2017-2018学年江苏省扬州中学高一上学期期末考试数学试题
- 格式:doc
- 大小:779.00 KB
- 文档页数:10
扬州市2017-2018学年度第一学期期末检测试题高三数学2017-2018学年度第一学期期末检测试题高三数学2018.2第一部分一、 填空题1. 若集合A ={x |1<x <3},B ={0,1,2,3},则A ∩B =___________。
2. 若复数(a −2ⅈ)(1+3ⅈ)是纯虚数,则实数a 的值为__________。
3. 若数据31,37,33,a ,35的平均数是34,则这组数据的标准差为_________。
4. 为了了解某学校男生的身体发育情况,随机调查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图,根据此图估计该校2000名男生中体重在70-80kg 的人数为________。
5. 运行右边的流程图,输出的结果是_________。
6. 从两名男生2名女生中任选两人,则恰有一男一女的概率为__________。
7. 若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为______。
8. 若实数x ,y 满足{x ≤4y ≤33x +4y ≥12,则x 2+y 2的取值范围是________。
9. 已知各项都是正数的等比数列{a n }的前n 项和为S n ,若4a 4,a 3,6a 5成等差数列,且a 3=3a 22,则S 3=_________。
10. 在平面直角坐标系xOy 中,若双曲线x 2a2−y 2b 2=1(a >0,b >0)的渐近线与圆x 2+y 2−6y +5=0没有焦点,则双曲线离心率的取值范围是__________。
11. 已知函数f (x )=sⅈn x −x +1−4x 2x,则关于x 的不等式f (1−x 2)+f (5x −7)<0的解集为_________。
12. 已知正ΔABC 的边长为2,点P 为线段AB 中垂线上任意一点,Q 为射线AP 上一点,且满足AP ⃗⃗⃗⃗⃗⃗ ⋅AQ ⃗⃗⃗⃗⃗⃗ =1,则|CQ ⃗⃗⃗⃗⃗⃗ |的最大值为_________。
江苏省扬州中学2017-2018学年度第一学期阶段性测试高一数学2017.12 第Ⅰ卷(共60分)一、填空题:(本大题共14个小题,每小题5分,共70分.将答案填在答题纸上.) 1.若{}224,x x x ∈++,则x = .2.计算:2331log 98-⎛⎫+= ⎪⎝⎭.3.sin1320︒的值为 . 4.若一个幂函数()f x 的图象过点12,4⎛⎫⎪⎝⎭,则()f x 的解析式为 . 5.方程lg 2x x +=的根()0,1x k k ∈+,其中k Z ∈,则k = . 6.函数()tan 24f x x π⎛⎫=-⎪⎝⎭的定义域为 .7.函数()2log 23a y x =-+(0a >,且1a ≠)恒过定点的坐标为 . 8.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为 .9.已知点P 在直线AB 上,且4AB AP =uu u r uu u r ,设AP PB λ=uu u r uu r,则实数λ= .10.设函数()sin 0y x ωω=>在区间,64ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围为 .11.若关于x 的方程21220xx a +-+=在[]0,1内有解,则实数a 的取值范围是 .12.点E 是正方形ABCD 的边CD 的中点,若2AE DB ⋅=-uu u r uu u r ,则AE BE ⋅=uu u r uur.13.已知函数()4f x x a a x=+-+在区间[]1,4上的最大值为32,则实数a = . 14.已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,则函数()()1528y f x f x =+--有 个零点.第Ⅱ卷(共90分)二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.设全集U R =,集合{}121x A x -=≥,{}2450B x x x =--<. (1)求A B I ,()()U U C A C B U ;(2)设集合{}121C x m x m =+<<-,若B C C =I ,求实数m 的取值范围.16.设()2,1OA =-uu r ,()3,0OB =uu u r ,(),3OC m =uu u r.(1)当8m =时,将OC uuu r 用OA uu r 和OB uu u r表示;(2)若A B C 、、三点能构成三角形,求实数m 应满足的条件. 17. 已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭的部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[]0,π的单调增区间;(3)若函数()()1g x f x =+在区间(),a b 上恰有10个零点,求b a -得最大值.18. 某批发公司批发某商品,每件商品进价80元,批发价120元,该批发商为鼓励经销商批发,决定当一次批发量超过100个时,每多批发一个,批发的全部商品的单价就降低0.04元,但最低批发价不能低于102元.(1)当一次订购量为多少个时,每件商品的实际批发价位102元?(2)当一次订购量为x 个,每件商品的实际批发价为P 元,写出函数()P f x =的表达式; (3)根据市场调查发现,经销商一次最大订购量为500个,则当经销商一次批发多少个零件时,该批发公司可获得最大利润.19. 已知定义在实数集R 上的偶函数()f x 在区间(],0-∞上是单调递增,且()20f -=. (1)若()12sin 21f f x ⎛⎫<⎪+⎝⎭,求x 的取值范围;(2)若()5cos 216g x x a π⎛⎫=-+- ⎪⎝⎭,7,242x ππ⎡⎤∈⎢⎥⎣⎦,a R ∈.是否存在实数a ,使得()0f g x >⎡⎤⎣⎦恒成立?若存在,求a 的范围;若不存在,说明理由.20. 已知函数()()()log 101a f x x a =+<<,()()2log 33a g x x x =-+. (1)解关于x 的不等式()()g x f x >; (2)若函数()g x 在区间[]3,2m n m ⎛⎫> ⎪⎝⎭上的值域为()()log 3,log 3a a t n t m ++⎡⎤⎣⎦,求实数t 的取值范围; (3)设函数()()()f xg x F x a -=,求满足()F x Z ∈的x 的集合.高一数学参考答案及评分标准一、填空题1.1 2.6 3.2-4.()2f x x -= 5.1 6.3,28k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭7.()3,3 8.6 9.13,15- 10.(]0,2 11.[]0,1 12. 3 13.18 14. 4 二、解答题15.解:(1)∵{}1A x x =≥,{}15B x x =-<<∴{}15A B x x =≤<I ,()(){}15U U C A C B x x x =<≥或U (2)当C =∅时,211m m -<+ 即2m <当C B ⊆时,12111215m m m m +<-⎧⎪+≥-⎨⎪-≤⎩解之得33m <≤综上所述:m 的取值范围是(],3-∞.16.解:(1)当8m =时,()8,3OC =uu u r,设OC xOA yOB =+uu u r uu r uu u r,则()()()()8,32,13,023,x y x y x =-+=+-∴2383x y x +=⎧⎨-=⎩∴3143x y =-⎧⎪⎨=⎪⎩;(2)∵A B C 、、三点能构成三角形∴,AB AC uu u r uuu r不共线又()1,1AB =uu u r ,()2,4AC m =-uu u r∴()14120m ⨯-⨯-≠,∴6m ≠. 17.解:(1)2A =,243124T πππω=-=,2ω= 所以()2sin 23f x x π⎛⎫=+ ⎪⎝⎭(2)令222232k x k πππππ-+≤+≤+,k Z ∈得51212k x k ππππ-+≤≤+ 又因为[]0,x π∈,所以函数()y f x =在[]0,π的单调增区间为0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎤⎢⎥⎣⎦. 注:区间端点可开可闭,都不扣分. (3)()2sin 213f x x π⎛⎫=+=- ⎪⎝⎭, 得512x k ππ=+或()34x k k Z ππ=+∈ 函数()f x 在每个周期上有两个零点,所以共有5个周期, 所以b a -最大值为217533T ππ+=. 18.解:(1)设一次订购量为()100n n N +∈, 则批发价为1200.04n -,令1200.04102n -=, ∴1201020.04n -=,∴450n =,所以当一次订购量为550个时,每件商品的实际批发价为102元.(2)由题意知()()1200100,1200.0410*******,x x N f x x x x N⎧≤≤∈⎪=⎨--<≤∈⎪⎩(3)当经销商一次批发个零件x 时,该批发公司可获得利润为y ,根据题意知:()()400100400.0410*******xx f x x x x ⎧≤≤⎪=⎨--⋅<≤⎡⎤⎪⎣⎦⎩ 设()140f x x =,在100x =时,取得最大值为4000;设()220.0444f x x x =-+=()220.045500.04550x --+⨯,所以当500x =时,()2f x 取最大值.答:当经销商一次批发500个零件时,该批发公司可获得最大利润. 19.解:(1)∵()f x 为偶函数, ∴()()220f f -==∵偶函数()f x 在(],0-∞上单调递增 ∴()f x 在[)0,+∞上单调递减 ∴12sin 21x >+∴12sin 21x >+或12sin 21x <-+ ∴31sin 2,11,22x ⎛⎫⎛⎫∈---- ⎪ ⎪⎝⎭⎝⎭U ,又[]sin 21,1x ∈-,∴1sin 21,2x ⎛⎫∈--⎪⎝⎭故x 的取值范围为73311,,124412k k k k ππππππππ⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭U ,()k Z ∈(2)由题意知,当22t -<<时,()0f t > 又()sin 213g x x a π⎛⎫=-+- ⎪⎝⎭,7,242x ππ⎡⎤∈⎢⎥⎣⎦∵7,242x ππ⎡⎤∈⎢⎥⎣⎦,∴22,343x πππ⎡⎤-∈⎢⎥⎣⎦,∴sin 2123x π⎛⎫≤-≤ ⎪⎝⎭ 要使()0f g x >⎡⎤⎣⎦恒成立,则()22g x -<<恒成立 ①当0a >时,则()11g x a ≤≤-+12a -+<,01a <<②当0a =时,()1g x =显然成立 ③当0a <时,则()11a g x -+≤≤12a -+>-,∴30a -<<综上所述,使()0f g x >⎡⎤⎣⎦恒成立时,a的范围为31a -<<.20.解:(1)原不等式等价于20331x x x <-+<+,解得22x <故解集为(22.(2)∵23324y x ⎛⎫=-+ ⎪⎝⎭在32x >上是单调递增的,又01a <<,(或设1232x x >>,则120x x ->,123x x +>, ∴()()2211223333x x x x -+--+=()()121230x x x x -+->⎡⎤⎣⎦ ∴()()2211223333x x x x -+>-+,∵01a <<,∴()()221122log 33log 33a a x x x x -+<-+)所以函数()g x 在区间[]3,2m n m ⎛⎫>⎪⎝⎭上为减函数,因此 ()()()2log 33log 3a a g m m m t m =-+=+,()()()2log 33log 3a a g n n n t n =-+=+.即2333m m t m -+=+,2333n n t n -+=+,32m n ⎛⎫<<⎪⎝⎭. 所以m n 、是方程2333x x t x -+=+,3,2x ⎛⎫∈+∞⎪⎝⎭的两个相异的解. 设()263h x x x t =-+-,则()36430393630242332t h t ⎧⎪∆=-->⎪⎪⎛⎫=-⨯+->⎨ ⎪⎝⎭⎪⎪>⎪⎩所以1564t -<<-为所求. (3)()()()()()()2log 1log 332133a a x x x f x g x x F x a ax x +--+-+===-+,()1x >-∵()71551x x ++-≥+,当且仅当1x =时等号成立,(可用对勾函数单调性说明,不证不扣分)∴()211733151x x x x x ⎛+=∈ -+⎝⎦++-+,∵5343<<,∴()F x 有可能取得整数有且只有1,2,3, 当21133x x x +=-+时,解得2x =,2x =当21233x x x +=-+时,解得5,12x x ==; 当21333x x x +=-+时,解得2x =,43x =.故集合451,2,,,2232M ⎧=-⎨⎩.。
2017-2018学年江苏省扬州中学高一(上)期中数学试卷一、填空题(5*14=70)1.已知集合A={x|﹣1≤x<2},集合B={x|x<1},则A∩B=.2.函数f(x)=ln(x﹣2)的定义域为.3.已知4a=2,lgx=a,则x=.4.函数f(x)=x2﹣4x+5,x∈[1,5],则该函数值域为.5.已知函数f(x)=ax3+bx+1,且f(﹣2)=3,则f(2)=.6.计算﹣lg2﹣lg5=.7.集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是.8.若函数f(x)=﹣x2+2ax与函数g(x)=在区间[1,2]上都是减函数,则实数a的取值范围是.9.函数f(x)=2log a(x﹣2)+3(a>0,a≠1)恒过定点的坐标为.10.已知函数f(x﹣1)=x2﹣2x,则f(x)=.11.已知偶函数f(x)在[0,+∞)上为增函数,且f(x﹣1)>f(3﹣2x),求x的取值范围.12.f(x)是定义在(﹣∞,+∞)上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(),c=f(0.20.6),则a,b,c大小关系是.13.已知函数y=lg(﹣1)的定义域为A,若对任意x∈A都有不等式﹣m2x﹣2mx >﹣2恒成立,则正实数m的取值范围是.14.已知函数,关于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,则a的取值范围是.二、解答题:(14+14+14+16+16+16)15.(14分)已知全集为R,集合A={x|y=lgx+},B={x|<2x﹣a≤8}.(I)当a=0时,求(∁R A)∩B;(2)若A∪B=B,求实数a的取值范围.16.(14分)已知二次函数y=f(x)满足f(﹣2)=f(4)=﹣16,且f(x)最大值为2.(1)求函数y=f(x)的解析式;(2)求函数y=f(x)在[t,t+1](t>0)上的最大值.17.(14分)已知函数f(x)=log a(ax2﹣x+1),其中a>0且a≠1.(1)当a=时,求函数f(x)的值域;(2)当f(x)在区间上为增函数时,求实数a的取值范围.18.(16分)设f(x)是(﹣∞,+∞)上的奇函数,且f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)求﹣1≤x≤3时,f(x)的解析式;(3)当﹣4≤x≤4时,求f(x)=m(m<0)的所有实根之和.19.(16分)设a为实数,函数f(x)=x|x﹣a|.(1)讨论f(x)的奇偶性;(2)当0≤x≤1时,求f(x)的最大值.20.(16分)设函数f(x)=ka x﹣a﹣x(a>0且a≠1)是奇函数.(1)求常数k的值;(2)若a>1,试判断函数f(x)的单调性,并加以证明;(3)若已知f(1)=,且函数g(x)=a2x+a﹣2x﹣2mf(x)在区间[1,+∞)上的最小值为﹣2,求实数m的值.2016-2017学年江苏省扬州中学高一(上)期中数学试卷参考答案与试题解析一、填空题(5*14=70)1.(2016•南通模拟)已知集合A={x|﹣1≤x<2},集合B={x|x<1},则A∩B={x|﹣1≤x<1} .【考点】交集及其运算.【专题】集合思想;定义法;集合.【分析】由集合A与B,求出两集合的交集即可.【解答】解:∵A={x|﹣1≤x<2},集合B={x|x<1},∴A∩B={x|﹣1≤x<1},故答案为:{x|﹣1≤x<1}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(2015•广州一模)函数f(x)=ln(x﹣2)的定义域为(2,+∞).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据对数函数f(x)的解析式,真数大于0,列出不等式,求出解集即可.【解答】解:∵函数f(x)=ln(x﹣2),∴x﹣2>0;解得x>2,∴该函数的定义域为(2,+∞).故答案为:(2,+∞).【点评】本题考查了对数函数定义域的应用问题,是基础题目.3.(2014•陕西)已知4a=2,lgx=a,则x=.【考点】对数的运算性质.【专题】计算题.【分析】化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.【解答】解:由4a=2,得,再由lgx=a=,得x=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.4.(2016秋•广陵区校级期中)函数f(x)=x2﹣4x+5,x∈[1,5],则该函数值域为[1,10] .【考点】二次函数在闭区间上的最值.【专题】函数的性质及应用.【分析】根据函数f(x)的解析式,利用二次函数的性质求得函数的最值,从而求得函数的值域.【解答】解:由于函数f(x)=x2﹣4x+5=(x﹣2)2+1,x∈[1,5],则当x=2时,函数取得最小值为1,当x=5时,函数取得最大值为10,故该函数值域为[1,10],故答案为[1,10].【点评】本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,属于中档题.5.(2016秋•广陵区校级期中)已知函数f(x)=ax3+bx+1,且f(﹣2)=3,则f(2)=﹣1.【考点】函数奇偶性的性质;函数的值.【专题】计算题;转化思想;函数的性质及应用.【分析】利用函数的奇偶性的性质,化简求解即可.【解答】解:函数f(x)=ax3+bx+1,且f(﹣2)=3,则f(2)=8a+2b+1=﹣(﹣8a﹣2b+1)+2=﹣3+2=﹣1故答案为:﹣1.【点评】本题考查函数的奇偶性的性质的应用,考查计算能力.6.(2015秋•安吉县期末)计算﹣lg2﹣lg5=3.【考点】对数的运算性质.【专题】计算题;函数思想;函数的性质及应用.【分析】利用指数的运算法则以及导数的运算法则化简求解即可.【解答】解:=4﹣2=3.故答案为:3.【点评】本题考查导数的运算法则的应用,考查计算能力.7.(2016秋•广陵区校级期中)集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是0或1.【考点】集合的表示法.【专题】计算题;集合思想;集合.【分析】根据集合A={x|ax2+2x﹣1=0}只有一个元素,可得方程ax2﹣2x﹣1=0只有一个根,然后分a=0和a≠0两种情况讨论,求出a的值即可【解答】解:根据集合A={x|ax2+2x﹣1=0}只有一个元素,可得方程ax2+2x﹣1=0只有一个根,①a=0,x=,满足题意;②a≠0时,则应满足△=0,即(﹣2)2﹣4a×1=4﹣4a=0解得a=1.所以a=0或a=1.故答案为:0或1.【点评】本题主要考查了元素与集合的关系,以及一元二次方程的根的情况的判断,属于基础题8.(2016秋•广陵区校级期中)若函数f(x)=﹣x2+2ax与函数g(x)=在区间[1,2]上都是减函数,则实数a的取值范围是(0,1] .【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】由函数f(x)=﹣x2+2ax在区间[1,2]上是减函数,可得[1,2]为其减区间的子集,进而得a的限制条件,由反比例函数的性质可求a的范围,取其交集即可求出.【解答】解:因为函数f(x)=﹣x2+2ax在[1,2]上是减函数,所以﹣=a≤1①,又函数g(x)=在区间[1,2]上是减函数,所以a>0②,综①②,得0<a≤1,即实数a的取值范围是(0,1].故答案为:(0,1].【点评】本题考查函数单调性的性质,函数在某区间上单调,该区间未必为函数的单调区间,而为单调区间的子集.9.(2016秋•广陵区校级期中)函数f(x)=2log a(x﹣2)+3(a>0,a≠1)恒过定点的坐标为(3,3).【考点】对数函数的图象与性质.【专题】转化思想;数学模型法;函数的性质及应用.【分析】令真数等于1,求出相应的坐标,可得答案.【解答】解:令x﹣2=1,则x=3,f(3)=2log a(3﹣2)+3=3,故函数f(x)=2log a(x﹣2)+3(a>0,a≠1)恒过定点的坐标为(3,3),故答案为:(3,3).【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.10.(2016秋•广陵区校级期中)已知函数f(x﹣1)=x2﹣2x,则f(x)=x2﹣1.【考点】函数解析式的求解及常用方法.【专题】函数思想;换元法;函数的性质及应用.【分析】利用换元法求解即可.【解答】解:函数f(x﹣1)=x2﹣2x,令x﹣1=t,则x=t+1那么f(x﹣1)=x2﹣2x转化为f(t)=(t+1)2﹣2(t+1)=t2﹣1.所以得f(x)=x2﹣1故答案为:x2﹣1.【点评】本题考查了解析式的求法,利用了换元法.属于基础题.11.(2015秋•白山校级期中)已知偶函数f(x)在[0,+∞)上为增函数,且f(x﹣1)>f(3﹣2x),求x的取值范围.【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】利用函数f(x)的奇偶性及在[0,+∞)上的单调性,可把f(x﹣1)>f(3﹣2x)转化为关于x﹣1与3﹣2x的不等式,从而可以求解.【解答】解:因为偶函数f(x)在[0,+∞)上为增函数,所以f(x﹣1)>f(3﹣2x)⇔f(|x﹣1|)>f(|3﹣2x|)⇔|x﹣1|>|3﹣2x|,两边平方并化简得3x2﹣10x+8<0,解得,所以x的取值范围为().故答案为:().【点评】本题为函数奇偶性及单调性的综合考查.解决本题的关键是利用性质去掉符号“f”,转化为关于x﹣1与3﹣2x的不等式求解.12.(2016秋•广陵区校级期中)f(x)是定义在(﹣∞,+∞)上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(),c=f(0.20.6),则a,b,c大小关系是c>a>b.【考点】奇偶性与单调性的综合.【专题】转化思想;综合法;函数的性质及应用.【分析】对于偶函数,有f(x)=f(|x|),在[0,+∞)上是减函数,所以,只需比较自变量的绝对值的大小即可,即比较3个正数|log23|、|log47|、|0.20.6|的大小,这3个正数中越大的,对应的函数值越小.【解答】解:f(x)是定义在(﹣∞,+∞)上的偶函数,且在(﹣∞,0]上是增函数,故f(x)在[0,+∞)上是减函数,∵a=f(log47),b=f(),c=f(0.20.6),∵log47=log2>1,∵=﹣log23=﹣log49<﹣1,0<0.20.6<1,∴|log23|>|log47|>|0.20.6|>0,∴f(0.20.6)>f(log47)>f(),即c>a>b,故答案为:c>a>b.【点评】本题考查偶函数的性质,函数单调性的应用,属于中档题.13.(2015春•淮安期末)已知函数y=lg(﹣1)的定义域为A,若对任意x∈A都有不等式﹣m2x﹣2mx>﹣2恒成立,则正实数m的取值范围是(0,).【考点】函数恒成立问题.【专题】函数的性质及应用;不等式的解法及应用.【分析】运用对数的真数大于0,可得A=(0,1),对已知不等式两边除以x,运用参数分离和乘1法,结合基本不等式可得不等式右边+的最小值,再解m的不等式即可得到m的范围.【解答】解:由函数y=lg(﹣1)可得,﹣1>0,解得0<x<1,即有A=(0,1),对任意x∈A都有不等式﹣m2x﹣2mx>﹣2恒成立,即有﹣m2﹣2m>﹣,整理可得m2+2m<+在(0,1)恒成立,由+=(+)(1﹣x+x)=+2++≥+2=.即有m2+2m<,由于m>0,解得0<m<,故答案为:(0,).【点评】本题考查不等式恒成立问题的解法,注意运用参数分离和基本不等式,考查运算求解能力,属于中档题.14.(2016•湖南校级模拟)已知函数,关于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,则a的取值范围是(﹣4,﹣2).【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】题中原方程f2(x)+a|f(x)|+b=0恰有6个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有当f(x)=2时,它有二个根,且当f(x)=k(0<k<2),关于x 的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,据此即可求得实数a的取值范围.【解答】解:先根据题意作出f(x)的简图:得f(x)>0.∵题中原方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,即方程f2(x)+af (x)+b=0(a,b∈R)恰有6个不同实数解,∴故由图可知,只有当f(x)=2时,它有二个根.故关于x的方程f2(x)+af(x)+b=0中,有:4+2a+b=0,b=﹣4﹣2a,且当f(x)=k,0<k<2时,关于x的方程f2(x)+af(x)+b=0有4个不同实数解,∴k2+ak﹣4﹣2a=0,a=﹣2﹣k,∵0<k<2,∴a∈(﹣4,﹣2).故答案为:(﹣4,﹣2).【点评】数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.二、解答题:(14+14+14+16+16+16)15.(14分)(2016秋•广陵区校级期中)已知全集为R,集合A={x|y=lgx+},B={x|<2x﹣a≤8}.(I)当a=0时,求(∁R A)∩B;(2)若A∪B=B,求实数a的取值范围.【考点】交、并、补集的混合运算;集合的包含关系判断及应用.【专题】计算题;转化思想;综合法;集合.【分析】(1)利用函数有意义求得A,解指数不等式求得B,再根据补集的定义求得∁R A,再利用两个集合的交集的定义求得(∁R A)∩B;(2)若A∪B=B,A⊆B,即可求实数a的取值范围.【解答】解:(1)A={x|y=lgx+}=(0,2],∴∁R A=(﹣∞,0]∪(2,+∞)当a=0时,<2x≤8,∴﹣2<x≤3,∴B=(﹣2,3],则(∁R A)∩B=(﹣2,0]∪(2,3];(2)B={x|<2x﹣a≤8}=(a﹣2,a+3].∵A∪B=B,∴A⊆B,∴,∴﹣1≤a≤2.【点评】本题主要考查不等式的解法,集合的补集、两个集合的交集的定义和求法,属于基础题.16.(14分)(2013秋•滑县期末)已知二次函数y=f(x)满足f(﹣2)=f(4)=﹣16,且f (x)最大值为2.(1)求函数y=f(x)的解析式;(2)求函数y=f(x)在[t,t+1](t>0)上的最大值.【考点】二次函数在闭区间上的最值;函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】(1)由条件可得二次函数的图象的对称轴为x=1,可设函数f(x)=a(x﹣1)2+2,a<0.根据f(﹣2)=﹣16,求得a的值,可得f(x)的解析式.(2)分当t≥1时和当0<t<1时两种情况,分别利用函数f(x)的单调性,求得函数的最大值.【解答】解:(1)∵已知二次函数y=f(x)满足f(﹣2)=f(4)=﹣16,且f(x)最大值为2,故函数的图象的对称轴为x=1,可设函数f(x)=a(x﹣1)2+2,a<0.根据f(﹣2)=9a+2=﹣16,求得a=﹣2,故f(x)=﹣2(x﹣1)2+2=﹣2x2+4x.(2)当t≥1时,函数f(x)在[t,t+1]上是减函数,故最大值为f(t)=﹣2t2+4t,当0<t<1时,函数f(x)在[t,1]上是增函数,在[1,t+1]上是减函数,故函数的最大值为f(1)=2.综上,f max(x)=.【点评】本题主要考查二次函数的性质,求二次函数在闭区间上的最值,体现了分类讨论的数学思想,属于中档题.17.(14分)(2016秋•广陵区校级期中)已知函数f(x)=log a(ax2﹣x+1),其中a>0且a ≠1.(1)当a=时,求函数f(x)的值域;(2)当f(x)在区间上为增函数时,求实数a的取值范围.【考点】复合函数的单调性;函数的值域.【专题】综合题;分类讨论;转化思想;综合法;函数的性质及应用.【分析】(1)把代入函数解析式,可得定义域为R,利用配方法求出真数的范围,结合复合函数单调性求得函数f(x)的值域;(2)对a>1和0<a<1分类讨论,由ax2﹣x+1在上得单调性及ax2﹣x+1>0对恒成立列不等式组求解a的取值范围,最后取并集得答案.【解答】解:(1)当时,恒成立,故定义域为R,又∵,且函数在(0,+∞)单调递减,∴,即函数f(x)的值域为(﹣∞,1];(2)依题意可知,i)当a>1时,由复合函数的单调性可知,必须ax2﹣x+1在上递增,且ax2﹣x+1>0对恒成立.故有,解得:a≥2;ii)当0<a<1时,同理必须ax2﹣x+1在上递减,且ax2﹣x+1>0对恒成立.故有,解得:.综上,实数a的取值范围为.【点评】本题考查复合函数的单调性,考查了复合函数值域的求法,体现了分类讨论的数学思想方法及数学转化思想方法,属中档题.18.(16分)(2016秋•广陵区校级期中)设f(x)是(﹣∞,+∞)上的奇函数,且f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)求﹣1≤x≤3时,f(x)的解析式;(3)当﹣4≤x≤4时,求f(x)=m(m<0)的所有实根之和.【考点】函数奇偶性的性质;函数解析式的求解及常用方法.【专题】数形结合;转化法;函数的性质及应用.【分析】(1)根据函数奇偶性的性质即可求f(π)的值;(2)结合函数奇偶性和周期性的性质即可求﹣1≤x≤3时,f(x)的解析式;(3)当﹣4≤x≤4时,作出函数f(x)的图象,利用数形结合即可求f(x)=m(m<0)的所有实根之和.【解答】解:(1)∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,则f(π)=f(π﹣4)=﹣f(4﹣π)=﹣(4﹣π)=π﹣4;(2)若﹣1≤x≤0,则0≤﹣x≤1,则f(﹣x)=﹣x,∵f(x)是奇函数,∴f(﹣x)=﹣x=﹣f(x),即f(x)=x,﹣1≤x≤0,即当﹣1≤x≤1时,f(x)=x,若1≤x≤3,则﹣1≤x﹣2≤1,∵f(x+2)=﹣f(x),∴f(x)=﹣f(x﹣2)=﹣(x﹣2)=﹣x+2,即当﹣1≤x≤3时,f(x)的解析式为f(x)=;(3)作出函数f(x)在﹣4≤x≤4时的图象如图,则函数的最小值为﹣1,若m<﹣1,则方程f(x)=m(m<0)无解,若m=﹣1,则函数在﹣4≤x≤4上的零点为x=﹣1,x=3,则﹣1+3=2,若﹣1<m<0,则函数在﹣4≤x≤4上共有4个零点,则它们分别关于x=﹣1和x=3对称,设分别为a,b,c,d,则a+b=﹣2,b+d=6,即a+b+c+d=﹣2+6=4.【点评】本题主要考查函数解析式的求解,函数奇偶性的性质,以及函数与方程的应用,利用数形结合是解决本题的关键.19.(16分)(2016秋•广陵区校级期中)设a为实数,函数f(x)=x|x﹣a|.(1)讨论f(x)的奇偶性;(2)当0≤x≤1时,求f(x)的最大值.【考点】函数的最值及其几何意义.【专题】函数的性质及应用.【分析】(1)讨论a=0时与a≠0时的奇偶性,然后定义定义进行证明即可;(2)讨论当a≤0和a>0时,求出函数f(x)=x|x﹣a|的表达式,即可求出在区间[0,1]上的最大值.【解答】解:(1)由题意可知函数f(x)的定义域为R.当a=0时f(x)=x|x﹣a|=x|x|,为奇函数.当a≠0时,f(x)=x|x﹣a|,f(1)=|1﹣a|,f(﹣1)=﹣|1+a|,f(﹣x)≠f(x)且f(﹣x)≠﹣f(x),∴此时函数f(x)为非奇非偶函数.(2)若a≤0,则函数f(x)=x|x﹣a|在0≤x≤1上为增函数,∴函数f(x)的最大值为f(1)=|1﹣a|=1﹣a,若a>0,由题意可得f(x)=,由于a>0且0≤x≤1,结合函数f(x)的图象可知,由,当,即a≥2时,f(x)在[0,1]上单调递增,∴f(x)的最大值为f(1)=a﹣1;当,即时,f(x)在[0,]上递增,在[,a]上递减,∴f(x)的最大值为f()=;当,即时,f(x)在[0,]上递增,在[,a]上递减,在[a,1]上递增,∴f(x)的最大值为f(1)=1﹣a.【点评】本题主要考查函数奇偶性的判断,以及分段函数的最值的求法,考查学生的运算能力.20.(16分)(2014秋•扬中市校级期末)设函数f(x)=ka x﹣a﹣x(a>0且a≠1)是奇函数.(1)求常数k的值;(2)若a>1,试判断函数f(x)的单调性,并加以证明;(3)若已知f(1)=,且函数g(x)=a2x+a﹣2x﹣2mf(x)在区间[1,+∞)上的最小值为﹣2,求实数m的值.【考点】函数奇偶性的性质;函数单调性的判断与证明.【专题】计算题;函数的性质及应用.【分析】(1)根据函数的奇偶性的性质,建立方程即可求常数k的值;(2)当a>1时,f(x)在R上递增.运用单调性的定义证明,注意作差、变形和定符号、下结论几个步骤;(3)根据f(1)=,求出a,然后利用函数的最小值建立方程求解m.【解答】解:(1)∵f(x)=ka x﹣a﹣x(a>0且a≠1)是奇函数.∴f(0)=0,即k﹣1=0,解得k=1.(2)∵f(x)=a x﹣a﹣x(a>0且a≠1),当a>1时,f(x)在R上递增.理由如下:设m<n,则f(m)﹣f(n)=a m﹣a﹣m﹣(a n﹣a﹣n)=(a m﹣a n)+(a﹣n﹣a﹣m)=(a m﹣a n)(1+),由于m<n,则0<a m<a n,即a m﹣a n<0,f(m)﹣f(n)<0,即f(m)<f(n),则当a>1时,f(x)在R上递增.(3)∵f(1)=,∴a﹣=,即3a2﹣8a﹣3=0,解得a=3或a=﹣(舍去).∴g(x)=32x+3﹣2x﹣2m(3x﹣3﹣x)=(3x﹣3﹣x)2﹣2m(3x﹣3﹣x)+2,令t=3x﹣3﹣x,∵x≥1,∴t≥f(1)=,∴(3x﹣3﹣x)2﹣2m(3x﹣3﹣x)+2=(t﹣m)2+2﹣m2,当m时,2﹣m2=﹣2,解得m=2,不成立舍去.当m时,()2﹣2m×+2=﹣2,解得m=,满足条件,∴m=.【点评】本题主要考查函数奇偶性的应用,以及指数函数的性质和运算,考查学生的运算能力,综合性较强.。
2017-2018学年江苏省扬州市高一(上)期末数学试卷一、填空题(本大题共14小题,共60.0分)1.设集合A={0,1},B={1,3},则A∪B=______.2.tan=______.3.设幂函数f(x)的图象过点(2,),则f(4)=______.4.函数f(x)=x3sin x的奇偶性为______函数.(在“奇”、“偶”、“非奇非偶”、“既奇又偶”中选择)5.已知扇形的面积为4cm2,该扇形圆心角的弧度数是,则扇形的周长为______cm.6.()+log49•log32=______.7.已知单位向量,的夹角为60°,则||______.8.已知cos()=,则sin()=______.9.如图,在△ABC中,==2,若,则λ-μ=______.10.不等式2-x≤log2(x+1)的解集是______.11.已知△ABC的面积为16,BC=8,则的取值范围是______.12.已知函数f(x)=2sin(ωx-)(ω>0)与g(x)=cos(2x+θ)(0<θ<π)的零点完全相同,则g()=______.13.设函数f(x)=a x-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.若f(1)=,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,则m的值为______.14.设a为实数,函数f(x)=(3-x)|x-a|-a,x∈R,若f(x)在R上不是单调函数,则实数a的取值范围为______.二、解答题(本大题共6小题,共90.0分)15.已知函数f(x)=的定义域为A,集合B={x|2≤2x≤16},非空集合C={x|m+1≤x≤2m-1},全集为实数集R.(1)求集合A∩B和∁R B;(2)若A∪C=A,求实数m取值的集合.16.已知向量=(2,1),=(sin(π-α),2cosα)(1)若α=,求证: ⊥;(2)若向量,共线.求||17.函数f(x)=2sin(ωx+φ)(其中ω>0,|φ|<),若函数f(x)的图象与x轴的任意两个相邻交点间的距离为且过点(0,1).(1)求f(x)的解析式;(2)求f(x)的单调增区间:(3)求f(x)在(-,0)的值域.18.近年来,共享单车的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元,根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益p与投入a(单位:万元)满足p=4-6,乙城市收益Q与投入a(单位:万元)满足:Q=,,<,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当投资甲城市128万元时,求此时公司总收益;(2)试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?19.已知关于x的函数g(x)=mx2-2(m-1)x+n为R上的偶函数,且在区间[-1,3]上的最大值为10.设f(x)=.(1)求函数的解析式;(2)若不等式f(2x)-k•2x≤2在x∈[-1,1]上恒成立,求实数k的取值范围;(3)是否存在实数t,使得关于x的方程f(|2x-1|)+-3t-2=0有四个不相等的实数根?如果存在,求出实数t的范围,如果不存在,说明理由.20.已知函数f(x)=lg.(1)求不等式f(f(x))+f(1g2)>0的解集;(2)函数g(x)=2-a x(a>0,a≠1),若存在x1,x2∈[0,1),使得f(x1)=g(x2)成立,求实数a的取值范围;(3)若函数h(x)=或,讨论函数y=h(h(x))-2的零点个数(直接写出答案,不要求写出解题过程).答案和解析1.【答案】{0,1,3}【解析】解:设集合A={0,1},B={1,3},则A∪B={0,1,3},故答案为:{0,1,3}找出两集合的并集即可.此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.【答案】【解析】解:tan=tan(2π+)=tan=.故答案为:.直接利用诱导公式以及特殊角的三角函数求值即可.本题考查诱导公式的应用,特殊角的三角函数求值,考查计算能力.3.【答案】2【解析】解:设f(x)=x a,因为幂函数图象过(2,),则有=2a,∴a=,即f(x)=,∴f(4)==2故答案为:2.设出幂函数的解析式,由图象过(2,),确定出解析式,然后令x=4即可得到f(4)的值.考查学生会利用待定系数法求幂函数的解析式.会根据自变量的值求幂函数的函数值.4.【答案】偶【解析】解:函数f(x)=x3sinx的定义域关于原点对称,函数y=x3,是奇函数,函数y=sinx也是奇函数,由奇×奇=偶,∴函数f(x)=x3sinx是偶函数.故答案为:偶.定义域关于原点对称,奇×奇=偶,可得答案.解决函数的奇偶性时,一定要注意定义域关于原点对称是函数具有奇偶性的必要条件,属于基础题.5.【答案】10【解析】解:设扇形的弧长为l,半径为r,∵扇形圆心角的弧度数是,∴l=r,∵S=lr=4,扇∴•r•r=4,∴r2=16,r=4.∴其周长c=l+2r=2+8=10.故答案为:10.设扇形的弧长为l,半径为r,利用弧长公式,扇形的面积公式可求r,即可得解周长的值.本题考查扇形面积公式,关键在于掌握弧长公式,扇形面积公式及其应用,属于基础题.6.【答案】【解析】解:()+log49•log32=.故答案为:.直接由分数指数幂和对数的运算性质计算得答案.本题考查了对数的运算性质,是基础题.7.【答案】=解:单位向量,的夹角为60°,则=+2•+=1+2×1×1×cos60°+1=3,∴|+2|=.故答案为:.根据平面向量的数量积求模长即可.本题考查了平面向量的数量积与模长公式的应用问题,是基础题.8.【答案】【解析】解:已知cos()=,则sin()=-cos()=-cos()=-.故答案为:-.利用已知条件,对三角函数的关系式进行变换,利用sin进一步求出结果.本题考查的知识要点:三角函数关系式的恒等变变换,角的变换的应用,主要考查学生的运算能力和转化能力,属于与基础题型.9.【答案】-【解析】解:根据题意得:AD=2DC,BE=2EA,∴=;=,∴=-=(+)-=-+∴λ=-,μ=;故答案为-.=-,运用共线向量的知识可得λ和μ的值.本题考查平面向量基本定理的应用.10.【答案】[1,+∞)解:令g(x)=log2(x+1)-(2-x),则不等式2-x≤log2(x+1)⇔g(x)≥0,∵g′(x)=,故g(x)=log2(x+1)-(2-x)在(-1,+∞)上为增函数,又g(1)=log22-(2-1)=0,∴g(x)≥0⇒g(x)≥g(1)⇒x≥1.∴不等式2-x≤log2(x+1)的解集是[1,+∞).故答案为:[1,+∞).构造函数g(x)=log2(x+1)-(2-x),利用导数证明g(x)=log2(x+1)-(2-x)在(-1,+∞)上为增函数,且g(x)≥0,可得g(x)≥g(1),则x≥1,由此可得原不等式的解集.本题考查对数不等式的解法,训练了利用导数研究函数的单调性,是中档题.11.【答案】[0,+∞)【解析】解:建立平面直角坐标系如图所示,设△ABC边BC上的高为h,则面积为×8h=16,解得h=4,又A(0,4),设C(x,0),则B(x-8,0),x∈R;∴=(x-8,-4),=(x,-4);则=x(x-8)+16=x2-8x+16=(x-4)2≥0,∴•的取值范围是[0,+∞).建立平面直角坐标系,利用坐标表示△ABC顶点的坐标,求出的取值范围.本题考查了平面向量的数量积应用问题,是基础题.12.【答案】【解析】解:∵函数f(x)=2sin(ωx-)(ω>0)与g(x)=cos(2x+θ)(0<θ<π)的零点完全相同,∴两函数周期相同,则ω=2,∴f(x)=2sin(2x-),由,可得x=,k∈Z;∴g()=cos()=±cos()=0,则=,k∈Z.∴θ=,k∈Z.取k=0,可得.则g(x)=cos(2x+θ)=cos(2x),∴g()=cos()=cos=.故答案为:.由已知可知两函数周期相等,求得ω,由两函数零点相同求得θ值,则g()可求.本题考查三角函数的化简求值,考查y=Asin(ωx+φ)型函数的图象和性质,是中档题.13.【答案】【解析】解:函数f(x)=a x-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数,可得f(0)=0,即1-(k-1)=0,可得k=2,由f(1)=,可得a-a-1=,解得a=2,则g(x)=a2x+a-2x-2mf(x)=22x+2-2x-2m(2x-2-x),可令t=2x-2-x,由x≥1,可得t≥,可得函数y=t2+t(2-2m),当m-1≥时,g(x)的最小值为-(m-1)2,由-(m-1)2=-2,解得m=1±<,不成立;当m-1<时,g(x)的最小值为+(2-2m),由+(2-2m)=-2,解得m=<成立.故答案为:.由奇函数的性质可得f(0)=0,可得k=2,由条件解方程可得a=2,求得g(x)=22x+2-2x-2m(2x-2-x),可令t=2x-2-x,由x≥1,可得t≥,可得函数y=t2+t(2-2m),讨论对称轴与区间的关系,结合单调性可得最小值,解方程可得m 的值.本题考查函数的奇偶性的定义和指数函数的单调性,考查换元法和二次函数的最值求法,考查运算能力,属于中档题.14.【答案】{a|a≠3}【解析】解:根据题意,f(x)=(3-x)|x-a|-a=,二次函数y=x2-(a+3)x+2a的对称轴为x=<a,二次函数y=-x2+(a+3)x-4a的对称轴也为x=,若<a,即a>3时,二次函数y=x2-(a+3)x+2a在(0,a)上不单调,符合题意;若>a,即a<3时,二次函数y=-x2+(a+3)x-4a在(a,+∞)上不单调,符合若=a,即a=3时,二次函数y=x2-(a+3)x+2a在(0,a)上单调减,二次函数y=-x2+(a+3)x-4a在(a,+∞)上单调减,此时函数f(x)在R上单调递减,不符合题意;则a的取值范围为{a|a≠3};故答案为:{a|a≠3}.根据题意,将函数的解析式写成分段函数的形式即f(x)=,结合二次函数的性质分析其对称轴,综合即可得答案.本题考查分段函数的应用,涉及函数的单调性的性质,注意结合二次函数的性质进行分析.15.【答案】解:(1)由-x2+5x-6≥0得:2≤x≤3,故A=[2,3],集合B={x|2≤2x≤16}=[1,4],则A∩B=[2,3],∁R B=(-∞,1)∪(4,+∞);(2)若A∪C=A,则C⊆A+,解得:1≤m≤2,∴m=2,当m≥2时,C≠∅,则综上可得实数m取值的集合.【解析】本题考查的知识点是集合的交并补混合运算,难度不大,属于基础题.(1)解不等式分别求出AB,进而可得集合A∩B和∁R B;(2)若A∪C=A,则C⊆A,求出满足条件的m,可得答案.16.【答案】证明:(1)∵向量=(2,1),=(sin(π-α),2cosα),α=,∴=(sin,2cos)=(,-),∴=2×+1×(-)=0.∴ ⊥.解:(2)∵向量=(2,1),=(sin(π-α),2cosα)向量,共线.∴sinα=4cosα,∵sin2α+cos2α=17cos2α=1,∴sin2α=,cos2α=,∴||====.【解析】(1)向量=(2,1),α=时,=(sin,2cos)=(,-),由=0.能证明⊥.(2)由向量,共线.得sinα=4cosα,从而sin2α+cos2α=17cos2α=1,进崦sin2α=,cos2α=,由此能求出||.本题考查向量垂直的证明,考查向量模的求法,考查向量垂直、向量共线等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.17.【答案】解:(1)∵函数f(x)=2sin(ωx+φ)(其中ω>0,|φ|<),若函数f(x)的图象与x轴的任意两个相邻交点间的距离为,∴=2×,∴ω=2.再根据图象过点(0,1),可得1=2sinφ,即sinφ=,∴φ=,∴f(x)=2sin(2x+).(2)令2kπ-≤2x+≤2kπ+,求得kπ-≤x≤kπ+,故f(x)的单调增区间为[kπ-,kπ+],k∈Z.(3)在(-,0)上,2x+∈(-,),故当2x+=-时,函数取得最小值为-2,当2x+趋于时,函数趋于最大值1,股函数f(x)的值域为[-2,1).【解析】(1)利用正弦函数的周期性求的ω,根据图象经过定点,求得φ的值,可得函数的解析式.(2)利用正弦函数的单调性求的f(x)的单调增区间.(3)利用正弦函数的定义域以及值域,求的f(x)在(-,0)的值域.本题主要考查正弦函数的周期性、单调性、定义域以及值域,属于基础题.18.【答案】解:(1)当投资甲城市128万元时,投资乙城市112万元,此时公司总收益:f(x)=4-6+=4×16-6+28+2=88(万元).(2)甲城市的投入为x,则乙城市投资240-x万元,当80≤x≤120时,f(x)=4-6+(240-x)+2=4-x+56,∴f′(x)=2•-==>0恒成立,∴f(x)在[80,120]上单调递增,∴f(x)max=f(120)=16+26,当120<x≤160时,f(x)=4-6+32=4+26,∴f(x)在(120,160]上单调递增,∴f(x)max=f(160)=4+26=16+26,∵16+26>16+26,∴该公司在甲城市投资160万元,在乙城市投资80万元,总收益最大.【解析】(1)根据收益公式计算;(2)得出f(x)的解析式,判断f(x)在定义域上的单调性,从而可得f(x)取得最大值时对应的x的值,从而得出最佳投资方案.本题考查了函数模型的应用,函数最值的计算,属于中档题.19.【答案】解:(1)∵函数g(x)=mx2-2(m-1)x+n为R上的偶函数,可得m-1=0,即m=1.则g(x)=x2+n,由g(x)在区间[-1,3]上的最大值为10.即g(3)=10,可得n=1.∴函数的解析式为g(x)=x2+1;(2)由f(x)==不等式f(2x)-k•2x≤2在x∈[-1,1]上恒成立,即在x∈[-1,1]上恒成立,∴k≥设,∵x∈[-1,1]∴s∈[,2].则s2-2s+1=(s-1)2∈[0,1];∴k≥1,即所求实数k的取值范围为[1,+∞).(3)由方程f(|2x-1|)+-3t-2=0,可得|2x-1|+-3t-2=0,可化为:|2x-1|2-(3t+2)|2x-1|+(2t+1)=0(|2x-1|≠0),令r=|2x-1|,则r2-(3t+2)r+(2t+1)=0,r∈(0,+∞),方程f(|2x-1|)+-3t-2=0有四个不相等的实数根;则关于r的方程r2-(3t+2)r+(2t+1)=0必须有两个不相等的实数根r1和r2,并且0<r1<1,0<r2<1,记h(r)=r2-(3t+2)r+(2t+1)=0,r∈(0,+∞),其对称轴<<,可得:<<∴>△>>即>>>解得:<<故得存在实数t的范围为(,).【解析】(1)根据偶函数的图象关于y轴对称,可得m的值.在区间[-1,3]上的最大值为10,即可求解n,可得解析式;(2)利用换元法,分离参数即可求解实数k的取值范围;(3)利用换元法,转化为函数图象交点的问题.根据函数与方程之间的关系,进行转化,利用参数分离法进行求解即可.本题主要考查函数解析式的求解,函数恒成立以及函数与方程的应用,利用参数转化法是解决本题的关键.考查学生的运算能力,综合性较强,难度较大.20.【答案】解:(1)函数f(x)=lg,由>0,可得-1<x<1,f(-x)=lg=-f(x),即f(x)为奇函数,且0<x<1时,f(x)=lg(-1+)递减,可得f(x)在(-1,1)递减,且f(x)的值域为R,不等式f(f(x))+f(1g2)>0,即为f(f(x))>-f(lg2)=f(-lg2),则-1<f(x)<-lg2,即-1<lg<lg,即为0.1<<,解得<x<,则原不等式的解集为(,);(2)函数g(x)=2-a x(a>0,a≠1),若存在x1,x2∈[0,1),使得f(x1)=g(x2)成立,当0≤x<1,f(x)=lg的值域为(-∞,0],当a>1时,g(x)在[0,1)递减,可得g(x)的值域为(2-a,1],由题意可得f(x)和g(x)的值域存在交集,即有2-a<0,即a>2;若0<a<1,则g(x)在[0,1)递增,可得g(x)的值域为[1,2-a),由题意可得f(x)和g(x)的值域不存在交集,综上可得a的范围是(2,+∞);(3)由y=h[h(x)]-2,得h[h(x)]=2,令t=h(x),则h(t)=2,作出图象,当k≤0时,只有一个-1<t<0,对应3个零点,当0<k≤1时,1<k+1≤2,此时t1<-1,-1<t2<0,t3=≥1,由k+1-==(k+)(k-),得在<k≤1,k+1>,三个t分别对应一个零点,共3个,在0<k≤时,k+1≤,三个t分别对应1个,1个,3个零点,共5个,综上所述:当k>1或k=0或k<-时,y=h[h(x)]-2只有1个零点,当-≤k<0或<k≤1时,y=h[h(x)]-2有3个零点,当0<k≤时,y=h[h(x)]-2有5个零点.【解析】(1)求得f(x)的定义域和值域、单调性,由题意可得0.1<<,解不等式即可得到所求范围;(2)求得当0≤x<1时,f(x)的值域;以及讨论a>1,0<a<1时,g(x)的值域,由题意可得f(x)和g(x)的值域存在交集,即可得到所求范围;(3)由y=h[h(x)]-2,得h[h(x)]=2,令t=h(x),则h(t)=2,作出图象,分类讨论,即可求出零点的个数.本题主要考查函数的定义域和奇偶性、单调性,以及不等式的解法,方程根的存在性以及个数判断,体现了转化、数形结合的数学思想,属于难题.。
江苏扬州18-18年上学期高一数学期末考试一、选择题(共10小题,每题5分,计50分。
每小题给出的四个答案中,只有一个是正确的,请将正确答案前的字母填入下表相应的空格内)1.如果S={1,2,3,4,5},M={1,3,4},N={2,4,5},那么(C a M )∩C a M=( )(A )Φ (B ){1,3} (C ){4} (D ){2,5}2.函数y=lg(2x -x 2)的定义域是( )(A )(0,2) (B )[0,2](C )(﹣∞,0)∪(2,﹢∞) (D )(﹣∞,0)∪[)+∞,23.a 、b 、c 成等比数列,那么关于x 的方程ax 2+bx+c=o ( )(A )一定有两不等实根 (B )一定有相等实根(C )一定无实根 (D )有两符号不相同的实根4.函数y=2x +a 的图象不经过第二象限,则( )(A )a <0 (B )a ≤﹣1 (C )a <﹣2 (D )a <﹣15.已知等比数列{a n }的前三项分别为a ,.a+1,a+3,(a ∈R),则它的公比q 为( )(A )1 (B )2 (C )3 (D )不能确定6.在等比数列{a n }中,a 1=1,公比q ∈R ,且|q|≠1,若a m =a 1· a 2……a 10,那么m 等于( )(A )44 (B )45 (C )46 (D )477.|x|<2是|x+1|<1的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件8.函数f (x )=lgx 则对任意正实数x 、y 都有( )(A )f (xy )=f (x )f (y ) (B )f (xy )=f (x )+f (y )(C )f (x+y )=f (x )f (y ) (D )f (x+y )=f (x )+f (y )9.等差数列{a n }的前n 项和用S n 表示,已知a 1<0,公差d >0,S 6=S 11,下述结论中正确的是( )(A )S 10最小 (B )S 9最大 (C )S 8,S 9最小 (D )S 8,S 9最大10.直线y=1与函数y=log a |x|的图象交于A 、B 两点,则|AB|=( )(A )1 (B )2 (C )a (D )2a二、填空题(共4小题,每小题5分,共20分。
2016-2017学年江苏省扬州市高一(上)期末数学试卷一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.tan=.2.2lg2+lg25的值等于.3.若幂函数f(x)=x a的图象过点(4,2),则f(9)=.4.已知角α的终边经过点P(2,m)(m>0),且cosα=,则m=.5.在用二分法求方程x3﹣2x﹣1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为.6.某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为cm2.7.若a+b=3,则代数式a3+b3+9ab的值为.8.已知a=log0.65,b=2,c=sin1,将a,b,c按从小到大的顺序用不等号“<”连接为.9.将正弦曲线y=sinx上所有的点向右平移π个单位长度,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得到的图象的函数解析式y=.10.已知函数f(x)为偶函数,且f(x+2)=﹣f(x),当x∈(0,1)时,f(x)=()x,则f()=.11.已知f(x)=在[2,+∞)上是单调增函数,则实数a的取值范围为.12.如图所示,在平行四边形ABCD中,AB=4,AD=3,E是边CD的中点,=,若•=﹣4,则sin∠BAD=.13.已知f(x)=,若对任意θ∈[0,],不等式f(cos2θ+λsinθ﹣)+>0恒成立,整数λ的最小值为.14.已知函数f(x)=ln(a﹣)(a∈R).若关于x的方程ln[(4﹣a)x+2a ﹣5]﹣f(x)=0的解集中恰好有一个元素,则实数a的取值范围为.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(14分)已知全集U=R,集合A={x|2≤x<7},B={x|0<log3x<2},C={x|a <x<a+1}.(1)求A∪B,(∁U A)∩B;(2)如果A∩C=∅,求实数a的取值范围.16.(14分)已知:θ为第一象限角,=(sin(θ﹣π),1),=(sin(﹣θ),﹣),(1)若∥,求的值;(2)若|+|=1,求sinθ+cosθ的值.17.(14分)某工厂生产甲、乙两种产品所得利润分别为P和Q(万元),它们与投入资金m(万元)的关系有经验公式P=m+65,Q=76+4,今将150万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投资金额不低于25万元.(1)设对乙产品投入资金x万元,求总利润y(万元)关于x的函数关系式及其定义域;(2)如何分配使用资金,才能使所得总利润最大?最大利润为多少?18.(16分)已知函数y=sin(ωx+)(ω>0).(1)若ω=,求函数的单调增区间和对称中心;(2)函数的图象上有如图所示的A,B,C三点,且满足AB⊥BC.①求ω的值;②求函数在x∈[0,2)上的最大值,并求此时x的值.19.(16分)已知函数f(x)=(e为自然对数的底数,e=2.71828…).(1)证明:函数f(x)为奇函数;(2)判断并证明函数f(x)的单调性,再根据结论确定f(m2﹣m+1)+f(﹣)与0的大小关系;(3)是否存在实数k,使得函数f(x)在定义域[a,b]上的值域为[ke a,ke b].若存在,求出实数k的取值范围;若不存在,请说明理由.20.(16分)设函数f(x)=|ax﹣x2|+2a(a,b∈R).(1)当a=﹣2,b=﹣时,解方程f(2x)=0;(2)当b=0时,若不等式f(x)≤2x在x∈[0,2]上恒成立,求实数a的取值范围;(3)若a为常数,且函数f(x)在区间[0,2]上存在零点,求实数b的取值范围.2016-2017学年江苏省扬州市高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.tan=.【考点】运用诱导公式化简求值.【分析】直接利用诱导公式化简求值即可.【解答】解:tan=tan()=tan=.故答案为:.【点评】本题考查诱导公式的应用,特殊角的三角函数值的求法.2.2lg2+lg25的值等于2.【考点】对数的运算性质.【分析】由对数的运算性质对所给的对数式lg25+2lg2进行化简求值.【解答】解:lg25+2lg2=2lg5+2lg2=2(lg5+lg2)=2故答案为:2.【点评】本题考查对数的运算性质,解题的关键是熟练掌握对数的运算性质,并能用运算性质进行化简运算.3.若幂函数f(x)=x a的图象过点(4,2),则f(9)=3.【考点】幂函数的概念、解析式、定义域、值域.【分析】求出幂函数的解析式,从而求出f(9)的值即可.【解答】解:∵幂函数f(x)=x a的图象经过点(4,2),∴4a=2;解得a=.故f(x)=,则f(9)=3,故答案为:3.【点评】本题考查了幂函数的图象与性质的应用问题,是基础题目.4.已知角α的终边经过点P(2,m)(m>0),且cosα=,则m=1.【考点】任意角的三角函数的定义.【分析】由条件利用任意角的三角函数的定义,求得m的值.【解答】解:∵角α的终边经过点P(2,m)(m>0),且cosα==,则m=1,故答案为:1.【点评】本题主要考查任意角的三角函数的定义,属于基础题.5.在用二分法求方程x3﹣2x﹣1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为(,2).【考点】二分法求方程的近似解.【分析】由题意构造函数f(x)=x3﹣2x﹣1,求方程x3﹣2x﹣1=0的一个近似解,就是求函数在某个区间内有零点,因此把x=1,2,,代入函数解析式,分析函数值的符号是否异号即可.【解答】解:令f(x)=x3﹣2x﹣1,则f(1)=﹣2<0,f(2)=3>0,f()=﹣<0,由f()f(2)<0知根所在区间为(,2).故答案为:(,2).【点评】此题是个基础题.考查二分法求方程的近似解,以及方程的根与函数的零点之间的关系,体现了转化的思想,同时也考查了学生分析解决问题的能力.6.某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为1cm2.【考点】扇形面积公式.【分析】g根据扇形的周长求出半径r,再根据扇形的面积公式计算即可.【解答】解:设该扇形的半径为r,根据题意,有l=αr+2r4=2r+2rr=1S扇形=αr2=×2×12=1.故答案为:1.【点评】本题考查了弧度制下扇形的面积及弧长公式的运用问题,是基础题目.7.若a+b=3,则代数式a3+b3+9ab的值为27.【考点】有理数指数幂的化简求值.【分析】a3+b3+9ab=(a+b)(a2+b2﹣ab)+9ab=3(a2+b2﹣ab)+9ab=3[(a+b)2﹣3ab]+9ab,由此能求出结果.【解答】解:∵a+b=3,∴代数式a3+b3+9ab=(a+b)(a2+b2﹣ab)+9ab=3(a2+b2﹣ab)+9ab=3[(a+b)2﹣3ab]+9ab=3(9﹣3ab)+9ab=27.故答案为:27.【点评】本题考查代数式求和,是基础题,解题时要认真审题,注意立方和公式和完全平方和公式的合理运用.8.已知a=log0.65,b=2,c=sin1,将a,b,c按从小到大的顺序用不等号“<”连接为a<c<b.【考点】对数值大小的比较.【分析】利用对数函数、指数函数、正弦函数的单调性求解.【解答】解:∵a=log0.65<log0.61=0,b=2>20=1,0<c=sin1<1,∴a<c<b.故答案为:a<c<b.【点评】本题考查三个数的大小的判断,是基础题,解题时要认真审题,注意对数函数、指数函数、正弦函数的单调性的合理运用.9.将正弦曲线y=sinx上所有的点向右平移π个单位长度,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得到的图象的函数解析式y=.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先根据左加右减进行左右平移,然后根据横坐标伸长到原来的倍时,x的系数变为原来的3倍进行横向变换.从而可得函数解析式.【解答】解:由题意,将函数y=sinx的图象上所有的点向右平行移动π个单位长度,利用左加右减,可所函数图象的解析式为y=sin(x﹣π),再把所得各点的横坐标伸长到原来的倍(纵坐标不变),利用x的系数变为原来的3倍进行横向变换,可得图象的函数解析式是.故答案为:.【点评】本题的考点是利用图象变换得函数解析式,主要考查三角函数的平移变换,周期变换.关键是利用平移的原则是左加右减、上加下减.10.已知函数f(x)为偶函数,且f(x+2)=﹣f(x),当x∈(0,1)时,f(x)=()x,则f()=.【考点】抽象函数及其应用;函数的值.【分析】由已知可得函数的周期为4,结合当x∈(0,1)时,f(x)=()x,可得答案.【解答】解:∵当x∈(0,1)时,f(x)=()x,∴f()=f(﹣)=,又∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),f()=f(﹣)=,故答案为:【点评】本题考查的知识点是抽象函数的应用,函数求值,函数的周期性,函数的奇偶性,转化思想,难度中档.11.已知f(x)=在[2,+∞)上是单调增函数,则实数a的取值范围为[,+∞).【考点】函数单调性的性质.【分析】求函数的导数,利用函数单调性和导数之间的关系进行转化求解即可.【解答】解:f(x)==ax++1,函数的导数f′(x)=a﹣,∵f(x)在[2,+∞)上是单调增函数,∴f′(x)=a﹣≥0在[2,+∞)上恒成立,即a≥,∵≤,∴a≥,即实数a的取值范围是[,+∞),故答案为:[,+∞)【点评】本题主要考查函数单调性的应用,求函数的导数利用函数单调性和导数之间的关系进行转化是解决本题的关键.12.如图所示,在平行四边形ABCD中,AB=4,AD=3,E是边CD的中点,=,若•=﹣4,则sin∠BAD=.【考点】向量在几何中的应用.【分析】根据向量的加减的几何意义和向量的数量积公式即可求出cos∠BAD,再根据同角的三角函数的关系即可求出sin∠BAD.【解答】解:在平行四边形ABCD中,AB=4,AD=3,E是边CD的中点,=,∴=+=+,=﹣=﹣,∴•=(+)•(﹣)=﹣﹣•=﹣﹣||•||cos∠BAD=6﹣8﹣8cos∠BAD=﹣4,∴cos∠BAD=,∴sin∠BAD=,故答案为:【点评】本题考查了向量的加减的几何意义和向量的数量积公式,属于中档题.13.已知f(x)=,若对任意θ∈[0,],不等式f(cos2θ+λsinθ﹣)+>0恒成立,整数λ的最小值为1.【考点】分段函数的应用.【分析】令f(x),解得:x,若对任意θ∈[0,],不等式f(cos2θ+λsinθ﹣)+>0恒成立,则对任意θ∈[0,],cos2θ+λsinθ﹣恒成立,进而得到答案.【解答】解:∵f(x)=,令f(x),解得:x,若对任意θ∈[0,],不等式f(cos2θ+λsinθ﹣)+>0恒成立,则对任意θ∈[0,],cos2θ+λsinθ﹣恒成立,即1﹣sin2θ+λsinθ﹣恒成立,当θ=0时,不等式恒成立,当θ≠0时,1﹣sin2θ+λsinθ﹣可化为:λ>=sinθ﹣,当θ=时,sinθ﹣取最大值,故λ>,故整数λ的最小值为1,故答案为:1.【点评】本题考查的知识点是分段函数的应用,函数恒成立问题,函数的最值,难度中档.14.已知函数f(x)=ln(a﹣)(a∈R).若关于x的方程ln[(4﹣a)x+2a ﹣5]﹣f(x)=0的解集中恰好有一个元素,则实数a的取值范围为(1,2]∪{3,4} .【考点】函数零点的判定定理.【分析】根据对数的运算法则进行化简,转化为一元二次方程,讨论a的取值范围进行求解即可.【解答】解:由ln[(4﹣a)x+2a﹣5]﹣f(x)=0,得ln[(4﹣a)x+2a﹣5]=ln(a﹣),即a﹣=(4﹣a)x+2a﹣5>0,①则(a﹣4)x2﹣(a﹣5)x﹣1=0,即(x﹣1)[(a﹣4)x+1]=0,②,当a=4时,方程②的解为x=1,代入①,成立;当a=3时,方程②的解为x=1,代入①,成立;当a≠4且a≠3时,方程②的解为x=1或x=﹣,若x=1是方程①的解,则a﹣=a﹣1>0,即a>1,若x=﹣是方程①的解,则a﹣=2a﹣4>0,即a>2,则要使方程①有且仅有一个解,则1<a≤2.综上,关于x的方程ln[(4﹣a)x+2a﹣5]﹣f(x)=0的解集中恰好有一个元素,则a的取值范围是1<a≤2,或a=3或a=4,故答案为:(1,2]∪{3,4}.【点评】本题考查对数的运算性质,考查数学转化思想方法和分类讨论的数学思想方法,属中档题.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(14分)(2016秋•扬州期末)已知全集U=R,集合A={x|2≤x<7},B={x|0<log3x<2},C={x|a<x<a+1}.(1)求A∪B,(∁U A)∩B;(2)如果A∩C=∅,求实数a的取值范围.【考点】交、并、补集的混合运算.【分析】(1)分别求出集合A,集合B,从而求出A∪B,∁R A,B∩(∁R A);(2)通过C是非空集合,A∩C=∅,而a+1≤2或a≥7,从而求出a的范围.【解答】解:(1)由0<log3x<2,得1<x<9∴B=(1,9),∵A={x|2≤x<7}=[2,7),∴A∪B=(1,9)∁U A=(﹣∞,2)∪[7,+∞),∴(∁U A)∩B=(1,2)∪[7,9)(2)C={x|a<x<a+1}=(a,a+1)∵A∩C=∅,∴a+1≤2或a≥7,解得:a≤1或a≥7【点评】本题考查了对数函数的单调性的运用以及集合的运算,关键是正确化简集合,然后由进行集合的运算,属于基础题.16.(14分)(2016秋•扬州期末)已知:θ为第一象限角,=(sin(θ﹣π),1),=(sin(﹣θ),﹣),(1)若∥,求的值;(2)若|+|=1,求sinθ+cosθ的值.【考点】三角函数的化简求值.【分析】(1)利用向量共线定理可得sinθ=cosθ,解得tanθ.再利用弦化切即可得解.(2)利用平面向量的坐标运算可求2sinθcosθ=,进而计算得解sinθ+cosθ的值.【解答】解:(1)∵=(sin(θ﹣π),1),=(sin(﹣θ),﹣),∥,∴﹣sin(θ﹣π)=sin(﹣θ),可得:sinθ=cosθ又∵θ为第一象限角,可得:tanθ=2,∴==5.(2)∵|+|=1, +=(cosθ﹣sinθ,),∴(cosθ﹣sinθ)2+()2=1,解得:2sinθcosθ=,∴sinθ+cosθ==.【点评】本题主要考查了平面向量共线定理,平面向量的坐标运算,同角三角函数基本关系式的应用,考查了计算能力和转化思想,属于基础题.17.(14分)(2016秋•扬州期末)某工厂生产甲、乙两种产品所得利润分别为P和Q(万元),它们与投入资金m(万元)的关系有经验公式P=m+65,Q=76+4,今将150万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投资金额不低于25万元.(1)设对乙产品投入资金x万元,求总利润y(万元)关于x的函数关系式及其定义域;(2)如何分配使用资金,才能使所得总利润最大?最大利润为多少?【考点】函数模型的选择与应用.【分析】(1)根据题意,对乙种商品投资x(万元),对甲种商品投资(150﹣x)(万元),利用经验公式,可求经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;(2)利用配方法,可求总利润y的最大值.【解答】解:(1)根据题意,对乙种商品投资x(万元),对甲种商品投资(150﹣x)(万元)(25≤x≤125).所以y=(150﹣x)+76+4﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣其定义域为[25,125]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)令t=,因为x∈[25,125],所以t∈[5,5],有y=﹣+138﹣﹣﹣﹣﹣﹣(12分)所以当t=6时,即x=36时,y max=138﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)答:当甲商品投入114万元,乙商品投入36万元时,总利润最大为138万元.﹣﹣﹣﹣﹣﹣﹣﹣﹣(16分)【点评】本题考查利用数学知识解决实际问题,考查函数的最值,正确建立函数解析式是关键.18.(16分)(2016秋•扬州期末)已知函数y=sin(ωx+)(ω>0).(1)若ω=,求函数的单调增区间和对称中心;(2)函数的图象上有如图所示的A,B,C三点,且满足AB⊥BC.①求ω的值;②求函数在x∈[0,2)上的最大值,并求此时x的值.【考点】三角函数的最值;正弦函数的单调性.【分析】(1)ω=时求出函数y的单调增区间和对称中心;(2)①由图知B是函数图象的最高点,设出点B的坐标和最小正周期,表示出点A、C的坐标,利用坐标表示向量、,根据数量积求出T、ω的值;②由x的取值范围求出函数y的最大值,计算对应的x值.【解答】解:(1)ω=时,函数y=sin(x+),令﹣+2kπ≤x+≤+2kπ,k∈Z,解得:﹣3+8k≤x≤1+8k,k∈Z,∴函数y的单调增区间为[﹣3+8k,1+8k],(k∈Z);…令x+=kπ,k∈Z,解得x=﹣1+4k,k∈Z,∴函数y的对称中心为(﹣1+4k,0),(k∈Z);…(8分)(2)①由图知:点B是函数图象的最高点,设B(x B,),设函数最小正周期为T,则A(x B﹣,0),C(x B+,0);∴=(,),=(,﹣),…(10分)由⊥,得•=T2﹣3=0,解得:T=4,∴ω==;…(12分)②由x∈[0,2]得x+∈[,],∴sin(x+)∈[﹣,1],∴函数y在[0,2]上的最大值为,…(14分)此时x+=+2kπ,k∈Z,则x=4k,k∈Z;又x∈[0,2],∴x=.…(16分)【点评】本题考查了三角函数的图象与性质的应用问题,也考查了数形结合以及平面向量的应用问题,是综合性题目.19.(16分)(2016秋•扬州期末)已知函数f(x)=(e为自然对数的底数,e=2.71828…).(1)证明:函数f(x)为奇函数;(2)判断并证明函数f(x)的单调性,再根据结论确定f(m2﹣m+1)+f(﹣)与0的大小关系;(3)是否存在实数k,使得函数f(x)在定义域[a,b]上的值域为[ke a,ke b].若存在,求出实数k的取值范围;若不存在,请说明理由.【考点】利用导数研究函数的单调性;函数的图象.【分析】(1)根据奇函数的定义,可判断函数f(x)为奇函数;(2)f(x)=在R上为增函数,利用导数法可证明结论,进而判断出f(m2﹣m+1)+f(﹣)≥0;(3)若函数f(x)在定义域[a,b]上的值域为[ke a,ke b].则=ke x在R上有两个不等实根,进而得到实数k的取值范围.【解答】解:(1)证明:函数f(x)定义域为R,…(1分)对于任意的x∈R,都有f(﹣x)===﹣f(x),所以函数f(x)为奇函数…(2)f(x)=在R上为增函数,理由如下:∵f′(x)=>0恒成立,∴f(x)=在R上为增函数,…(7分)∵∴f(m2﹣m+1)≥f(﹣)=﹣f(),∴f(m2﹣m+1)+f(﹣)≥0…(10分)(3)∵f(x)为R上的增函数且函数f(x)在定义域[a,b]上的值域为[ke a,ke b].∴k>0且,=ke x在R上有两个不等实根;…(12分)令t=e x,t>0且单调增,问题即为方程kt2+(k﹣1)t+1=0在(0,+∞)上有两个不等实根,设h(t)=kt2+(k﹣1)t+1,则,解得:0<k<3﹣2…(16分)【点评】本题考查的知识点是函数的奇偶性,函数的单调性,函数的定义域值域,是函数图象和性质的综合应用,难度中档.20.(16分)(2016秋•扬州期末)设函数f(x)=|ax﹣x2|+2a(a,b∈R).(1)当a=﹣2,b=﹣时,解方程f(2x)=0;(2)当b=0时,若不等式f(x)≤2x在x∈[0,2]上恒成立,求实数a的取值范围;(3)若a为常数,且函数f(x)在区间[0,2]上存在零点,求实数b的取值范围.【考点】函数恒成立问题.【分析】(1)解:(1)原方程即为:|2x(2x+2)|=15,解得2x即可,(2)不等式f(x)≤2x在x∈[0,2]上恒成立,及(f(x)﹣2x)max≤在x∈[0,2]上恒成立即可‘(3)函数f(x)在[0,2]上存在零点,即方程x|a﹣x|=﹣2b在[0,2]上有解,分类求出设h(x)=的值域即可.【解答】解:(1)当a=﹣2,b=﹣时,f(x)=|x2+2x|﹣15,所以方程即为:|2x(2x+2)|=15解得:2x=3或2x=﹣5(舍),所以x=;…(2)当b=0时,若不等式:x|a﹣x|≤2x在x∈[0,2]上恒成立;当x=0时,不等式恒成立,则a∈R;…当0<x≤2时,则|a﹣x|≤2,在[0,22]上恒成立,即﹣2≤x﹣a≤2在(0,2]上恒成立,因为y=x﹣a在(0,2]上单调增,y max=2﹣a,y min=﹣a,则,解得:0≤a≤2;则实数a的取值范围为[0.2];…(8分)(3)函数f(x)在[0,2]上存在零点,即方程x|a﹣x|=﹣2b在[0,2]上有解;设h(x)=当a≤0时,则h(x)=x2﹣ax,x∈[0,2],且h(x)在[0,2]上单调增,所以h(x)min=h(0)=0,h(x)max=h(2)=4﹣2a,则当0≤﹣2b≤4﹣2a时,原方程有解,则a﹣2≤b≤0;…(10分)当a>0时,h(x)=,h(x)在[0,]上单调增,在[]上单调减,在[a,+∞)上单调增;①当,即a≥4时,h(x)min=h(0)=0,h(x)max=h(2)=4﹣2a,则当则当0≤﹣2b≤2a﹣4时,原方程有解,则2﹣a≤b≤0;②当,即2≤a<4时,h(x)min=h(0)=0,h(x)max=h()=,则当0≤﹣2b≤时,原方程有解,则﹣;③当0<a<2时,h(x)min=h(0)=0,h(x)max=max{h(2),h()=max{4﹣2a, }当,即当﹣4+4≤a<2时,h(x)max=,则当0≤﹣2b≤时,原方程有解,则;当,即则0时,h(x)max=4﹣2a,则当0≤﹣2b≤4﹣2a时,原方程有解,则a﹣2≤b≤0;…(14分)综上,当0<a<﹣4+4时,实数b的取值范围为[a﹣2,0];当﹣4+4≤a<4时,实数b的取值范围为[];当a≥4时,实数b的取值范围为[2﹣a,0];【点评】本题考查了分段函数的值域问题,及分类讨论思想,属于中档题.。
2017—2018学年度第一学期期末检测试题高三数学第一部分一、填空题(本大题共14个小题,每小题5分,共70分.请将答案填写在答题卷相应的位置上)1.若集合{|13}A x x=<<,{0,1,2,3}B=,则A B=.2.若复数(2)(13)a i i-+(i是虚数单位)是纯虚数,则实数a的值为.3.若数据31,37,33,a,35的平均数是34,则这组数据的标准差是.4.为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2000名男生中体重在7078()kg的人数为.5.运行下边的流程图,输出的结果是.6.从2名男生2名女生中任选两人,则恰有一男一女的概率为.7.若圆锥的侧面展开图的面积为3π且圆心角为23π的扇形,则此圆锥的体积为 .8.若实数x ,y 满足433412x y x y ≤⎧⎪≤⎨⎪+≥⎩,则22x y +的取值范围是 .9.已知各项都是正数的等比数列{}n a 的前n 项和为n S ,若44a ,3a ,56a 成等差数列,且2323a a =,则3S = .10.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的渐近线与圆22650x y y +-+=没有交点,则双曲线离心率的取值范围是 .11.已知函数14()sin 2xx f x x x -=-+,则关于x 的不等式2(1)(57)0f x f x -+-<的解集为 .12.已知正ABC ∆的边长为2,点P 为线段AB 中垂线上任意一点,Q 为射线AP 上一点,且满足1AP AQ ⋅=,则CQ 的最大值为 .13.已知函数12log (1)1,[1,]()21,(,]x x k f x x x k a -+-∈-⎧⎪=⎨⎪--∈⎩,若存在实数k 使得该函数的值域为[2,0]-,则实数a 的取值范围是 .14.已知正实数x ,y 满足22541x xy y +-=,则22128x xy y +-的最小值为 .二、解答题:(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.如图,在直三棱柱111ABC A B C -中,D ,E 分别为AB ,AC 的中点.(1)证明:11//B C 平面1A DE ;(2)若平面1A DE ⊥平面11ABB A ,证明:AB DE ⊥. 16.已知在ABC ∆中,6AB =,5BC =,且ABC ∆的面积为9. (1)求AC ;(2)当ABC ∆为锐角三角形时,求cos(2)6A π+的值.17.如图,射线OA 和OB 均为笔直的公路,扇形OPQ 区域(含边界)是一蔬菜种植园,其中P 、Q 分别在射线OA 和OB 上.经测量得,扇形OPQ 的圆心角(即POQ ∠)为23π、半径为1千米.为了方便菜农经营,打算在扇形OPQ 区域外修建一条公路MN ,分别与射线OA 、OB 交于M 、N 两点,并要求MN 与扇形弧PQ相切于点S .设POS α∠=(单位:弧度),假设所有公路的宽度均忽略不计.(1)试将公路MN 的长度表示为α的函数,并写出α的取值范围; (2)试确定α的值,使得公路MN 的长度最小,并求出其最小值.18.已知椭圆1E :22221(0)x y a b a b+=>>,若椭圆2E :22221(0,1)x y a b m ma mb+=>>>,则称椭圆2E 与椭圆1E “相似”.(1)求经过点,且与椭圆1E :2212x y += “相似”的椭圆2E 的方程;(2)若4m =,椭圆1E的离心率为2,P 在椭圆2E 上,过P 的直线l 交椭圆1E 于A ,B 两点,且AP AB λ=.①若B 的坐标为(0,2),且2λ=,求直线l 的方程;②若直线OP ,OA 的斜率之积为12-,求实数λ的值.19.已知函数()x f x e =,()g x ax b =+,,a b R ∈.(1)若(1)0g -=,且函数()g x 的图象是函数()f x 图象的一条切线,求实数a 的值;(2)若不等式2()f x x m >+对任意(0,)x ∈+∞恒成立,求实数m 的取值范围; (3)若对任意实数a ,函数()()()F x f x g x =-在(0,)+∞上总有零点,求实数b 的取值范围.20.已知各项都是正数的数列{}n a 的前n 项和为n S ,且22n n n S a a =+,数列{}n b 满足112b =,12n n n nbb b a +=+. (1)求数列{}n a 、{}n b 的通项公式; (2)设数列{}nc 满足2n n nb c S +=,求和12n c c c ++⋅⋅⋅+; (3)是否存在正整数p ,q ,()r p q r <<,使得p b ,q b ,r b 成等差数列?若存在,求出所有满足要求的p ,q ,r ,若不存在,说明理由.第二部分(加试部分)21. B .选修4-2:矩阵与变换已知x ,y R ∈,若点(1,1)M 在矩阵23x y ⎡⎤=⎢⎥⎣⎦A 对应的变换作用下得到点(3,5)N ,求矩阵A 的逆矩阵1A -.21. C .选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程是:2x m y ⎧=⎪⎪⎨⎪=⎪⎩(t 是参数,m 是常数).以O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为6cos ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于P 、Q 两点,且2PQ =,求实数m 的值. 22.扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所.(1)求6名大学生中至少有1名被分配到甲学校实习的概率;(2)设X ,Y 分别表示分配到甲、乙两所中学的大学生人数,记X Y ξ=-,求随机变量ξ的分布列和数学期望.23.二进制规定:每个二进制数由若干个0、1组成,且最高位数字必须为1.若在二进制中,n S 是所有n 位二进制数构成的集合,对于n a ,n n b S ∈,(,)n n M a b 表示n a 和n b 对应位置上数字不同的位置个数.例如当3100a =,3101b =时33(,)1M a b =,当3100a =,3111b =时33(,)2M a b =.(1)令510000a =,求所有满足55b S ∈,且55(,)2M a b =的5b 的个数; (2)给定(2)n a n ≥,对于集合n S 中的所有n b ,求(,)n n M a b 的和.扬州市2017—2018学年度第一学期期末调研测试试题高三数学参考答案第一部分一、填空题 1.{}2 2.6-3. 24. 2405.946.23 7. 38.144[,25]25 9.1327 10.3(1,)211.(2,3) 12.12 13. 1(,2]214. 73二、解答题15证明:⑴在直三棱柱111ABC A B C -中,四边形11B BCC 是平行四边形,所以11//B C BC ,在ABC ∆中,,D E 分别为,AB AC 的中点,故//BC DE ,所以11//B C DE , 又11B C ⊄平面1A DE ,DE ⊂平面1A DE , 所以11//B C 平面1A DE .⑵在平面11ABB A 内,过A 作1AF A D ⊥于F ,因为平面1A DE ⊥平面11A ABB ,平面1A DE 平面111A ABB A D=,AF ⊂平面11A ABB ,所以AF ⊥平面1A DE ,又DE ⊂平面1A DE ,所以AF DE ⊥,在直三棱柱111ABC A B C -中,1A A ⊥平面ABC ,DE ⊂平面ABC ,所以1A A DE ⊥, 因为1AF A A A= ,AF ⊂平面11A ABB ,1A A ⊂平面11A ABB ,所以DE ⊥平面11A ABB ,因为AB ⊂平面11A ABB ,所以DE AB ⊥.注:作1AF A D ⊥时要交代在平面内作或要交代垂足点,否则扣1分16 解:⑴因为S △ABC =1sin 92AB BC B =创,又AB=6,BC=5,所以3sin 5B =,又B (0,)π∈,所以4cos 5B ==±,当cosB=45时,AC == 当cosB=45-时,AC ===所以AC =注:少一解的扣3分⑵ 由ABC ∆为锐角三角形得B 为锐角,所以AB=6,,BC=5, 所以cosA ==又(0,)A π∈,所以sinA ==, 所以12sin 2213A ==,225cos 213A =-=-,所以cos(2)cos 2cos sin 2sin 666A A A p p p +=-.17. 解:⑴因为MN 与扇形弧PQ 相切于点S ,所以OS ⊥MN. 在RT OSM 中,因为OS=1,∠MOS=α,所以SM=tan α, 在RT OSN 中,∠NOS=23πα-,所以SN=2tan()3πα-,所以2tan tan()3MN παα=+-=,其中62ππα<<.⑵ 因为62ππα<<,所以10α->,令10t α=->,则tan 1)t α=+,所以42)MN t t=++,由基本不等式得2)MN ≥=, 当且仅当4t t=即2t =时取“=”.此时tan α=62ππα<<,故3πα=.答:⑴2tan tan()3MN παα=+-=,其中62ππα<<.⑵当3πα=时,MN 长度的最小值为.注:第⑵问中最小值对但定义域不对的扣2分.18解:⑴设椭圆2E 的方程为2212x y m m +=,代入点得2m =, 所以椭圆2E 的方程为22142x y +=.⑵因为椭圆1E 的离心率为2,故222a b =,所以椭圆2221:22E x y b +=, 又椭圆2E 与椭圆1E “相似”,且4m =,所以椭圆2221:28E x y b +=, 设112200(,),(,),(,)A x y B x y P x y ,①方法一:由题意得2b =,所以椭圆221:28E x y +=,将直线:2l y kx =+, 代入椭圆221:28E x y +=得22(12)80k x kx ++=,解得1228,012kx x k -==+,故212224,212k y y k -==+, 所以222824(,)1212k k A k k--++, 又2AP AB = ,即B 为AP 中点,所以2228212(,)1212k k P k k+++, 代入椭圆222:232E x y +=得222228212()2()321212k k k k ++=++,即4220430k k +-=,即22(103)(21)0k k -+=,所以10k =±,所以直线l 的方程为2y x =+. 方法二:由题意得2b =,所以椭圆221:28E x y +=,222:232E x y +=, 设(,),(0,2)A x y B ,则(,4)P x y --,代入椭圆得2222282(4)32x y x y ⎧+=⎪⎨+-=⎪⎩,解得12y =,故x =所以k =所以直线l 的方程为2y x =+.②方法一: 由题意得22222222200112228,22,22x y b x y b x y b +=+=+=,010112y y x x ⋅=-,即010120x x y y +=, AP AB λ= ,则01012121(,)(,)x x y y x x y y λ--=--,解得012012(1)(1)x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩, 所以2220101(1)(1)()2()2x x y y b λλλλ+-+-+=,则22222222001100112(1)(1)24(1)2(1)2x x x x y y y y b λλλλλ+-+-++-+-=, 222222200010111(2)2(1)(2)(1)(2)2x y x x y y x y b λλλ++-++-+=,所以222228(1)22b b b λλ+-⋅=,即224(1)λλ+-=,所以52λ=. 方法二:不妨设点P 在第一象限,设直线:(0)O P y k x k =>,代入椭圆2222:28E x y b +=,解得0x =0y =,直线,O P O A的斜率之积为12-,则直线1:2O Ay x k=-,代入椭圆2221:22E x y b+=,解得1x =1y =,AP AB λ= ,则01012121(,)(,)x x y y x x y y λ--=--,解得012012(1)(1)x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩,所以2220101(1)(1)()2()2x x y y b λλλλ+-+-+=,则22222222001100112(1)(1)24(1)2(1)2x x x x y y y y b λλλλλ+-+-++-+-=, 222222200010111(2)2(1)(2)(1)(2)2x y x x y y x y b λλλ++-++-+=,所以2222282(((1)22b b b λλλ+-++-⋅=,即222228(1)22b b b λλ+-⋅=,即224(1)λλ+-=,所以52λ=.19解:(1)由(1)0g -=知,()g x 的图象直线过点(1,0)-,设切点坐标为00(,)T x y ,由'()x f x e =得切线方程是000()x x y e e x x -=-, 此直线过点(1,0)-,故000(1)x x e e x -=--,解得00x =,所以'(0)1a f ==.(2)由题意得2,(0,)x m e x x <-∈+∞恒成立, 令2(),(0,)x m x e x x =-∈+∞,则'()2x m x e x =-,再令()'()xn x m x e x ==-,则'()2xn x e =-,故当(0,ln 2)x ∈时,'()0n x <,()n x 单调递减;当(ln 2,)x ∈+∞时,'()0n x >,()n x 单调递增,从而()n x 在(0,)+∞上有最小值(ln 2)22ln 20n =->, 所以()m x 在(0,)+∞上单调递增, 所以(0)m m ≤,即1m ≤. 注:漏掉等号的扣2分.(3)若0a <,()()()x F x f x g x e ax b =-=--在(0,)+∞上单调递增, 故()()()F x f x g x =-在(0,)+∞上总有零点的必要条件是(0)0F <,即1b >, 以下证明当1b >时,()()()F x f x g x =-在(0,)+∞上总有零点. ①若0a <,由于(0)10F b =-<,()()0b baa b b F e a b e a a---=---=>,且()F x 在(0,)+∞上连续,故()F x 在(0,)ba-上必有零点; ②若0a ≥,(0)10F b =-<,由(2)知221x e x x >+>在(0,)x ∈+∞上恒成立, 取0x a b=+,则0()()a b F x F a b e a a b b +=+=-+-22()(1)0a b a ab b ab b b >+---=+->,由于(0)10F b =-<,()0F a b +>,且()F x 在(0,)+∞上连续, 故()F x 在(0,)a b +上必有零点, 综上得:实数b 的取值范围是(1,)+∞.20. 解:(1)22n n n S a a =+①,21112n n n S a a +++=+②,②-①得:221112n n n n n a a a a a +++=-+-,即11()(1)0n n n n a a a a +++--=, 因为{}n a 是正数数列,所以110n n a a +--=,即11n n a a +-=, 所以{}n a 是等差数列,其中公差为1, 在22n n n S a a =+中,令1n =,得11a =, 所以n a n =, 由12nn n nb b b a +=+得1112n n b b n n +=⋅+, 所以数列{}n b n 是等比数列,其中首项为12,公比为12,所以1(),22n n n n b nb n ==即. 注:也可累乘求{}n b 的通项. (2)2212()2n n n n b n c S n n +++==+,裂项得1112(1)2n n n c n n +=-⋅+, 所以121112(1)2n n c c c n ++++=-+ , (3)假设存在正整数,,()p q r p q r <<,使得,,p q r b b b 成等差数列,则2p r q b b b +=,即2222p r q p r q+=, 因为11111222n n n n n n n nb b ++++--=-=,所以数列{}n b 从第二项起单调递减, 当1p =时,12222r q r q+=,若2q =,则122r r =,此时无解; 若3q =,则124r r =,因为{}n b 从第二项起递减,故4r =,所以1,3,4p q r ===符合要求, 若4q ≥,则1142q b b b b ≥≥,即12q b b ≥,不符合要求,此时无解; 当2p ≥时,一定有1q p -=,否则若2q p -≥,则2442221p p qP b b p b b p p+≥==≥++,即2p q b b ≥,矛盾, 所以1q p -=,此时122r pr =,令1r p m -=+,则12m r +=,所以121m p m +=--,12m q m +=-,综上得:存在1,3,4p q r ===或121m p m +=--,12m q m +=-,12m r +=满足要求.第二部分(加试部分)答案21.A .解:因为1315⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A ,即213315x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即2335x y +=⎧⎨+=⎩,解得12x y =⎧⎨=⎩, 所以2132⎡⎤=⎢⎥⎣⎦A , 法1:设1a b c d -⎡⎤=⎢⎥⎣⎦A ,则121103201a b c d -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA ,即2132020321a c a c b d b d +=⎧⎪+=⎪⎨+=⎪⎪+=⎩, 解得2132a b c d =⎧⎪=-⎪⎨=-⎪⎪=⎩,所以12132--⎡⎤=⎢⎥-⎣⎦A . 法2:因为1db a b ad bc ad bc c d c a ad bcad bc --⎡⎤⎢⎥⎡⎤--=⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥--⎣⎦,且21det()2213132==⨯-⨯=A , 所以1121213232---⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦A . 注:法2中没有交待逆矩阵公式而直接写结果的扣2分.B .解:(1)因为直线l 的参数方程是: 2x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数), 所以直线l 的普通方程为0x y m --=.因为曲线C 的极坐标方程为6cos ρθ=,故26cos ρρθ= ,所以226x y x += 所以曲线C 的直角坐标方程是22(3)9x y -+=.(2)设圆心到直线l 的距离为d,则d ==又d ==所以34m -=,即 1m =-或7m =.22.解:⑴记 “6名大学生中至少有1名被分配到甲学校实习” 为事件A ,则6163()=1264P A =-. 答:6名大学生中至少有1名被分配到甲学校实习的概率为6364. ⑵ξ所有可能取值是0,2,4,6,记“6名学生中恰有i 名被分到甲学校实习”为事件i A (01,6i = ,,),则3363365(0)()216C C P P A ξ====,2442646224246615(2)()()()2232C C C C P P A A P A P A ξ==+=+=+=,155165611515663(4)()()()2216C C C C P P A A P A P A ξ==+=+=+=,066066660606661(6)()()()2232C C C C P P A A P A P A ξ==+=+=+=,所以随机变量ξ的概率分布为:所以随机变量ξ的数学期望()024+6163216328E ξ=⨯+⨯+⨯⨯=.答:随机变量ξ的数学期望15()8E ξ=. 23.解(1)因为55(,)2M a b =,所以5b 为5位数且与5a 有2项不同,又因为首项为1,故5a 与5b 在后四项中有两项不同,所以5b 的个数为246C =.(2)当(,)n n M a b =0时,n b 的个数为01n C -; 当(,)n n M a b =1时,n b 的个数为11n C -, 当(,)n n M a b =2时,n b 的个数为21n C -,………当(,)n 1n n M a b =-时,n b 的个数为11n n C --,设(,)n n M a b 的和为S , 则01211111012(1)n n n n n S C C C n C -----=++++- , 倒序得12101111(1)210n n n n n S n C C C C -----=-++++ ,倒序相加得01111112(1)[](1)2n n n n n S n C C C n -----=-++=-⋅ ,即2(1)2n S n -=-⋅, 所以(,)n n M a b 的和为2(1)2n n --⋅.扬州市2017—2018学年度第一学期期末调研测试试题高三数学参考答案2018.2第一部分1.2.3.4.5.6.7.8.9. 10.11.12.13.14.15证明:⑴在直三棱柱中,四边形是平行四边形,所以,.………2分在中,分别为的中点,故,所以, (4)分又平面,平面,所以平面.………7分⑵在平面内,过作于,因为平面平面,平面平面,平面,所以平面,.………11分又平面,所以,在直三棱柱中,平面,平面,所以,因为,平面,平面,所以平面,因为平面,所以。
2017—2018学年度第二学期期末检测试题高一数学2018.06(全卷满分160分,考试时间120分钟)注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1.2. 3. 在4. 5. 6. 7. 8. 9. 10. 设④若l ⊥?,l ∥?,则?⊥?. 其中真命题的序号是▲.11. 设n S ,n T 分别是等差数列{}n a ,{}n b 的前n 项和,已知121-+=n n T S n n ,*n N ∈, 则=44b a ▲. 12. 如图,勘探队员朝一座山行进,在前后A 、B 两处观察山顶C 的仰角分别是︒30和︒45,两个观察点A 、B之间的距离是100米,则此山CD 的高度为▲米.13. 已知正实数,x y 满足xy y x =+,则1213-+-y yx x 的最小值为▲. 14. 对于数列}{n x ,若对任意*N n ∈,都有n n n n x x x x ->-+++112成立,则称数列}{n x 为“增差数列”.设nn n n t a 3132-+=)(,若数列n a a a a ,,,, 654(*,N n n ∈≥4)是“增差数列”,则实数t 的取值范围是▲.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分14分)如图,(116..已知(1(217.()1()2记18.设∆,且角B 为钝角.(1(219.(本小题满分16分)共享汽车的出现为我们的出行带来了极大的便利,当然也为投资商带来了丰厚的利润。
现某公司瞄准这一市场,准备投放共享汽车。
该公司取得了在10个省份投放共享汽车的经营权,计划前期一次性投入61610⨯元.设在每个省投放共享汽车的市的数量相同(假设每个省的市的数量足够多),每个市都投放1000辆共享汽车.由于各个市的多种因素的差异,在第n 个市的每辆共享汽车的管理成本为(1000kn +)元(其中k 为常数).经测算,若每个省在5个市投放共享汽车,则该公司每辆共享汽车的平均综合管理费用为1920元.(本题中不考虑共享汽车本身的费用)注:综合管理费用=前期一次性投入的费用+所有共享汽车的管理费用,平均综合管理费用=综合管理费用÷共享汽车总数. (1)求k 的值;(2)问要使该公司每辆共享汽车的平均综合管理费用最低,则每个省有几个市投放共享汽车?此时每辆共享汽车的平均综合管理费用为多少元? 20.(本小题满分16分)已知数列{a n }的前n 项和为S n ,a 4=2且n n S n na +=2,数列{}n b 满足nn a n b 2210+=()*∈N n ,(1)(2)由.2017—2018学年度第二学期期末检测试题高一数学参考答案一、填空题:1.412.),(21-3.n 2 6.47.41-8.41209.3410.②④11.13812.50350+13.625+ 14.⎪⎭⎫⎝⎛+∞,152 15.//AP BQ ,∵PQ (2∴1BB ∵1BB PQQR Q =,∴1BB 。
2016-2017学年江苏省扬州市高一(上)期末数学试卷一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.(5分)tan=.2.(5分)2lg2+lg25的值等于.3.(5分)若幂函数f(x)=x a的图象过点(4,2),则f(9)=.4.(5分)已知角α的终边经过点P(2,m)(m>0),且cosα=,则m=.5.(5分)在用二分法求方程x3﹣2x﹣1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为.6.(5分)某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为cm2.7.(5分)若a+b=3,则代数式a3+b3+9ab的值为.8.(5分)已知a=log0.65,b=2,c=sin1,将a,b,c按从小到大的顺序用不等号“<”连接为.9.(5分)将正弦曲线y=sinx上所有的点向右平移π个单位长度,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得到的图象的函数解析式y =.10.(5分)已知函数f(x)为偶函数,且f(x+2)=﹣f(x),当x∈(0,1)时,f(x)=()x,则f()=.11.(5分)已知f(x)=在[2,+∞)上是单调增函数,则实数a的取值范围为.12.(5分)如图所示,在平行四边形ABCD中,AB=4,AD=3,E是边CD的中点,=,若•=﹣4,则sin∠BAD=.13.(5分)已知f(x)=,若对任意θ∈[0,],不等式f(cos2θ+λsinθ﹣)+>0恒成立,整数λ的最小值为.14.(5分)已知函数f(x)=ln(a﹣)(a∈R).若关于x的方程ln[(4﹣a)x+2a﹣5]﹣f(x)=0的解集中恰好有一个元素,则实数a的取值范围为.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(14分)已知全集U=R,集合A={x|2≤x<7},B={x|0<log3x<2},C={x|a <x<a+1}.(1)求A∪B,(∁U A)∩B;(2)如果A∩C=∅,求实数a的取值范围.16.(14分)已知:θ为第一象限角,=(sin(θ﹣π),1),=(sin(﹣θ),﹣),(1)若∥,求的值;(2)若|+|=1,求sinθ+cosθ的值.17.(14分)某工厂生产甲、乙两种产品所得利润分别为P和Q(万元),它们与投入资金m(万元)的关系有经验公式P=m+65,Q=76+4,今将150万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投资金额不低于25万元.(1)设对乙产品投入资金x万元,求总利润y(万元)关于x的函数关系式及其定义域;(2)如何分配使用资金,才能使所得总利润最大?最大利润为多少?18.(16分)已知函数y=sin(ωx+)(ω>0).(1)若ω=,求函数的单调增区间和对称中心;(2)函数的图象上有如图所示的A,B,C三点,且满足AB⊥BC.①求ω的值;②求函数在x∈[0,2)上的最大值,并求此时x的值.19.(16分)已知函数f(x)=(e为自然对数的底数,e=2.71828…).(1)证明:函数f(x)为奇函数;(2)判断并证明函数f(x)的单调性,再根据结论确定f(m2﹣m+1)+f(﹣)与0的大小关系;(3)是否存在实数k,使得函数f(x)在定义域[a,b]上的值域为[ke a,ke b].若存在,求出实数k的取值范围;若不存在,请说明理由.20.(16分)设函数f(x)=|ax﹣x2|+2b(a,b∈R).(1)当a=﹣2,b=﹣时,解方程f(2x)=0;(2)当b=0时,若不等式f(x)≤2x在x∈[0,2]上恒成立,求实数a的取值范围;(3)若a为常数,且函数f(x)在区间[0,2]上存在零点,求实数b的取值范围.2016-2017学年江苏省扬州市高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.(5分)tan=.【解答】解:tan=tan()=tan=.故答案为:.2.(5分)2lg2+lg25的值等于2.【解答】解:lg25+2lg2=2lg5+2lg2=2(lg5+lg2)=2故答案为:2.3.(5分)若幂函数f(x)=x a的图象过点(4,2),则f(9)=3.【解答】解:∵幂函数f(x)=x a的图象经过点(4,2),∴4a=2;解得a=.故f(x)=,则f(9)=3,故答案为:3.4.(5分)已知角α的终边经过点P(2,m)(m>0),且cosα=,则m=1.【解答】解:∵角α的终边经过点P(2,m)(m>0),且cosα==,则m=1,故答案为:1.5.(5分)在用二分法求方程x3﹣2x﹣1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为(,2).【解答】解:令f(x)=x3﹣2x﹣1,则f(1)=﹣2<0,f(2)=3>0,f()=﹣<0,由f()f(2)<0知根所在区间为(,2).故答案为:(,2).6.(5分)某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为1cm2.【解答】解:设该扇形的半径为r,根据题意,有l=αr+2r4=2r+2rr=1S扇形=αr2=×2×12=1.故答案为:1.7.(5分)若a+b=3,则代数式a3+b3+9ab的值为27.【解答】解:∵a+b=3,∴代数式a3+b3+9ab=(a+b)(a2+b2﹣ab)+9ab=3(a2+b2﹣ab)+9ab=3[(a+b)2﹣3ab]+9ab=3(9﹣3ab)+9ab=27.故答案为:27.8.(5分)已知a=log0.65,b=2,c=sin1,将a,b,c按从小到大的顺序用不等号“<”连接为a<c<b.【解答】解:∵a=log0.65<log0.61=0,b=2>20=1,0<c=sin1<1,∴a<c<b.故答案为:a<c<b.9.(5分)将正弦曲线y=sinx上所有的点向右平移π个单位长度,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得到的图象的函数解析式y=.【解答】解:由题意,将函数y=sinx的图象上所有的点向右平行移动π个单位长度,利用左加右减,可所函数图象的解析式为y=sin(x﹣π),再把所得各点的横坐标伸长到原来的倍(纵坐标不变),利用x的系数变为原来的3倍进行横向变换,可得图象的函数解析式是.故答案为:.10.(5分)已知函数f(x)为偶函数,且f(x+2)=﹣f(x),当x∈(0,1)时,f(x)=()x,则f()=.【解答】解:∵当x∈(0,1)时,f(x)=()x,∴f()=f(﹣)=,又∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),f()=f(﹣)=,故答案为:11.(5分)已知f(x)=在[2,+∞)上是单调增函数,则实数a的取值范围为[,+∞).【解答】解:f(x)==ax++1,函数的导数f′(x)=a﹣,∵f(x)在[2,+∞)上是单调增函数,∴f′(x)=a﹣≥0在[2,+∞)上恒成立,即a≥,∵≤,∴a≥,即实数a的取值范围是[,+∞),故答案为:[,+∞)12.(5分)如图所示,在平行四边形ABCD中,AB=4,AD=3,E是边CD的中点,=,若•=﹣4,则sin∠BAD=.【解答】解:在平行四边形ABCD中,AB=4,AD=3,E是边CD的中点,=,∴=+=+,=﹣=﹣,∴•=(+)•(﹣)=﹣﹣•=﹣﹣||•||cos∠BAD=6﹣8﹣8cos∠BAD=﹣4,∴cos∠BAD=,∴sin∠BAD=,故答案为:13.(5分)已知f(x)=,若对任意θ∈[0,],不等式f(cos2θ+λsinθ﹣)+>0恒成立,整数λ的最小值为1.【解答】解:∵f(x)=,令f(x),解得:x,若对任意θ∈[0,],不等式f(cos2θ+λsinθ﹣)+>0恒成立,则对任意θ∈[0,],cos2θ+λsinθ﹣恒成立,即1﹣sin2θ+λsinθ﹣恒成立,当θ=0时,不等式恒成立,当θ≠0时,1﹣sin2θ+λsinθ﹣可化为:λ>=sinθ﹣,当θ=时,sinθ﹣取最大值,故λ>,故整数λ的最小值为1,故答案为:1.14.(5分)已知函数f(x)=ln(a﹣)(a∈R).若关于x的方程ln[(4﹣a)x+2a﹣5]﹣f(x)=0的解集中恰好有一个元素,则实数a的取值范围为(1,2]∪{3,4} .【解答】解:由ln[(4﹣a)x+2a﹣5]﹣f(x)=0,得ln[( 4﹣a)x+2a﹣5]=ln(a﹣),即a﹣=(4﹣a)x+2a﹣5>0,①则(a﹣4)x2﹣(a﹣5)x﹣1=0,即(x﹣1)[(a﹣4)x+1]=0,②,当a=4时,方程②的解为x=1,代入①,成立;当a=3时,方程②的解为x=1,代入①,成立;当a≠4且a≠3时,方程②的解为x=1或x=﹣,若x=1是方程①的解,则a﹣=a﹣1>0,即a>1,若x=﹣是方程①的解,则a﹣=2a﹣4>0,即a>2,则要使方程①有且仅有一个解,则1<a≤2.综上,关于x的方程ln[(4﹣a)x+2a﹣5]﹣f(x)=0的解集中恰好有一个元素,则a的取值范围是1<a≤2,或a=3或a=4,故答案为:(1,2]∪{3,4}.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(14分)已知全集U=R,集合A={x|2≤x<7},B={x|0<log3x<2},C={x|a <x<a+1}.(1)求A∪B,(∁U A)∩B;(2)如果A∩C=∅,求实数a的取值范围.【解答】解:(1)由0<log3x<2,得1<x<9∴B=(1,9),∵A={x|2≤x<7}=[2,7),∴A∪B=(1,9)∁U A=(﹣∞,2)∪[7,+∞),∴(∁U A)∩B=(1,2)∪[7,9)(2)C={x|a<x<a+1}=(a,a+1)∵A∩C=∅,∴a+1≤2或a≥7,解得:a≤1或a≥716.(14分)已知:θ为第一象限角,=(sin(θ﹣π),1),=(sin(﹣θ),﹣),(1)若∥,求的值;(2)若|+|=1,求sinθ+cosθ的值.【解答】解:(1)∵=(sin(θ﹣π),1),=(sin(﹣θ),﹣),∥,∴﹣sin(θ﹣π)=sin(﹣θ),可得:sinθ=cosθ又∵θ为第一象限角,可得:tanθ=2,∴==5.(2)∵|+|=1,+=(cosθ﹣sinθ,),∴(cosθ﹣sinθ)2+()2=1,解得:2sinθcosθ=,∴sinθ+cosθ==.17.(14分)某工厂生产甲、乙两种产品所得利润分别为P和Q(万元),它们与投入资金m(万元)的关系有经验公式P=m+65,Q=76+4,今将150万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投资金额不低于25万元.(1)设对乙产品投入资金x万元,求总利润y(万元)关于x的函数关系式及其定义域;(2)如何分配使用资金,才能使所得总利润最大?最大利润为多少?【解答】解:(1)根据题意,对乙种商品投资x(万元),对甲种商品投资(150﹣x)(万元)(25≤x≤125).所以y=(150﹣x)+65+76+4﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)其定义域为[25,125]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分) (2)令t=,因为x∈[25,125],所以t∈[5,5],有y=﹣+203﹣﹣﹣﹣﹣﹣(12分)所以当t=6时,即x=36时,y max=203﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)答:当甲商品投入114万元,乙商品投入36万元时,总利润最大为203万元.﹣﹣﹣﹣﹣﹣﹣﹣﹣(16分)18.(16分)已知函数y=sin(ωx+)(ω>0).(1)若ω=,求函数的单调增区间和对称中心;(2)函数的图象上有如图所示的A,B,C三点,且满足AB⊥BC.①求ω的值;②求函数在x∈[0,2)上的最大值,并求此时x的值.【解答】解:(1)ω=时,函数y=sin(x+),令﹣+2kπ≤x+≤+2kπ,k∈Z,解得:﹣3+8k≤x≤1+8k,k∈Z,∴函数y的单调增区间为[﹣3+8k,1+8k],(k∈Z);…(4分)令x+=kπ,k∈Z,解得x=﹣1+4k,k∈Z,∴函数y的对称中心为(﹣1+4k,0),(k∈Z);…(8分)(2)①由图知:点B是函数图象的最高点,设B(x B,),设函数最小正周期为T,则A(x B﹣,0),C(x B+,0);∴=(,),=(,﹣),…(10分)由⊥,得•=T2﹣3=0,解得:T=4,∴ω==;…(12分)②由x∈[0,2]得x+∈[,],∴sin(x+)∈[﹣,1],∴函数y在[0,2]上的最大值为,…(14分)此时x+=+2kπ,k∈Z,则x=4k,k∈Z;又x∈[0,2],∴x=.…(16分)19.(16分)已知函数f(x)=(e为自然对数的底数,e=2.71828…).(1)证明:函数f(x)为奇函数;(2)判断并证明函数f(x)的单调性,再根据结论确定f(m2﹣m+1)+f(﹣)与0的大小关系;(3)是否存在实数k,使得函数f(x)在定义域[a,b]上的值域为[ke a,ke b].若存在,求出实数k的取值范围;若不存在,请说明理由.【解答】解:(1)证明:函数f(x)定义域为R,…(1分)对于任意的x∈R,都有f(﹣x)===﹣f(x),所以函数f(x)为奇函数…(4分)(2)f(x)=在R上为增函数,理由如下:∵f′(x)=>0恒成立,∴f(x)=在R上为增函数,…(7分)∵∴f(m2﹣m+1)≥f(﹣)=﹣f(),∴f(m2﹣m+1)+f(﹣)≥0…(10分)(3)∵f(x)为R上的增函数且函数f(x)在定义域[a,b]上的值域为[ke a,ke b].∴k>0且,=ke x在R上有两个不等实根;…(12分)令t=e x,t>0且单调增,问题即为方程kt2+(k﹣1)t+1=0在(0,+∞)上有两个不等实根,设h(t)=kt2+(k﹣1)t+1,则,解得:0<k<3﹣2…(16分)20.(16分)设函数f(x)=|ax﹣x2|+2b(a,b∈R).(1)当a=﹣2,b=﹣时,解方程f(2x)=0;(2)当b=0时,若不等式f(x)≤2x在x∈[0,2]上恒成立,求实数a的取值范围;(3)若a为常数,且函数f(x)在区间[0,2]上存在零点,求实数b的取值范围.【解答】解:(1)当a=﹣2,b=﹣时,f(x)=|x2+2x|﹣15,所以方程即为:|2x(2x+2)|=15解得:2x=3或2x=﹣5(舍),所以x=;…(3分)(2)当b=0时,若不等式:x|a﹣x|≤2x在x∈[0,2]上恒成立;当x=0时,不等式恒成立,则a∈R;…(5分)当0<x≤2时,则|a﹣x|≤2,在[0,22]上恒成立,即﹣2≤x﹣a≤2在(0,2]上恒成立,因为y=x﹣a在(0,2]上单调增,y max=2﹣a,y min=﹣a,则,解得:0≤a≤2;则实数a的取值范围为[0.2];…(8分)(3)函数f(x)在[0,2]上存在零点,即方程x|a﹣x|=﹣2b在[0,2]上有解;设h(x)=当a≤0时,则h(x)=x2﹣ax,x∈[0,2],且h(x)在[0,2]上单调增,所以h(x)min=h(0)=0,h(x)max=h(2)=4﹣2a,则当0≤﹣2b≤4﹣2a时,原方程有解,则a﹣2≤b≤0;…(10分)当a>0时,h(x)=,h(x)在[0,]上单调增,在[]上单调减,在[a,+∞)上单调增;①当,即a≥4时,h(x)min=h(0)=0,h(x)max=h(2)=4﹣2a,则当则当0≤﹣2b≤2a﹣4时,原方程有解,则2﹣a≤b≤0;②当,即2≤a<4时,h(x)min=h(0)=0,h(x)max=h()=,则当0≤﹣2b≤时,原方程有解,则﹣;③当0<a<2时,h(x)min=h(0)=0,h(x)max=max{h(2),h()=max{4﹣2a,}当,即当﹣4+4≤a<2时,h(x)max=,则当0≤﹣2b≤时,原方程有解,则;当,即则0时,h(x)max=4﹣2a,则当0≤﹣2b≤4﹣2a时,原方程有解,则a﹣2≤b≤0;…(14分)综上,当0<a<﹣4+4时,实数b的取值范围为[a﹣2,0];当﹣4+4≤a<4时,实数b的取值范围为[];当a≥4时,实数b的取值范围为[2﹣a,0];。
江苏省扬州中学 2017-2018 学年高一数学第一学期期中考试一、填空题 (本大题共 14 小题 ,每题 5 分,共 70 分)1.已知会合A0,1,2,3 , B2,3,4,5,全集U {0,1,2,3,4,5}, 则(C U A)B _______.2.函数 f ( x)1 xx的定义域是 .3.已知幂函数 f ( x) x 的图像经过点 ( 2,2) ,则 f (2).已知 a, b, c,请将 a,b, c 按从小到大 的次序摆列.4.2 2 35. 已知 f ( x1) e x ,则 f ( 1) .6. 已知扇形的中心角为3 ,所在圆的半径为 10cm ,则扇形的弧长等于cm .7.y log a x 12(a 0且 a1)的图像恒过定点 A ,则 A 的坐标为 _____ .函数8.已知函数f (x)x 2 2ax, x 2,若 f ( f (1))0 ,则实数 a 的取值范围是 .2x 1,x 29.设函数 f (x)2x x 4 的零点为 x 0 ,若 x 0k, k 1 则整数 k .10.已知 f ( x) 为定义在 R 上的偶函数,当 x 0 时, f ( x)2xx , 则当 x时,f ( x).11f ( x) 是定义在 R 上的奇函数,且在区间 [0,) 上单一递加,若实数 a知足.已知函数f (log 2 a) f (log 1 a) 2 f (1),则实数 a 的取值范围是 .212 . 设 函 数 f ( x)2x a ,x 2x a 2, x2 , 若 f (x) 的 值 域 为 R , 则 实 数 a 的 取 值 范 围是.13.已知函数 f ( x)| x 2 4 | a | x 2 |, x[ 3,3] ,若 f ( x) 的最大值是 0 ,则实数 a 的取值范围是 .14 . 已 知 m | 2x 1 x|, 1x 2 2x 2m 1 , 若 函 数R , 函 数 f ( x)1), x , g(x)log 2 (x 1y f [ g (x)] m 有 6 个零点,则实数 m 的取值范围是 .二、解答题: (本大题共 6小题,共90 分 .解答应写出文字说明、证明过程或演算步骤)15.(本小题 14 分)12 2 1233求值:(Ⅰ)3 .48(Ⅱ) 1lg25lg2 lg216.(本小题 14 分)设会合 Ax | 1 2 x 4 , B x | x 22mx 3m 20 (m 0)32 (1)若 m 2,求 A B ;(2)若 AB ,务实数 m 的取值范围。
2017-2018学年江苏省扬州中学高一上学期期末考试数学试题
2018.01
(全卷满分160分,考试时间120分钟)
注意事项:
1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方.
2.试题答案均写在答题卷相应位置,答在其它地方无效.
一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1. 设集合{0,1},{1,3}A B ==,则A B = ▲ .
2. 7tan 3
π= ▲ . 3. 设幂函数)(x f 的图象过点,则)4(f = ▲ .
4. 函数3()sin f x x x =的奇偶性为 ▲ 函数.(在“奇”、“偶”、“非奇非偶”、“既奇又偶”中
选择)
5. 已知扇形的面积为4cm 2,该扇形圆心角的弧度数是12
,则扇形的周长为 ▲ cm . 6. = ▲ .
7. 已知单位向量1e ,2e 的夹角为60°,则12|2|=e e + ▲ .
8. 已知1s()33co πα+=,则sin()6
πα-= ▲ . 9. 如图,在ABC △中,,2==EA BE DC AD 若,μλ+= 则μλ-=___▲____.
10. 不等式)1(log 22+≤-x x 的解集是 ▲ .
11. 已知ABC ∆的面积为16,8=BC ,则AC AB ⋅的取值范围是 ▲ .
12. 已知函数()2sin()(0)6f x x π
ωω=->与()cos(2)(0)g x x θθπ=+<<的零点完全相同,则()6
g π= ▲ . 13. 设函数)10()1()(≠>--=-a a a
k a x f x x 且是定义域为R 的奇函数.若()312f =, 且()x mf a a x g x x 2)(22-+=-在[)1,+∞上的最小值为2-,则m 的值为 ▲ .
14. 设a 为实数,函数()f x 在R 上不是单调函数,则实数a 的
取值范围为 ▲ .
二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)
15.(本小题满分14分)
已知函数()6f x 的定义域为A ,集合}{B =2216x x ≤
≤,非空集合}{
C =+121x m x m ≤≤-,全集为实数集R . (1)求集合A B 和R C B ;
(2)若A ∪C=A ,求实数m 取值的集合.
16.(本小题满分14分)
已知向量()()2,1sin(),2cos a b παα==- ,
(1)若3=4πα,求证:a b ⊥ ; (2)若向量,a b 共线,求b .
17.(本小题满分15分)
函数()2sin()f x x ωϕ=+(其中0ω>,||<2π
ϕ),若函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2
π且过点(0,1), ⑴求()f x 的解析式;
⑵求()f x 的单调增区间;
⑶求()f x 在(,0)2π-
的值域.
18.(本小题满分15分)
近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元,根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城
两个城市的总收益为位:万元).
(1)当投资甲城市128万元时,求此时公司总收益;
⑵试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?
19.(本小题满分16分)
已知关于x 的函数2()2(1)g x mx m x n =--+为R 上的偶函数,且在区间[]1,3-上的最大值为10. 设x
x g x f )()(=. ⑴ 求函数错误!未找到引用源。
的解析式;
⑵ 若不等式(2)22x x f k -⋅≤在[]1,1x ∈-上恒成立,求实数k 的取值范围;
⑶ 是否存在实数t ,使得关于x 的方程2(21)32021
x x t f t -+--=-有四个不相等的实 数根?如果存在,求出实数t 的范围,如果不存在,说明理由.
20.(本小题满分16分)
已知函数()1
1lg +-=x x x f .
(1) 求不等式0)2(lg ))((>+f x f f 的解集;
(2) 函数()),1,0(2≠>-=a a a x g x 若存在[),1,0,21∈x x 使得)()(21x g x f =成立,求实数a 的取
值范围;
(3) 若函数(),11,111),(⎪⎩
⎪⎨⎧≥-≤+<<-=x x x k x x f x h 或讨论函数2))((-=x h h y 的零点个数(直接写出答案,不要求写出解题过程).。