14cm∵AB+BC+AC=14cm∵四边形ABFD的周长为AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=14+3+3=20cm.故选:C.5.解:如图,过点Q作QM⊥x轴,过点P作PN⊥x轴∴∠PNO=∠QMO=90°∵Q(4,5)∴OM=4由旋转的性质可知OQ=OP,∠POQ=90°∴∠PON+∠QOM=90°∵∠PON+∠OPN=90°∴∠OPN=∠QOM∴△PON≌△OQM(AAS)∴ON=QM=5,PN=OM=4∵点P在第二象限∴点P的坐标是(−5,4)故选:A.6.解:∵△ABD旋转得到△ACE∵AB=AC,∠ABC=∠ACE,∠E=∠D∵∠BAC=48°∴∠ABD=∠ACD=180°−∠BAC=66°2∵∠BAD =90°∵∠D =180°−∠ABC −∠BAD =24°∵∠E =∠D =24°.故选:B .7.解:三角形ABC 的边BC 的长为5cm .将三角形ABC 向上平移2cm 得到三角形A ′B ′C ′,且BB ′⊥BC 则:S △ABC =S △A ′B ′C ′,四边形BCC ′B ′是长方形,BB ′=2∵S 阴影=S △A ′B ′C ′+S 长方形BB ′C ′C −S △ABC =S 长方形BB ′C ′C =BC ×BB ′=5×2=10(cm 2)故选D .8.解:∵点A(3,0),B(0,4)∵OA =3,OB =4∵AB =√32+42= 5∵OA +AB 1+B 1C 2=3+5+4=12观察图象可知B 、B 2、B 4…每偶数之间的B 的横坐标相差12个单位长度,点B 2n 的纵坐标为4∵2024÷2=1012∵点B 2024的横坐标为1012×12=12144,点B 2024的纵坐标为4∵点B 2024的坐标为(12144,4).故选:B .9.解:依题意可得:{2a −b =−(−2)a +3b =−(−8)∴{a =2b =2∴a +b =2+2=4故答案为:4.10.解:由平移的性质得,小桥总长=长方形周长的一半∵600÷2=300m∵小桥总长为300m .故答案为:300.11.解:∵Rt △ABC ,沿着点B 到C 点的方向平移到△DEF 的位置∵△ABC≌△DEF∵AB =DE ,S △ABC =S △DEF∵S阴影=S梯形ABEO=35∵AB=9,DO=4∵OE=DE−OH=9−4=5∵12(5+9)×BE=35解得:BE=5,即为平移的距离;故答案为:5.12.解:由题意得,线段AB向右平移2个单位,向上平移1个单位得到线段CD∴2+2=b,2+1=a∴a=3,b=4∴a−b=3−4=−1故答案为:−1.13.解:平移的性质可得:AD=BE又∵DB=15,AE=2∵AD=BE=DB−AE2=6.5即平移的距离为6.5故答案为:6.5.14.解:连接AF∵∠ACB=90°,AC=4,BC=5∵AB=√42+52=√41由旋转的性质得AE=AC,∠E=∠ACB=90°∵∠E=∠ACF=90°∵AF=AF∵Rt△AFE≌Rt△AFC(HL)∵EF=FC,∠EFA=∠CFA∵∠EAB=90°∵DE∥AB∵∠EFA=∠FAB∵∠BFA=∠FAB∵BF=AB=√41∵EF=FC=BF−BC=√41−5故答案为:√41−5.15.解:∵将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上∵AB=AB′,∠BC′B′=90°,∠B′AC′=∠BAC∵∠ABB′=∠AB′B而∠BB′C′=35°∵∠ABB′=90°−35°=55°∵∠B′AC′=∠BAC=180°−55°×2=70°.故答案为:70.16.解:如图所示:连接AA′,BB′,然后作AA′,BB′的垂直平分线,这两条垂直平分线交于一点,记为点P,为旋转中心,此时旋转中心的坐标是(−1,0)故答案为:(−1,0)17.解:(1)所求图形,如图所示.(2)所求图形,如图所示.18.(1)解:由旋转可得:∠E=∠C.∵∠B=40°,∠BAC=80°∵∠C=180°−∠B−∠BAC=60°∵∠E=60°.(2)如图1,当DE在AB下方时.由旋转可得:∠D=∠B=40°.∵AB∥DE∵∠BAD=∠D=40°∵∠DAC=∠BAC−∠BAD=80°−40°=40°.如图2,当DE在AB上方时.∵AB∥DE∵∠BAD+∠D=180°∵∠BAD=180°−∠D=180°−40°=140°∵∠DAC=360°−∠BAC−∠BAD=360°−80°−140°=140°.综上所述,∠DAC的度数为40°或140°.19.(1)解:如图,∴△A1B1C1为所求画的三角形;(2)解:如图∴△A2C2B2为所求画的三角形;(3)解:成轴对称,如图∴直线OD为所求画的对称轴.20.(1)解:∵三个内角的平分线交于点O,(∠ABC+∠ACB)∵∠OBC+∠OCB=12∵∠BAC=80°∵∠ABC+∠ACB=180°−∠BAC=100°∵∠OBC+∠OCB=50°∵∠BOC=180°−(∠OBC+∠OCB)=180°−50°=130°故答案为:130°;(2)解:①∠ODC=∠AOC,理由如下:∵三个内角的平分线交于点O,(∠BAC+∠ACB)∵∠OAC+∠OCA=12∵∠BAC+∠ACB=180°−∠ABC∵∠OAC+∠OCA=12(180°−∠ABC)=90°−12∠ABC∵∠AOC=180°−(∠OAC+∠OCA)=180°−(90∘−12∠ABC)=90°+12∠ABC∵OD⊥OB∵∠BOD=90°∵∠ODC=∠BOD+∠OBD=90°+12∠ABC∵∠ODC=∠AOC;②如图∵OC平分∠ACB,∠ACB=60°∵∠OCD=12∠ACB=30°由(1)知∠BOC=130°∵∠BOD=90°∵∠COD=40°∵∠BDO=∠COD+∠OCD=70°由旋转性质可知:∠BDO=∠B′D′O=70°∵B′D′∥OC∵∠COD′=∠B′D′O=70°∵∠DOD′=∠COD′−∠COD=30°,即此时旋转角度α=30°∵α的值为30°.21.(1)解:①∵M(2−a,2a−10)到两坐标轴的距离相等,且在第三象限∵−(2−a)=−(2a−10)∵a=4∵M(−2,−2);②∵A A(−1,0),B(3,0)∵AB=4∵MN∥AB,MN=AB,M(−2,−2)∵N(−6,−2)或(2,−2);(2)解:∵M(n,n)在第三象限∵n<0∵三角形AMB的面积为12×4×(−n)=−2n;(3)解:∵△AMB沿x轴方向向右平移得到△DEF ∵BM=EF,AD=ME=BF.∵△AMB的周长为m∵AM+MB+AB=m.∵四边形AMEF的周长为m+4∵AM+ME+EF+AF=m+4,即2ME=4∵解得ME=2∵点E的坐标为(n+2,n).22.(1)解:①证明:在△BCE与△CBK中{BE=CK ∠BCK=∠CBE BC=CB∵△BCE≌△CBK(SAS)∵CE=BK∵BD=CE∵BD=BK;②由①知:BD=BK,∵∠BKD=∠BDK∵△BCE≌△CBK(SAS)∵∠BKC=∠CEB∵∠BDK=∠CEB∵∠BDK=∠ADC∴∠ADC=∠CEB∵∠CEB+∠AEF=180°∴∠ADF+∠AEF=180°∴∠A+∠EFD=180°∵∠A=60°∴∠EFD=120°∴∠CFE=180°−∠EFD=180°−120°=60°;(2)解:结论:BF+CF=2CN.理由:如图2中∵AB=AC,∠A=60°∴△ABC是等边三角形∴AB=CB=AC,∠A=∠CBD=∠ACB=60°∵AE=BD∴△ABE≌△BCD(SAS)∴∠BCF=∠ABE∴∠FBC+∠BCF=60°∴∠BFC=120°∵∠BFD=60°由旋转可得:AC=CM∵BC=CM,∠BCM=∠ACB+∠ACM=120°如图2中,延长CN到Q,使得NQ=CN,连接FQ∵NM=NF,∠CNM=∠FNQ,CN=NQ∴△CNM≌△QNF(SAS)∴CM=QF,∠MCN=∠NQF∴CM=BC延长CF到P,使得PF=BF∵PF=BF∵△PBF是等边三角形∵∠BPC=60°∴∠PBC+∠PCB=∠PCB+∠FCM=120°∴∠FCM=∠PBC∵∠PFQ=∠FCQ+∠CQF=∠FCQ+∠MCN=∠FCM∵∠PFQ=∠PBC∵PB=PF∴△PFQ≌△PBC(SAS)∴PQ=PC,∠CPB=∠QPF=60°∴△PCQ是等边三角形∴BF+CF=PC=QC=2CN.。
第三章图形的平移与旋转1.图形的平移(1)求平移后点的坐标①在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).②在平面直角坐标系中,如果把一个图形的各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把一个图形的各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.【例1】将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是( )A.(0,1)B.(2,-1)C.(4,1)D.(2,3)【标准解答】选A.向左平移2个单位长度,纵坐标不变,横坐标为:2-2=0,所以平移后的点的坐标为(0,1).(2)计算平移中线段和角的大小把图形进行平移,图形的大小和形状不发生改变,正确找到变换前后的对应角和对应线段,是做题的关键,然后按照对应角相等,对应线段相等解决问题.【例2】如图,将△ABC沿BC方向平移得到△A1B1C1,若BC=3,CB1=2,则CC1=________.【标准解答】根据平移的性质可知,对应线段相等,即B1C1=BC=3,∴CC1=B1C1-CB1=3-2=1.答案:1(3)作出平移后的图形首先找出原图形的关键点,然后利用平移的坐标规律分别求出各自的对应点,最后按照关键点的顺序,把它们的对应点连接起来.【例3】如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,5),B(-4,3),C(-1,1).作出△ABC向右平移5个单位长度的△A1B1C1.【标准解答】选点A,点B,点C为关键点。
把图形向右平移5个单位长度,每个点的横坐标加5,纵坐标不变,所以它们的对应点分别是:A1(3,5),B1(1,3),C1(4,1),分别把这三点连接起来即可,如图:【例4】如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1:将△ABC向右平移4个单位长度,再向上平移1个单位长度,得到△A1B1C1.【标准解答】选点A,点B,点C为关键点.分别把这三个点向右平移4个单位长度,再向上平移1个单位长度,得到各自的对应点,连接得到的对应点即可.如图:1.点P(-2,-3)向左平移1个单位长度,再向上平移3个单位长度,则所得到的点的坐标为( )A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)2.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′B′A′的位置,此时点A′的横坐标为3,则点B′的坐标为( )A.(4,2)B.(3,3)C.(4,3)D.(3,2)3.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5,EC=3,那么平移的距离为( )A.2B.3C.5D.72.图形的旋转(1)求旋转角的方法【例】如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′为( )A.30°B.35°C.40°D.50°【标准解答】选C.由题意,得AC=AC′,∠CAC′=∠BAB′.∵∠CAB=70°,CC′∥AB,∴∠ACC′=70°∵AC=AC′,∴∠AC′C=∠ACC′=70°.∴∠CAC′=180°-∠ACC′-∠AC′C=40°,∴∠BAB′=∠CAC′=40°.如图,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为( )A.30°B.45°C.90°D.135°(2)作旋转变换图形的方法在原图形中找出关键点,然后作出所有关键点的对应点,最后按照关键点的顺序,把它们的对应点连接起来,就形成了新的图形.【例】如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABO的三个顶点A,B,O都在格点上,画出△ABO绕着点O逆时针旋转90°后得到的三角形.【标准解答】△ABO的三个顶点就是关键点.(1)在OB的垂线上且在旋转方向上截取OD=OB=4,则点B的对应点是点D;(2)画OA的垂线,并在旋转方向上截取OE=OA,则点A的对应点是点E;(3)顺次连接OE,ED,DO,则△ODE就是所求作的三角形.利用对称变换可设计出美丽图案,如图,在方格纸中有一个顶点都在格点上的四边形,且每个小正方形的边长都为1,完成下列问题:(1)图案设计:先作出四边形关于直线l成轴对称的图形,再将你所作的图形和原四边形绕O点按顺时针旋转90°.(2)完成上述图案设计后,可知这个图案的面积等于________.(3)运用旋转的性质解题的规律利用旋转的性质可以用来证明线段或角是否相等,有两种情况:①所有的旋转角相等;所有对应点与旋转中心的连线相等.②利用旋转前后图形的形状、大小都相同可得对应角、对应线段相等.【例】如图,将△BOD绕点O旋转180°后得到△AOC,再过点O画任意一条与AC,BD相交的直线EF,交点分别为E和F.请探索线段OE和OF之间有什么关系.【标准解答】相等.将△BOD绕点O旋转180°后得到△AOC,所以△AOC≌△DOB,所以OB=OC,∠B=∠C.又∠BOF=∠COF,那么△BOF≌△COE,所以OE=OF.如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数.(2)求证:∠A1AC=∠C1.3.中心对称(1)判断中心对称图形常用的两个方法①操作法:把图形绕着某一点旋转180°,能够和原来图形重合,只要找到这样的点,那么此图形就是中心对称图形.②观察、想象法:通过观察、目测,能够找到对称中心,则此图形就是中心对称图形.【例】下列图形中是中心对称图形的是( )【标准解答】选D.根据实验操作或观察想象可知:A图形为旋转对称图形.B图形为平移得到的.C图形为轴对称图形.下列四个图案中,属于中心对称图形的是( )(2)作已知图形关于某一点对称图形的方法对称中心是对应点所连线段的中点,利用这一特性可以找到一些特殊点的对应点,顺次连接这些对应点,就得到原图形关于这点的对称图形.【例】画图题:如图,将△ABC绕点O顺时针旋转180°后得到△A1B1C1.请你画出旋转后的△A1B1C1.【标准解答】如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C.(2)平移△ABC,若A的对应点A2的坐标为(-5,-2),画出平移后的△A2B2C2.(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.跟踪训练答案解析1.图形的平移【跟踪训练】1.【解析】选A.点P(-2,-3)向左平移1个单位长度,再向上平移3个单位长度,得(-2-1,-3+3),即(-3,0).2.【解析】选A.如图,作AM⊥x轴于点M.∵正三角形OAB的顶点B的坐标为(2,0),∴OA=OB=2,∠AOB=60°,∴OM=OA=1,AM=OM=,∴A(1,),∴直线OA的解析式为y=x,∴当x=3时,y=3,∴A′(3,3),∴将点A向右平移2个单位长度,再向上平移2个单位长度后可得A′,∴将点B(2,0)向右平移2个单位长度,再向上平移2个单位长度后可得B′,∴点B′的坐标为(4,2).3.【解析】选A.平移的距离为BE=BC-EC=5-3=2.2.图形的旋转(1)求旋转角的方法【跟踪训练】【解析】选C.由题意知,B与D是对应点,可确定旋转角为∠BOD,且∠BOD=90°.(2)作旋转变换图形的方法【跟踪训练】【解析】(1)如图所示:(2)面积:×4=20.答案:20(3)运用旋转的性质解题的规律【跟踪训练】【解析】(1)旋转角的度数为60°.(2)∵点A,B,C1在一条直线上,∴∠ABC1=180°. ∵∠ABC=∠A1BC1=120°,∴∠ABA1=∠CBC1=60°,∴∠A1BC=60°,又AB=A1B,所以△ABA1是等边三角形,∴∠AA1B=∠A1BC=60°,∴AA1∥BC,∴∠A1AC=∠C.∵△ABC≌△A1BC1,∴∠C=∠C1,∴∠A1AC=∠C1.3.中心对称(1)判断中心对称图形常用的两个方法【跟踪训练】【解析】选D.A.不是中心对称图形,故本选项错误;B.不是中心对称图形,故本选项错误;C.不是中心对称图形,故本选项错误;D.是中心对称图形,故本选项正确.(2)作已知图形关于某一点对称图形的方法【跟踪训练】【解析】(1)如图.(2)如图.(3)旋转中心坐标为(-1,0).。
情景再现:你对以上图片熟悉吗?请你回答以下几个问题:(1)汽车中的乘客在乘车过程中,身高、体重改变了吗?乘客所处的地理位置改变了吗?(2)传送带上的物品,比如带有图标的长方体纸箱,向前移动了20米,它上面的图标移动了多少米?(3)以上都是我们常见的平移问题,认真想一想,你还能举一些平移的例子吗?1.如图1,面积为5平方厘米的梯形A′B′C′D′是梯形ABCD经过平移得到的且∠ABC=90°.那么梯形ABCD的面积为________,∠A′B′C =________.图12.在下面的六幅图中,(2)(3)(4)(5)(6)中的图案_________可以通过平移图案(1)得到的.图23.请将图3中的“小鱼”向左平移5格.图34.请欣赏下面的图形4,它是由若干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗?§3.1图形的平移与旋转一、填空:1、如下左图,△ABC 经过平移到△A ′B ′C ′的位置,则平移的方向是______,平移的距离是______,约厘米______.2、如下中图,线段AB 是线段CD 经过平移得到的,则线段AC 与BC 的关系为( ) A.相交 B.平行 C.相等 D.平行且相等3、如下右图,△ABC 经过平移得到△DEF ,请写出图中相等的线段______,互相平行的线段______,相等的角______.(在两个三角形的内角中找)4、如下左图,四边形ABCD 平移后得到四边形EFGH ,则:①画出平移方向,平移距离是_______;(精确到0.1cm )②HE=_________,∠A=_______,∠A=_______. ③DH=_________=_______A=_______.5、如下右图,△ABC 平移后得到了△DEF ,(1)若∠A=28º,∠E=72º,BC=2,则∠1=____º,∠F=____º,EF=____º;(2)在图中A 、B 、C 、D 、E 、F 六点中,选取点_______和点_______,使连结两点的线段与AE 平行.6、如图,请画出△ABC 向左平移4格后的△A 1B 1C 1,然后再画出△A 1B 1C 1向上平移3格后的△A 2B 2C 2,若把△A 2B 2C 2看成是△ABC 经过一次平移而得到的,那么平移的方向是______,距离是____的长度. 二、选择题:7、如下左图,△ABC 经过平移到△DEF 的位置,则下列说法:①AB ∥DE ,AD=CF=BE ; ②∠ACB=∠DEF ; ③平移的方向是点C 到点E 的方向; ④平移距离为线段BE 的长. 其中说法正确的有( ) A.个 B.2个 C.3个 D.4个8、如下右图,在等边△ABC 中,D 、E 、F 分别是边BC 、AC 、AB 的中点,则△AFE 经过平移可以得到( ) A.△DEF B.△FBD C.△EDC D.△FBD 和△EDC三、探究升级:1、如图,△ABC 上的点A 平移到点A 1,请画出平移后的图形△A 1B 1C 1.3、 △ABC 经过平移后得到△DEF ,这时,我们可以说△ABC 与△DEF 是两个全等三角形,请你说出全等三角形的一些特征,并与同伴交流.4、如下图中,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,则草坪的面积是______.5、利用如图的图形,通过平移设计图案,并用一句诙谐、幽默的词语概括你所画的图形.§3.3图形的平移与旋转§3.2图形的平移与旋转一、填空、选择题:1、图形的旋转是由____和____决定的,在旋转过程中位置保持不动的点叫做____,任意一对对应点与旋转中心连线所成的角叫做_____.2、如下图,如果线段MO绕点O旋转90°得到线段NO,在这个旋转过程中,旋转中心是_______,旋转角是_______,它时______°.3、如图,在下列四张图中不能看成由一个平面图形旋转而产生的是()4、请你先观察图,然后确定第四张图为( )4、如下左图,△ABC绕着点O旋转后得到△DEF,那么点A的对应点是_______,线段AB 的对应线段是_____,_____的对应角是∠F. 6、如下中图,△ABC与△BDE都是等腰三角形,若△ABC经旋转后能与△BDE重合,则旋转中心是________,旋转了______°.7、如下右图,C是AB上一点,△ACD和△BCE 都是等边三角形,如果△ACE经过旋转后能与△DCB重合,那么旋转中心是_______,旋转了______°,点A的对应点是_______.二、解答题:8、如图11.4.7,△ABC绕顶点C旋转某一个角度后得到△A′B′C,问:(1)旋转中心是哪一点?(2)旋转角是什么?(3)如果点M是BC的中点,那么经过上述旋转后,点M转到了什么位置?9、观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?三、探究升级10、如图,△ACE、△ABF都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC是哪一点为旋转中心,旋转多少度之后能与另一个三角形重合?点F的对应点是什么?一、选择题1.平面图形的旋转一般情况下改变图形的()§3.4图形的平移与旋转A.位置B.大小C.形状D.性质 2.9点钟时,钟表的时针和分针之间的夹角是( )A.30° B .45° C.60° D.90°3.将平行四边形ABCD 旋转到平行四边形A ′B ′C ′D ′的位置,下列结论错误的是( )A.AB =A ′B ′B.AB ∥A ′B ′C.∠A =∠A ′D.△ABC ≌△A ′B ′C ′ 二、填空题4.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______.5.菱形ABCD 绕点O 沿逆时针方向旋转到四边形D C B A '''',则四边形D C B A ''''是________.6.△ABC 绕一点旋转到△A ′B ′C ′,则△ABC 和△A ′B ′C ′的关系是_______.7.钟表的时针经过20分钟,旋转了_______度. 8.图形的旋转只改变图形的_______,而不改变图形的_______. 三、解答题9.下图中的两个正方形的边长相等,请你指出可以通过绕点O 旋转而相互得到的图形并说明旋转的角度.10.在图中,将大写字母H 绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案.11.如图,菱形A ′B ′C ′D ′是菱形ABCD 绕点O 顺时针旋转90°后得到的,你能作出旋转前的图形吗?12.Rt △ABC ,绕它的锐角顶点A 分别逆时针旋转90°、180°和顺时针旋转90°, (1)试作出Rt △ABC 旋转后的三角形; (2)将所得的所有三角形看成一个图形,你将得到怎样的图形?13.如图,将右面的扇形绕点O 按顺时针方向旋转,分别作出旋转下列角度后的图形: (1)90°;(2)180°;(3)270°.你能发现将扇形旋转多少度后能与原图形重合吗?14.如图,分析图中的旋转现象,并仿照此图案设计一个图案.看一看:下列三幅图案分别是由什么“基本图形”经过平移或旋转而得到的?1.§3.5图形的平移与旋转2.3.试一试:怎样将下图中的甲图变成乙图?做一做:1、如图①,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上的一点,AF =21AB , (1)△ABE ≌△ADF .吗?说明理由。