江苏省扬州中学2018_2019学年高一数学下学期期中试题
- 格式:doc
- 大小:1.42 MB
- 文档页数:8
2019-2020学年江苏省扬州中学高一第二学期5月月考数学试卷一、选择题(共12小题).1.直线x+y+2=0的倾斜角为()A.30°B.60°C.120°D.150°2.在△ABC中,a=4,b=4,A=30°,则B=()A.60°B.60°或120°C.30°D.30°或150°3.若方程x2+y2﹣2x﹣m=0表示圆,则m的范围是()A.(﹣∞,﹣1)B.[﹣1,+∞)C.(﹣1,+∞)D.(﹣∞,﹣1] 4.在△ABC中,若a cos B=b cos A,则△ABC的形状一定是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形5.已知x>1,则x+的最小值为()A.3B.4C.5D.66.两圆x2+y2=9和x2+y2﹣8x+6y+9=0的位置关系是()A.相离B.相交C.内切D.外切7.过点(﹣1,﹣3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0B.x﹣2y﹣5=0C.x﹣2y+7=0D.2x+y+5=0 8.已知角α+的终边与单位圆x2+y2=1交于P(x0,),则sin2α等于()A.B.C.D.9.设P点为圆C:(x﹣2)2+y2=5上任一点,动点Q(2a,a+2),则PQ长度的最小值为()A.B.C.D.10.设点A(﹣2,3),B(3,1),若直线ax+y+2=0与线段AB有交点,则a的取值范围是()A.B.C.D.11.如图,AD是某防汛抗洪大坝的坡面,大坝上有一高为20米的监测塔BD,若某科研小组在坝底A点测得∠BAD=15°,沿着坡面前进40米到达E点,测得∠BED=45°,则大坝的坡角(∠DAC)的余弦值为()A.B.C.D.12.Rt△ABC中,∠ABC=90°,AB=2,BC=4,△ABD中,∠ADB=120°,则CD 的取值范围()A.[2+2]B.(4,2+2]C.[2]D.[2]二、填空题(共4小题).13.求过点(2,3)且在x轴和y轴截距相等的直线的方程.14.已知直线y=k(x+4)与曲线有两个不同的交点,则k的取值范围是.15.在平面直角坐标系xOy中,若直线l:x+2y=0与圆C:(x﹣a)2+(y﹣b)2=5相切,且圆心C在直线l的上方,则ab最大值为.16.已知在△ABC中,AB=AC=,△ABC所在平面内存在点P使得PB2+PC2=3PA2=3,则△ABC面积的最大值为.三、解答题:本大题共6小题,计70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知直线l1:ax+3y+1=0,l2:x+(a﹣2)y﹣1=0.(Ⅰ)若l1⊥l2,求实数a的值;(Ⅱ)当l1∥l2时,求直线l1与l2之间的距离.18.已知圆C经过抛物线y=x2﹣4x+3与坐标轴的三个交点.(1)求圆C的方程;(2)设直线2x﹣y+2=0与圆C交于A,B两点,求|AB|.19.已知a,b,c分别为非等腰△ABC内角A,B,C的对边,.(1)证明:C=2B;(2)若b=3,,求△ABC的面积.20.如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的C处恰有一可旋转光源满足甲水果生产的需要,该光源照射范围是∠ECF=,点E,F的直径AB上,且∠ABC=.(1)若CE=,求AE的长;(2)设∠ACE=α,求该空地产生最大经济价值时种植甲种水果的面积.21.已知圆C和y轴相切于点T(0,2),与x轴的正半轴交于M、N两点(M在N的左侧),且MN=3;(1)求圆C的方程;(2)过点M任作一条直线与圆O:x2+y2=4相交于点A、B,连接AN和BN,记AN 和BN的斜率为k1,k2,求证:k1+k2为定值.22.在平面直角坐标系xOy中,已知直线l:x﹣y+4=0和圆O:x2+y2=4,P是直线l上一点,过点P作圆C的两条切线,切点分别为M,N.(1)若PM⊥PN,求点P坐标;(2)若圆O上存在点A,B,使得∠APB=60°,求点P的横坐标的取值范围;(3)设线段MN的中点为Q,l与x轴的交点为T,求线段TQ长的最大值.参考答案一.选择题:本大题共12小题,每小题5分,计60分.每小题所给的A.B.C.D.四个结论中,只有一个是正确的,1.直线x+y+2=0的倾斜角为()A.30°B.60°C.120°D.150°【分析】由直线的方程可得直线的斜率,由倾斜角和斜率的关系可得答案.解:直线x+y+2=0可化为y=﹣x﹣,∴直线的斜率为﹣,∴α=150°故选:D.2.在△ABC中,a=4,b=4,A=30°,则B=()A.60°B.60°或120°C.30°D.30°或150°【分析】由A的度数求出sin A的值,再由a与b的值,利用正弦定理求出sin B的值,即可求出B的度数.解:∵a=4,b=4,A=30°,∴由正弦定理=得:sin B===,∴B>A,故选:B.3.若方程x2+y2﹣2x﹣m=0表示圆,则m的范围是()A.(﹣∞,﹣1)B.[﹣1,+∞)C.(﹣1,+∞)D.(﹣∞,﹣1]【分析】根据题意,由二元二次方程表示圆的条件可得(﹣2)2﹣4×(﹣m)>0,变形解可得m的取值范围,即可得答案.解:根据题意,若方程x2+y2﹣2x﹣m=0表示圆,则有(﹣2)2﹣4×(﹣m)>6,即4+4m>0,解可得m>﹣1,即m的取值范围为(﹣3,+∞),故选:C.4.在△ABC中,若a cos B=b cos A,则△ABC的形状一定是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形【分析】应用正弦定理和已知条件可得,进而得到sin(A﹣B)=0,故有A﹣B=0,得到△ABC为等腰三角形.解:∵在△ABC中,a cos B=b cos A,∴,又由正弦定理可得,∴,sin A cos B﹣cos A sin B=0,sin(A﹣B)=0.故选:D.5.已知x>1,则x+的最小值为()A.3B.4C.5D.6【分析】利用基本不等式即可得出.解:∵x>1,∴+8=5.当且仅当x=3时取等号.故选:C.6.两圆x2+y2=9和x2+y2﹣8x+6y+9=0的位置关系是()A.相离B.相交C.内切D.外切【分析】分别由两圆的方程找出两圆心坐标和两个半径R和r,然后利用两点间的距离公式求出两圆心的距离d,比较d与R﹣r及d与R+r的大小,即可得到两圆的位置关系.解:把x2+y2﹣8x+6y+9=8化为(x﹣4)2+(y+3)2=16,又x2+y2=9,所以两圆心的坐标分别为:(8,﹣3)和(0,0),两半径分别为R=4和r=3,因为4﹣2<5<4+3即R﹣r<d<R+r,所以两圆的位置关系是相交.故选:B.7.过点(﹣1,﹣3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0B.x﹣2y﹣5=0C.x﹣2y+7=0D.2x+y+5=0【分析】两直线垂直斜率乘积为﹣1,再根据已知条件从选项判断答案.解:设直线l为x﹣2y+3=0,求直线m.因为两直线垂直,斜率乘积为﹣1,故与直线l 垂直的斜率为﹣2,排除B、C选项,又点(﹣1,﹣3)在直线m上,所以答案为D选项.故选:D.8.已知角α+的终边与单位圆x2+y2=1交于P(x0,),则sin2α等于()A.B.C.D.【分析】由题意利用任意角的三角函数的定义,诱导公式、二倍角的余弦公式,求得sin2α的值.解:角α+的终边与单位圆x2+y2=1交于P(x4,),∴sin(α+)=,∴sin2α=﹣cos2(α+)=﹣1+8=﹣1+2×=﹣,故选:B.9.设P点为圆C:(x﹣2)2+y2=5上任一点,动点Q(2a,a+2),则PQ长度的最小值为()A.B.C.D.【分析】根据题意,根据点Q的坐标可得点Q在直线x﹣2y+4=0上,分析圆C的圆心和半径,求出圆心(2,0)到直线x﹣2y﹣6=0的距离,由直线与圆的位置关系分析可得答案.解:根据题意,设点Q(x,y),则x=2a,y=a+2,有x=2y﹣4,即x﹣2y+4=0恒成立,故点Q在直线x﹣2y+4=0上,圆心(2,0)到直线x﹣2y+7=0的距离d==,故选:A.10.设点A(﹣2,3),B(3,1),若直线ax+y+2=0与线段AB有交点,则a的取值范围是()A.B.C.D.【分析】由题意利用直线的斜率公式,求得实数a的取值范围.解:∵点A(﹣2,3),B(3,1),若直线ax+y+2=3与线段AB有交点,而直线AB经过定点M(0,﹣2),且它的斜率为﹣a,即﹣a≥=1,或﹣a≤=﹣,故选:D.11.如图,AD是某防汛抗洪大坝的坡面,大坝上有一高为20米的监测塔BD,若某科研小组在坝底A点测得∠BAD=15°,沿着坡面前进40米到达E点,测得∠BED=45°,则大坝的坡角(∠DAC)的余弦值为()A.B.C.D.【分析】在△ABE中由正弦定理求得BE的值,在△BED中由正弦定理求得sin∠BDE,再利用诱导公式求出cos∠DAC的值.解:因为∠BAD=15°,∠BED=45°,所以∠ABE=30°;在△ABE中,由正弦定理得,在△BED中,由正弦定理得,又∠ACD=90°,所以sin∠BDE=sin(∠DAC+90°),故选:A.12.Rt△ABC中,∠ABC=90°,AB=2,BC=4,△ABD中,∠ADB=120°,则CD 的取值范围()A.[2+2]B.(4,2+2]C.[2]D.[2]【分析】以AB为底边作等腰三角形OAB,使得∠AOB=120°,以O为圆心,以OA 为半径作圆,则由圆的性质可知D的轨迹为劣弧,讨论O,C与AB的位置,根据圆的性质得出CD的最值即可.解:以AB为底边作等腰三角形OAB,使得∠AOB=120°,以O为圆心,以OA为半径作圆,则由圆的性质可知D的轨迹为劣弧(不含端点),∴OM=1,OA=2,即圆O的半径为2.∴OC==2,∴CD的最小值为2﹣8.此时OC==2,∴CD的最大值为2+2.故选:C.二、填空题:本大题共4小题,每小题5分,计20分.只要求写出最后结果,并将正确结果填写到答题卷相应位置.13.求过点(2,3)且在x轴和y轴截距相等的直线的方程x+y﹣5=0,或3x﹣2y=0.【分析】设直线在x轴为a,y轴截距为b,当a=b=0时,直线过点(2,3)和(0,0),其方程为,即3x﹣2y=0.当a=b≠0时,直线方程为,把点(2,3)代入,得,解得a=5,由此能求出直线方程.解:设直线在x轴为a,y轴截距为b,①当a=b=0时,直线过点(2,3)和(0,6),②当a=b≠0时,把点(2,3)代入,得,故答案为:x+y﹣5=0,或2x﹣2y=0.14.已知直线y=k(x+4)与曲线有两个不同的交点,则k的取值范围是[0,).【分析】结合图形,转化为半圆的切线的斜率可得.解:如图:y=k(x+4)是过定点P(﹣4,0),当直线与半圆切于A点时,k PA===,结合图象可得:直线y=k(x+4)与曲线有两个不同的交点时,k∈[8,),故答案为:[0,).15.在平面直角坐标系xOy中,若直线l:x+2y=0与圆C:(x﹣a)2+(y﹣b)2=5相切,且圆心C在直线l的上方,则ab最大值为.【分析】根据直线和圆相切求出a,b的关系式,结合基本不等式进行求解即可.解:∵直线和圆相切,∴,∴a+6b>0,从而a+2b=5,故ab的最大值为,故答案为:16.已知在△ABC中,AB=AC=,△ABC所在平面内存在点P使得PB2+PC2=3PA2=3,则△ABC面积的最大值为.【分析】以BC的中点为坐标原点,BC所在直线为x轴,建立直角坐标系,设B(﹣a,0),C(a,0),(a>0),则A(0,),设P(x,y),运用两点距离公式可得P在两圆上,由圆与圆的位置关系的等价条件,解不等式可得a的范围,再由三角形的面积公式,结合二次函数的最值求法,可得最大值.解:以BC的中点为坐标原点,BC所在直线为x轴,建立直角坐标系,则A(0,),(x+a)2+y4+(x﹣a)2+y2=3[x7+(y﹣)2]=3,即有点P既在(0,0)为圆心,半径为的圆上,可得|1﹣|≤≤1+,则△ABC的面积为S=•2a•=,故答案为:.三、解答题:本大题共6小题,计70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知直线l1:ax+3y+1=0,l2:x+(a﹣2)y﹣1=0.(Ⅰ)若l1⊥l2,求实数a的值;(Ⅱ)当l1∥l2时,求直线l1与l2之间的距离.【分析】(Ⅰ)由l1⊥l2,得a×1+3(a﹣2)=0,由此能求出实数a=.(Ⅱ)当l1∥l2时,,求出a=3,由此能求出直线l1与l2之间的距离.解:(Ⅰ)∵直线l1:ax+3y+1=2,l2:x+(a﹣2)y﹣1=8.若l1⊥l2,则a×1+3(a﹣6)=0,(Ⅱ)当l1∥l2时,,∴直线l1:3x+3y+2=0,l2:x+y﹣1=0,即l2:8x+3y﹣3=0∴直线l1与l2之间的距离:d==.18.已知圆C经过抛物线y=x2﹣4x+3与坐标轴的三个交点.(1)求圆C的方程;(2)设直线2x﹣y+2=0与圆C交于A,B两点,求|AB|.【分析】(1)求出抛物线y=x2﹣4x+3与坐标轴的交点坐标,确定圆心与半径,即可求圆C的方程;(2)利用点到直线的距离公式求出圆心到直线的距离,再由圆的半径,利用垂径定理及勾股定理即可求出|AB|的长.解:(1)抛物线y=x2﹣4x+3与坐标轴的交点分别是(1,0),(3,7),(0,3)…所求圆的圆心是直线y=x与x=2的交点(2,2),圆的半径是,(2)圆心C到直线2x﹣y+2=0的距离d=…|AB|=2=…19.已知a,b,c分别为非等腰△ABC内角A,B,C的对边,.(1)证明:C=2B;(2)若b=3,,求△ABC的面积.【分析】(1)先利用余弦定理完成边化角,然后得到关于角的等式,分析其中2B与C 的关系即可证明;(2)根据(1)的结论计算出cos B的值,然后即可计算出a的值,再根据面积公式求解三角形面积即可.解:(1)证明:由余弦定理得a2+c2﹣b2=2ac cos B,∴,由2B=π﹣C得A=B,不符合条件,(2)由(3)及正弦定理得:,∴.20.如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的C处恰有一可旋转光源满足甲水果生产的需要,该光源照射范围是∠ECF=,点E,F的直径AB上,且∠ABC=.(1)若CE=,求AE的长;(2)设∠ACE=α,求该空地产生最大经济价值时种植甲种水果的面积.【分析】(1)利用余弦定理,即可求AE的长;(2)设∠ACE=α,求出CF,CE,利用S△CEF=,计算面积,求出最大值,即可求该空地产生最大经济价值时种植甲种水果的面积.解:(1)由题意,△ACE中,AC=4,∠A=,CE=,∴13=16+AE2﹣2×,(2)由题意,∠ACE=α∈[0,],∠AFC=π﹣∠A﹣∠ACF=﹣α.在△ACE中,由正弦定理得,∴CE=,S△CEF==,∴α=时,S△CEF取最大值为4,该空地产生最大经济价值.21.已知圆C和y轴相切于点T(0,2),与x轴的正半轴交于M、N两点(M在N的左侧),且MN=3;(1)求圆C的方程;(2)过点M任作一条直线与圆O:x2+y2=4相交于点A、B,连接AN和BN,记AN 和BN的斜率为k1,k2,求证:k1+k2为定值.【分析】(1)由题意设圆心的坐标为(m,2)(m>0),利用垂径定理列式求得m,即可求得圆C的方程;(2)当直线AB的斜率为0时,知k AN=k BN=0,即k1+k2=0为定值.当直线AB的斜率不为0时,设直线AB:x=1+ty,联立圆O方程,得到韦达定理,求得k1+k2为定值.解:(1)∵圆C与y轴相切于点T(0,2),可设圆心的坐标为(m,2)(m>0),则圆C的半径为m,又|MN|=3,∴,解得m=,证明:(2)由(1)知M(5,0),N(4,0),当直线AB的斜率不为0时,设直线AB:x=1+ty,设A(x1,y5),B(x2,y2),则k1+k2=综上可知,k1+k4=0为定值.22.在平面直角坐标系xOy中,已知直线l:x﹣y+4=0和圆O:x2+y2=4,P是直线l上一点,过点P作圆C的两条切线,切点分别为M,N.(1)若PM⊥PN,求点P坐标;(2)若圆O上存在点A,B,使得∠APB=60°,求点P的横坐标的取值范围;(3)设线段MN的中点为Q,l与x轴的交点为T,求线段TQ长的最大值.【分析】(1)若PM⊥PN,则四边形PMON为正方形,可得P到圆心的距离为,由P在直线x﹣y+4=0上,设P(x,x+4),利用|OP|=2,解得x,可得(2)设P(x,x+4),若圆O上存在点A,B,使得∠APB=60°,过P作圆的切线PC,PD,可得∠CPD≥600,在直角三角形△CPO中,根据300≤∠CPO<900,sin ∠CPO<1,进而得出点P的横坐标的取值范围.(3)设P(x0,x0+4),则以OP为直径的圆的方程为,化简与x2+y2=4联立,可得MN所在直线方程:x0x+(x0+4)y=4,与x2+y2=4联立,化简可得Q的坐标,可得Q点的轨迹为:+=,圆心C,半径R.由题可知T(﹣4,0),可得|TQ|≤|TC|+R.解:(1)若PM⊥PN,则四边形PMON为正方形,则P到圆心的距离为,故|OP|=,解得x=﹣2,(2)设P(x,x+4),若圆O上存在点A,B,使得∠APB=60°,在直角三角形△CPO中,∵304≤∠CPO<900,∴sin∠CPO<4,∴2<≤6,解得﹣4≤x≤0,(3)设P(x3,x0+4),则以OP为直径的圆的方程为,可得MN所在直线方程:x0x+(x0+7)y=4,∴Q的坐标为(,),由题可知T(﹣4,0),∴|TC|==.∴线段TQ长的最大值为3.。
2012-2013学年江苏省扬州中学高一(下)期中数学试卷参考答案与试题解析一.填空题:(本大题共14小题,每题5分,共70分)1.(5分)一元二次不等式(x﹣1)(x﹣3)<0的解集为{x|1<x<3}.2.(5分)已知数列1,,,,…的一个通项公式是a n=.,,,,,,,,,,=故答案为:3.(5分)在等差数列51、47、43,…中,第一个负数项为第14项.>4.(5分)在等比数列{a n}中,已知a3=2,a6=16,则公比q=2.得则5.(5分)cos174°cos156°﹣sin174°sin156°的值为.故答案为:6.(5分)(2013•大连一模)在△ABC中,sinA:sinB:sinC=2:3:4,则cosC的值为.cosC=故答案为:7.(5分)在△ABC中,若A=45°,a=,B=60°,则b=.,=得:=故答案为:8.(5分)在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是等腰三角形.9.(5分)已知点(﹣3,﹣1)和(4,﹣6)在直线3x﹣2y﹣a=0的同侧,则a的取值范围为(﹣∞,﹣7)∪(24,+∞).10.(5分)已知等差数列{a n}中,a1+a13=10,则a3+a5+a7+a9+a11=25.11.(5分)设s n为等比数列{a n}的前n项和,若8a2+a5=0,则=﹣11.项和公式表示∴12.(5分)数列{a n}满足a n=(n∈N*),则等于.依题意,利用裂项法可求得(﹣(∴﹣)∴+)(﹣﹣﹣.故答案为:.本题考查裂项法求和,求得(﹣13.(5分)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f (x)<c的解集为(m,m+8),则实数c的值为16.b=+ax+aa+ax++ax+∴a14.(5分)对于k∈N*,g(k)表示k的最大奇数因子,如:g(3)=3,g(20)=5,设S n=g(1)+g(2)+g(3)+…+g(2n),则S n=.+2故答案为:二.解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.(14分)(1)已知:tanα=﹣,求的值;(2)已知α∈(0,),sin,sin(α+β)=,求cosα的值.,∴=,﹣=,,(,)﹣﹣(﹣×16.(14分)在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c.(Ⅰ)用余弦定理证明:当∠C为钝角时,a2+b2<c2;(Ⅱ)当钝角△ABC的三边a,b,c是三个连续整数时,求△ABC外接圆的半径.,(13分)外接圆的半径17.(15分)(2010•长宁区二模)设函数f(x)=ax2+(b﹣2)x+3(a≠0),若不等式f(x)>0的解集为(﹣1,3).(1)求a,b的值;(2)若函数f(x)在x∈[m,1]上的最小值为1,求实数m的值.)由条件得∵,∴18.(15分)如图所示,△ACD是边长为1的等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于点E.(1)求BD2的值;(2)求线段AE的长.=2+由正弦定理可得:19.(16分)(2007•福建)数列{a n}的前N项和为S n,a1=1,a n+1=2S n(n∈N*).(I)求数列{a n}的通项a n;(II)求数列{na n}的前n项和T.∴=+﹣Tn=+﹣20.(16分)(2013•盐城一模)若数列{a n}是首项为6﹣12t,公差为6的等差数列;数列{b n}的前n项和为S n=3n﹣t.(1)求数列{a n}和{b n}的通项公式;(2)若数列{b n}是等比数列,试证明:对于任意的n(n∈N,n≥1),均存在正整数C n,使得b n+1=a,并求数列{c n}的前n项和T n;(3)设数列{d n}满足d n=a n•b n,且{d n}中不存在这样的项d t,使得“d k<d k﹣1与d k<d k+1”同时成立(其中k≥2,k∈N*),试求实数t的取值范围.=b)的结论,得<2m∴,则=)的结论,得﹣<<,解之得,即,则当t=m,即++t=的取值范围是≤t=。
专题05 直线的倾斜角与斜率一、单选题1.(2020·四川省高二期末(理))直线x ( )A .30B .45C .60D .90【答案】D 【解析】直线x ∴其倾斜角为90.故选:D .2.(2019·四川省仁寿一中高二期中(文))若直线1x =的倾斜角为α,则α=( )A .0B .3πC .2π D .π【答案】C 【解析】直线1x =与x 轴垂直,故倾斜角为2π. 故选:C.3.(2020·江苏省丹徒高中高一开学考试)直线10x y ++=的倾斜角为( ) A .4π B .34π C .54π D .2π 【答案】B 【解析】由题意,直线10x y ++=的斜率为1k =- 故3tan 14k παα==-∴= 故选:B4.(2019·江苏省扬州中学高一期中)如果()3,1A 、()2,B k -、()8,11C 在同一直线上,那么k 的值是( )A .-6B .-7C .-8D .-9【答案】D 【解析】(3,1)A 、(2,)B k -、(8,11)C 三点在同一条直线上,∴直线AB 和直线AC 的斜率相等, ∴11112383k --=---,解得9k =-. 故选:D .5.(2019·山东省高二期中)若直线过点(2,4),(1,4,则此直线的倾斜角是( ) A .30︒ B .60︒C .120︒D .150︒【答案】C 【解析】由题意知,直线的斜率k = 即直线的倾斜角α满足tan α=又0180α︒︒≤<,120α︒∴=,故选:C6.(2019·浙江省高三期中)以下哪个点在倾斜角为45°且过点(1,2)的直线上( ) A .(﹣2,3) B .(0,1)C .(3,3)D .(3,2)【答案】B 【解析】由直线的倾斜角为45°,则直线的斜率为tan 451k ==, 则过点()2,3-与点(1,2)的直线的斜率为321213-=---,显然点()2,3-不满足题意;过点()0,1与点(1,2)的直线的斜率为12101-=-,显然点()0,1满足题意; 过点()3,3与点(1,2)的直线的斜率为321312-=-,显然点()3,3不满足题意; 过点()3,2与点(1,2)的直线的斜率为22031-=-,显然点()2,3-不满足题意; 即点()0,1在倾斜角为45°且过点(1,2)的直线上, 故选:B.7.(2020·四川省高二期末(理))已知一直线经过两点(2,4)A ,(,5)B a ,且倾斜角为135°,则a 的值为( ) A .-1 B .-2C .2D .1【答案】D 【解析】由直线斜率的定义知,tan1351AB k ==-, 由直线的斜率公式可得,542AB k a -=-, 所以5412a -=--,解得1a =. 故选:D8.(2019·浙江省高二期中)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B .3[0,][,)44πππ⋃ C .[0,]4πD .[0,][,)42πππ⋃ 【答案】B 【解析】直线xsin α+y +2=0的斜率为k =﹣sin α, ∵﹣1≤sin α≤1,∴﹣1≤k ≤1 ∴倾斜角的取值范围是[0,4π]∪[34π,π)故选:B .9.(2019·内蒙古自治区高二期末(文))已知直线l 的倾斜角为α,若tan 3πα⎛⎫+= ⎪⎝⎭α=( ) A .0 B .2π C .56π D .π【答案】A 【解析】tan 3πα⎛⎫+== ⎪⎝⎭tan 0α=,0απ≤<,0α∴=.故选:A10.(2019·浙江省镇海中学高一期末)已知直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦,则此直线的斜率的取值范围是( )A.⎡⎣ B.(,-∞)+∞C.33⎡-⎢⎣⎦D.,3⎛-∞- ⎝⎦3⎫+∞⎪⎪⎣⎭【答案】B 【解析】因为直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤ ⎥⎝⎦,又直线的斜率tan k α=,,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦.故tan tan3πα≥=2tan tan3πα≤=故(,k ∈-∞)+∞. 故选:B 二、多选题11.(2020·吴江汾湖高级中学高一月考)下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α≤< B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有倾斜角,但不一定有斜率D .任意一条直线都有斜率,但不一定有倾斜角 【答案】ABC 【解析】A. 若α是直线l 的倾斜角,则0180α≤<,是正确的;B. 若k 是直线l 的斜率,则tan k α=∈R ,是正确的;C. 任意一条直线都有倾斜角,但不一定有斜率,倾斜角为90°的直线没有斜率,是正确的;D. 任意一条直线都有斜率,但不一定有倾斜角,是错误的,倾斜角为90°的直线没有斜率. 故选:ABC12.(2020·江苏省苏州实验中学高一月考)有下列命题:其中错误的是( ) A .若直线的斜率存在,则必有倾斜角与之对应; B .若直线的倾斜角存在,则必有斜率与之对应; C .坐标平面上所有的直线都有倾斜角; D .坐标平面上所有的直线都有斜率. 【答案】BD 【解析】任何一条直线都有倾斜角,但不是任何一条直线都有斜率 当倾斜角为90︒时,斜率不存在 故选:BD13.(2018·全国单元测试)已知直线1:10l x y --=,动直线2:(1)0()l k x ky k k R +++=∈,则下列结论错误..的是( ) A .不存在k ,使得2l 的倾斜角为90° B .对任意的k ,1l 与2l 都有公共点 C .对任意的k ,1l 与2l 都不.重合 D .对任意的k ,1l 与2l 都不垂直...【答案】AC 【解析】逐一考查所给的选项:A .存在0k =,使得2l 的方程为0x =,其倾斜角为90°,故选项不正确.B 直线1:10l x y --=过定点()0,1-,直线()()()2:1010l k x ky k k R k x y x +++=∈⇒+++=过定点()0,1-,故B 是正确的.C .当12x =-时,直线2l 的方程为1110222x y --=,即10x y --=,1l 与2l 都重合,选项C 错误; D .两直线重合,则:()()1110k k ⨯++-⨯=,方程无解,故对任意的k ,1l 与2l 都不垂直,选项D 正确.故选:AC. 三、填空题14.(2019·银川唐徕回民中学高三月考(理))已知点P (1),点Q 在y 轴上,直线PQ 的倾斜角为120°,则点Q 的坐标为_____. 【答案】(0,-2) 【解析】因为Q 在y 轴上,所以可设Q 点坐标为()0,y , 又因为tan120︒==2y =-,因此()0,2Q -,故答案为()0,2-.15.(2020·浙江省温州中学高三月考)平面直角坐标系中,直线倾斜角的范围为______,一条直线可能经过______个象限. 【答案】0, 0,2,3【解析】平面直角坐标系中,直线倾斜角的范围为[)0,π,一条直线可能经过2个象限,如过原点,或平行于坐标轴; 也可能经过3个象限,如与坐标轴不平行且不过原点时; 也可能不经过任何象限,如坐标轴; 所以一条直线可能经过0或2或3个象限. 故答案为:[)0,π,0或2或3.16.(2019·浙江省效实中学高一期中)若直线斜率k ∈(-1,1),则直线倾斜角α∈________. 【答案】[0°,45°)∪(135°,180°) 【解析】直线的斜率为负时,斜率也随着倾斜角的增大而增大由于斜率有正也有负,且直线的斜率为正时,斜率随着倾斜角的增大而增大,故α∈(0°,45°);又直线的斜率为负时,斜率也随着倾斜角的增大而增大,故α∈(135°,180°);斜率为0时,α=0°.所以α∈[0°,45°)∪(135°,180°)故答案为[0°,45°)∪(135°,180°)17.(2018·山西省山西大附中高二期中(文))已知直线l 经过点()1,0P 且与以()2,1A ,()3,2B -为端点的线段AB 有公共点,则直线l 的倾斜角的取值范围为____. 【答案】3[0,][,)44πππ【解析】当直线l 过B 时,设直线l 的倾斜角为α,则3tan 14παα=-⇒=当直线l 过A 时,设直线l 的倾斜角为β,则tan 14πββ=⇒=综合:直线l 经过点()P 1,0且与以()A 2,1,()B 3,2-为端点的线段AB 有公共点时,直线l 的倾斜角的取值范围为][30,,44πππ⎡⎫⋃⎪⎢⎣⎭四、解答题18.(2019·全国高一课时练习)已知点()1,2A ,在y 轴上求一点P ,使直线AP 的倾斜角为120︒.【答案】(0,2P 【解析】设(0,)P y ,201PA y k -=-,tan120︒∴=201y --,2y ∴=P ∴点坐标为(0,2.19.(2019·全国高一课时练习)点(,)M x y 在函数28y x =-+的图像上,当[2,5]x ∈时,求11y x ++的取值范围.【答案】15,63⎡⎤-⎢⎥⎣⎦【解析】1(1)1(1)y y x x +--=+--的几何意义是过(,),(1,1)M x y N --两点的直线的斜率,点M 在线段28,[2,5]y x x =-+∈上运动,易知当2x =时,4y =,此时(2,4)M 与(1,1)N --两项连线的斜率最大,为53;当5x =时,2y =-,此时(5,2)M -与(1,1)N --两点连线的斜率最小,为16-.115613y x +∴-+,即HF 的取值范围为15,63⎡⎤-⎢⎥⎣⎦20.(2020·广东省恒大足球学校高三期末)已知直线l :320x y +-=的倾斜角为角α. (1)求tan α;(2)求sin α,cos 2α的值. 【答案】(1)13-;(245 【解析】(1)因为直线320x y +-=的斜率为13-,且直线的倾斜角为角α, 所以1tan 3α=-(2)由(1)知1tan 3α=-, 22sin 1tan cos 3sin cos 1ααααα⎧==-⎪∴⎨⎪+=⎩解得sin cos αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos αα⎧=⎪⎪⎨⎪=⎪⎩,因为,2παπ⎛⎫∈ ⎪⎝⎭,所以sin cos 10αα⎧=⎪⎪⎨⎪=-⎪⎩224cos 22cos 1215αα⎛∴=-=⨯-= ⎝⎭21.(上海市七宝中学高二期中)已知直线l 的方程为320x my -+=,其倾斜角为α. (1)写出α关于m 的函数解析式; (2)若3,34ππα⎛⎫∈ ⎪⎝⎭,求m 的取值范围.【答案】(1)3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩;(2)3,3m.【解析】(1)直线l 的方程为320x my -+=,其倾斜角为α,当0m =时,2πα= 当0m >时,则斜率3tan k m α==,3arctan m α=, 当0m <时,则斜率3tan k m α==,3arctan mαπ=+, 所以3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩;(2)当,32ππα时,33,,0,3km m,当2πα=时,0m =, 当3,24ππα时,3,1,3,0km m,综上所述:3,3m .22.(2019·全国高一课时练习)经过点(0,1)P -作直线l ,若直线l 与连接(1,2)(2,1)A B -、的线段总有公共点.(1)求直线l 斜率k 的范围; (2)直线l 倾斜角α的范围; 【答案】(1)11k -≤≤(2)3044ππααπ≤≤≤<或【解析】(1)2(1)110pA k --==-- 1(1)120pB k --==- l 与线段AB 相交pA pB k k k ∴≤≤11k ∴-≤≤(2)由(1)知0tan 11tan 0αα≤≤-≤<或由于tan 0,2y x π⎡⎫=⎪⎢⎣⎭在及(,0)2π-均为减函数 3044ππααπ∴≤≤≤<或 23.(上海位育中学高二期中)直角坐标系xOy 中,点A 坐标为(-2,0),点B 坐标为(4,3),点C 坐标为(1,-3),且AM t AB =(t ∈R ).(1) 若CM ⊥AB ,求t 的值;(2) 当0≤ t ≤1时,求直线CM 的斜率k 和倾斜角θ的取值范围.【答案】(1) 15t =;(2) k ∈(-∞.,-1]⋃[2,+∞],3[arctan 2,]4πθ∈ 【解析】(1)由题意可得()42,30(6,3)AB =+-=,(6,3)AM t AB t t ==, ()12,30(3,3)AC =+--=-,所以(63,33)CM AM AC t t =-=-+, ∵CM AB ⊥,则CM AB ⊥,∴()()6633334590CM AB t t t ⋅=-++=-=,∴解得15t =; (2)由01t ≤≤,AM t AB =,可得点M 在线段AB 上,由题中A 、B 、C 点坐标,可得经过A 、C 两点的直线的斜率11k =-,对应的倾斜角为34π,经过C 、B 两点的直线的斜率22k =,对应的倾斜角为2arctan ,则由图像可知(如图所示),直线CM 的斜率k 的取值范围为:1k ≤-或2k ≥,倾斜角的范围为:3[arctan 2,]4πθ∈.。
2012-2013学年江苏省扬州中学高一(下)期末数学试卷参考答案与试题解析一、填空题(本大题共14题,每题5分,共70分,请将答案填写在答题卷相应的位置上)1.(5分)求值sin75°=.××故答案为:2.(5分)已知直线l1:ax+2y+6=0与l2:x+(a﹣1)y+a2﹣1=0平行,则实数a的取值是﹣1.平行得﹣=3.(5分)在△ABC中,若b2+c2﹣a2=bc,则A=60°.==,4.(5分)直线x﹣2y+1=0在两坐标轴上的截距之和为﹣.,令在两坐标轴上的截距之和为+,.5.(5分)已知{a n}为等差数列,其前n项和为S n,若a3=6,S3=12,则公差d=2.=6.(5分)若x+y=1,则x2+y2的最小值为.=).故答案为:.7.(5分)若数列{a n}满a1=1,=,a8=.==,故答案为:.8.(5分)设实数x,y满足,则的最大值是.先画出不等式组所表示的平面区域,然后根据的最大值.,画出约束条件,如右图中阴影部分而的几,)时斜率最大,最大值为故答案为:本题主要考查了线性规划为载体考查9.(5分)(2012•海口模拟)设sin(+θ)=,则sin2θ=﹣.,+sin2=(,,+,故答案为﹣.10.(5分)光线从A(1,0)出发经y轴反射后到达x2+y2﹣6x﹣6y+17=0所走过的最短路程为4.的距离为.11.(5分)函y=2sinx+sin(﹣x)的最小值是﹣.()化简为)﹣=2sinx+﹣sinx=sinx+sin.12.(5分)在△ABC中,内角A,B,C所对的边分别a,b,c,给出下列结论:①A>B>C,则sinA>sinB>sinC;②若==,△ABC为等边三角形;③必存在A,B,C,使tanAtanBtanC<tanA+tanB+tanC成立;④若a=40,b=20,B=25°,△ABC必有两解.其中,结论正确的编号为①④(写出所有正确结论的编号).由正弦定理条件知,13.(5分)平面直角坐标系中,O为坐标原点,M是直线l:x=3上的动点,过点F(1,0)作OM的垂线与以OM为直径的圆交于点P(m,n).则m,n满足的关系式为m2+n2=3.14.(5分)已知等比数{a n},a1=1,a4=8,在a n与a n+1两项之间依次插入2n﹣1个正整数,得到数列{b n},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{b n}的前2013项之和S2013=2007050(用数字作答).=2=n++2002==2007二、解答题(本大题共6题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(14分)已知二次函数y=f(x)图象的顶点是(﹣1,3),又f(0)=4,一次函数y=g (x)的图象过(﹣2,0)和(0,2).(1)求函数y=f(x)和函数y=g(x)的解析式;(2)求关于x的不等式f(x)>3g(x)的解集.16.(14分)已知cosβ=﹣,sin(α+β)=,α∈(0,),β∈(,π).(1)求cos2β的值;(2)求sinα的值.﹣;,,=,(,),∴﹣=(﹣+×=17.(15分)若等比数列{a n}的前n项和S n=a﹣.(1)求实数a的值;(2)求数列{na n}的前n项和R n..==a,解=+++﹣﹣=a,解得=++=1++,②﹣18.(15分)如图,某海域内的岛屿上有一直立信号塔AB,设AB延长线与海平面交于点O.测量船在点O的正东方向点C处,测得塔顶A的仰角为30°,然后测量船沿CO方向航行至D处,当CD=100(﹣1)米时,测得塔顶A的仰角为45°.(1)求信号塔顶A到海平面的距离AO;(2)已知AB=52米,测量船在沿CO方向航行的过程中,设DO=x,则当x为何值时,使得在点D处观测信号塔AB的视角∠ADB最大.,===,得AD=100,,=ADB=≤=即x=40DO=40时,19.(16分)已知圆O:x2+y2=r2(r>0)与直线x﹣y+2=0相切.(1)求圆O的方程;(2)过点(1,)的直线l截圆所得弦长为2,求直线l的方程;(3)设圆O与x轴的负半轴的交点为A,过点A作两条斜率分别为k1,k2的直线交圆O 于B,C两点,且k1k2=﹣2,试证明直线BC恒过一个定点,并求出该定点坐标.=0d==2=r,符合题意;=k﹣,y与圆方程联立得:,=,,,用代替()=()=x+)定点(﹣20.(16分)设数列{a n}的前n项和为S n,对任意n∈N*都有S n=()2成立.(1)求数列{a n}的前n项和S n;(2)记数列b n=a n+λ,n∈N*,λ∈R,其前n项和为T n.①若数列{T n}的最小值为T6,求实数λ的取值范围;②若数列{b n}中任意的不同两项之和仍是该数列中的一项,则称该数列是“封闭数列”.试问:是否存在这样的“封闭数列”{b n},使得对任意n∈N*,都有T n≠0,且<+++L+<.若存在,求实数λ的所有取值;若不存在,请说明理由.)利用<+++.,化为,即>,因为(得:,,得到,化为=法二:由时,,,即}∴,得到,∴<+++.,化为,即>,因为<++<.数列掌握。
2019江苏省徐州市中考数学满分:140分时间:120分钟一.选择题(本题共8个小题,每小题3分,共24分)1.-2的倒数是()A.21 B.21 C.2 D.-22.下列计算正确的是()A.422aaaB.222)(bab a C.933)(aa D.623aaa3.下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,104.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.12005.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40.该组数据的众数、中位数分别为()A.40,37B.40,39C.39,40D.40,386.下图均由正六边形与两条对角线组成,其中不是轴对称图形的是()7.若),(11y x A 、),(22y x B 都在函数xy2019的图象上,且21x x ,则()A.21y yB.21y yC.21y yD.21y y 8.如图,数轴上有O 、A 、B 三点,O 为原点,OA 、OB 分别表示仙女座星系,M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是()A.5×106B.107C.5×107D.108二.填空题(本大题共有10小题,每小题3分,共30分)9.8的立方根是.10.要使1x 有意义的x 的取值范围是.11.方程042x的解为.12.若2b a ,则代数式222b ab a的值为.13.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若MN=4,则AC 的长为.14.如图,A 、B 、C 、D 为一个外角为40°的正多边形的顶点.若O 为正多边形的中心,则∠OAD=°15.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆半径r=2cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为cm.16.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45°,测得该建筑底部C 处的俯角为17°,若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.已知二次函数的图像经过点P (2,2),顶点为O (0,0),将该图像向右平移,当它再次经过点P 时,所得抛物线的函数表达式为18.函数y=x+1的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上。
扬州市梅岭中学2018-2019学年度第二学期期中考试试卷七年级数学 2019.04(时间:120 分钟)一、选择题(本大题共8小题,每小题3分,共计24分)1.下列图形中,不能通过其中一个四边形平移得到的是( )A. B. C. D .2.下列计算正确的是( )A .a +2a 2=3a 2B .a 8÷a 2=a 4C .a 3·a 2=a 6D .(a 3)2=a 63.下列等式由左边到右边的变形中,属于因式分解的是 ( )A .x 2+5x -1=x (x +5)-1B .x 2-4+3x =(x +2)(x -2)+3xC .x 2-9=(x +3)(x -3)D .(x +2)(x -2)=x 2-44.已知21x y =⎧⎨=-⎩是二元一次方程21x my +=的一个解,则m 的值为( )A .3B .-5C .-3D .5 5.如图,不能判断l 1∥l 2的条件是( )A .∠1=∠3B .∠2+∠4=180°C .∠4=∠5D .∠2=∠36.下列命题:①同旁内角互补;②若a =b ,则b a =;③同角的余角相等; ④三角形的一个外角等于两个内角的和.其中真命题的个数是( )A . 4个B .3个C .2个D .1个第5题图 第8题图7.为了书写简便,数学家欧拉引进了求和符号“∑”.如记( )A.-50 B .-70 C .-40 D .-208.如图,平行四边形ABCD 中,点E 、F 分别在AD 、AB 上,依次连接EB 、EC 、FC 、FD ,图中阴影部分的面积分别为S 1、S 2、S 3、S 4,已知S 1=2、S 2=12、S 3=3,则S 4的值是( ) A.4 B .5 C .6 D .7 二、填空题(本大题共10小题,每小题3分,共计30分)9.小明同学在百度搜索引擎中输入“中国梦,我的梦”,引擎搜索耗时0.00175秒,将这个数用科学记数法表示为 .10.如图,木工师傅用角尺画平行线的依据是 .11.若9,4==n n y x ,则=nxy )( .3()(3)(4)()nk x k x x x n =+=++++⋅⋅⋅++∑1123(1)nk k n n==+++⋅⋅⋅+-+∑[]的值是,则,已知m m x x k x k x nk ++=+-+∑=44)1)((2212.若关于x 的多项式92++ax x 是完全平方式,则=a . 13.内角和等于外角和2倍的多边形是 边形.14.若一个三角形的三条边的长分别是2,x ,6,则整数x 的值有 个.15.如图,ABC ∆的中线BE AD 、相交于点F .若ABF ∆的面积是4,则四边形CEFD 的面积 是 .第10题图 第15题图 第18题图16.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为 . 17.已知x 1,x 2,x 3,…,x n 中每一个数值只能取2,0,-1中的一个,且满足x 1+x 2+…+x n =﹣17,x 12+x 22+…+x n 2=47,则x 13+x 23+…+x n 3的值为 .18.如图,已知∠MON =80°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .当AB ⊥OM ,且△ADB 有两个相等的角时, ∠OAC 的度数为 .三、解答题(本大题共10小题,共计96分) 19.(本题满分8分)计算: (1)20170111(3)()2π--+-+ (2)32423)2(a a a a ÷+⋅-)(20.(本题满分8分)分解因式:(1)22242x xy y -+ (2)()()2m m n n m -+-21.(本题满分8分)先化简,再求值:()()()()2212112x x x x x --+---,其中2230x x --=22.(本题满分8分)在图中,利用网格点和直尺画图或计算:(1)在给定方格纸中画出平移后的C B A '''∆; (2)画出AB 边上的中线CD ; (3)画出BC 边上的高线AE ;(4)记网格的边长为1,则在平移的过程中线段BC 扫过区域的面积为 .23.(本题满分10分)如图,Rt ABC ∆中, 90=∠ACB ,AB CD ⊥于D ,CE 平分ACB ∠交AB于E ,AB EF ⊥交CB 于F . (1)求证:CD ∥EF ;(2)若 70=∠A ,求FEC ∠的度数.24.(本题满分10分)基本事实:“若0ab =,则00a b ==或”.一元二次方程220x x --=可通过因式分解化为(2)(1)0x x -+=,由基本事实得2010x x -=+=或,即方程的解为12x =;21x =-.(1)试利用上述基本事实,解方程:220x x -=; (2)若2222()(1)20x y x y ++--=,求22x y +的值.25.(本题满分10分)定义:任意两个数a ,b ,按规则c =b 2+ab ﹣a +7扩充得到一个新数c ,称所得的新数c 为“如意数”.(1)若a =2,b =﹣1,直接写出a ,b 的“如意数”c ;(2)如果a =3+m ,b =m ﹣2,试说明 “如意数”c 为非负数.26.(本题满分10分)对于两个不相等的实数a 、b ,我们规定符号max {a ,b }表示a 、b 中的较大值,min {a ,b }表示a 、b 中的较小值.如:max {2,4}=4,min {2,4}=2.按照这个规定: 解方程组:27.(本题满分12分)为了参加学校举办的“校长杯”足球联赛,某中学七(1)班学生去商场购买了A 品牌足球1个、B 品牌足球2个,共花费210元,七(2)班学生购买了A 品牌足球3个、B 品牌足球1个,共花费230元.(1)求购买一个A 品牌、一个B 品牌的足球各需多少元?(2)为响应习总书记“足球进校园”的号召,学校使用专项经费1500元全部购买A 、B 两种品牌的足球供学生使用,那么学校有多少种购买足球的方案?请你帮助学校分别设计出来.{}{}⎪⎩⎪⎨⎧=++=-yx x yx x 4113,93min 31,max28.(本题满分12分)如图1,直线m与直线n相交于点O,A、B两点同时从点O出发,点A以每秒x个单位长度沿直线n向左运动,点B以每秒y个单位长度沿直线m向上运动.(1)若运动1s时,点B比点A多运动1个单位;运动2s时,点B与点A运动的路程和为6个单位,则x=,y=.(2)如图2,当直线m与直线n垂直时,设∠BAO和∠ABO的角平分线相交于点P.在点A、B运动的过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值(写出过程);若发生变化,请说明理由.(3)如图3,将(2)中的直线n不动,直线m绕点O按顺时针方向旋转α(0°<ɑ<90°),其他条件不变.(ⅰ)用含有α的式子表示∠APB的度数.(ⅱ)如果再分别作△ABO的两个外角∠BAC,∠ABD的角平分线相交于点Q,并延长BP、QA交于点M.则下列结论正确的是(填序号).①∠APB与∠Q互补;②∠Q与∠M互余;③∠APB﹣∠M为定值;④∠M﹣∠Q为定值.32423)2(aa a a ÷+⋅-)(扬州市梅岭中学2018-2019学年度第二学期期中考试试卷七年级数学参考答案 2019.04(本试卷满分150分 考试时间120分钟)一、选择题(本大题共8小题,每小题3分,共计24分)二、填空题(本大题共10小题,每小题3分,共计30分)9. 1.75×10-3 10. 同位角相等,两直线平行 11. 36 12. 6或-6 13. 六 14. 3 15. 4 16. 36º或18º 17. 13 18. 10º或25º或40º 三、解答题(本大题共10小题,共计96分) 19.(本题满分8分)计算: (1)20170111(3)()2π--+-+ (2) =-1+1+2 =-a 5+4a 5=2 =3a 520.(本题满分8分)分解因式:(1)22242x xy y -+ (2)()()2m m n n m -+- =2(x -y)2 =(m+1)(m-1)(m-n)21.(本题满分8分)先化简,再求值:()()()()2212112x x x x x --+---,其中2230x x --=解:原式=x 2-2x+3 .......................................5分 由题x 2-2x=3原式=6 .......................................8分 22.(本题满分8分)在图中,利用网格点和三角板画图或计算: (1)在给定方格纸中画出平移后的C B A '''∆; (2)画出AB 边上的中线CD ; (3)画出BC 边上的高线AE ;(4)记网格的边长为1,则在平移的过程中线段BC 扫过区域的面积为 .解:(1)如图所示:△A′B′C′即为所求;...............................2分(2)如图所示:CD就是所求的中线;. .............................2分(3)如图所示:AE即为BC边上的高;..............................2分(4)28..............................2分23.(本题满分10分)(1)证明:∵CD⊥AB,EF⊥AB,∴∠CDE=∠FEB=90°∴CD∥EF;..............................5分(2)解:∵CD⊥AB,∴∠ACD=90°﹣∠A=20°,∵∠ACB=90°,CE平分∠ACB,∴∠ACE=∠BCE=45°,∴∠DCE=∠ACE-∠ACD=45°﹣20°=25°,∵CD∥EF,∴∠FEC=∠DCE=25°...............................5分24.(本题满分10分)解:(1)原方程化为:x(2x﹣1)=0,则x=0或2x﹣1=0,解得:x1=0, x2=;..............................5分(2)(x2+y2)(x2+y2﹣1)﹣2=0,(x2+y2﹣2)(x2+y2+1)=0,则x2+y2﹣2=0,x2+y2+1=0,x2+y2=2,x2+y2=﹣1,..............................3分∵x2≥0,y2≥0,∴x2+y2≥0,∴x2+y2=﹣1舍去,∴x2+y2=2...............................5分25.(本题满分10分)解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4..............................5分(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2..............................3分=2(m﹣1)2∵(m﹣1)2≥0∴“如意数”c为非负数..............................5分26.(本题满分10分)解:由题意:当x≥0时,解得(成立)..............................5分·当x<0时,解得(成立)...............................5分27.(本题满分12分)解:(1)设购买一个A品牌足球需要x元,一个B品牌足球需要y元,根据题意得:,解得:.答:购买一个A品牌足球需要50元,一个B品牌足球需要80元...........................6分(2)设购买A品牌足球m个,购买B品牌足球n个,根据题意得:50m+80n=1500,∴5m+8n=150..............................2分∵m、n均为非负整数,∴,,,.答:学校有4种购买足球的方案,方案一:购买A品牌足球30个、B品牌足球0个;方案二:购买A品牌足球22个、B品牌足球5个;方案三:购买A品牌足球14个、B品牌足球10个;方案四:购买A品牌足球6个、B品牌足球15个....................6分28.(本题满分12分)(1)解:..............................4分(2)结论:不变化,∠APB=135°.理由:如图2中,∵直线m⊥直线n,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵PA平分∠BAO,PB平分∠ABO,∴∠PAB=∠OAB,∠PBA=∠OBA∴∠PAB+∠PBA=(∠OAB+∠OBA)=45°,∴∠APB=180°-(∠PAB+∠PBA)=135°...............................4分(3)(ⅰ)135°+..............2分(ⅱ)①②③....................2分。
江苏省扬州中学2013-2014学年高一下学期期中考试数学试卷(带解析)1.不等式23xx -+>0的解集为___________. 【答案】(-3,2) 【解析】试题分析:由23xx -+>0得:20,323x x x -<-<<+,所以原不等式的解集为(-3,2). 解简单分式不等式,需注意不能轻易去分母. 考点:解简单分式不等式2.若x >0、y >0,且x +y =1,则x ·y 的最大值为______. 【答案】14【解析】试题分析:因为1()24x y xy +≤=,当且仅当12x y ==时取等号,所以x ·y 的最大值为14.运用基本不等式求最值需满足:“一正二定三相等”. 考点:基本不等式3.sin15º·sin30º·sin75º的值等于___________.【答案】18【解析】试题分析:11sin15sin30sin75sin15sin30cos15sin30sin30.28===给角求值问题,需注意角之间倍角或互余关系. 考点:二倍角公式,诱导公式4.在等差数列{a n }中,a 3+a 6+3a 7=20,则2a 7―a 8的值为_________. 【答案】4 【解析】试题分析:等差数列性质:若,,,,,m n p q m n p q N +=+∈则m n p q a a a a +=+,所以367663520, 4.a a a a a ++===因此7862 4.a a a -==考点:等差数列性质5.函数y +cosx ,x ∈[―6π,6π]的值域是_________.【答案】【解析】试题分析:因为s i nc o s2s i n (),6y x x x π+=+又[0,]63x ππ+∈,所以s i n ([0],[0,3].6x y π+∈∈研究三角函数性质首先化为基本三角函数形式.考点:三角函数性质6.若不等式ax 2+bx +2>0的解集为11,23⎛⎫- ⎪⎝⎭,则a -b =________. 【答案】-10【解析】试题分析:由题意得:11,23-为方程220ax bx ++=的两根,且0.a <由韦达定理得:11112,,12,2,10.2323b a b a b a a-+=--⨯==-=--=- 考点:一元二次不等式解集与一元二次方程根的关系 7.函数y =sin 2x π⎛⎫+ ⎪⎝⎭cos 6x π⎛⎫- ⎪⎝⎭的最小正周期为________. 【答案】π 【解析】 试题分析:因为1sin 21sin()cos()cos sin )cos 2)sin(2)262423x y x x x x x x x πππ=+-=+=++=++,所以最小正周期为2.2ππ= 考点:三角函数周期8.在正项等比数列{a n }中,a 1和a 19为方程x 2-10x +16=0的两根,则a 8·a 12=_____ 【答案】16 【解析】试题分析:由韦达定理得11916a a =,由等比数列性质:若,,,,,m n p qm n p q N +=+∈则m n p q a a a a ⋅=⋅得81211916a a a a == 考点:等比数列性质9.在△ABC 中,已知A =45°,AB BC =2,则C =___________. 【答案】30°【解析】试题分析:由正弦定理得:sin sin AB BCC A=,21,sin .sin 452C ==因为AB BC <,所以角C 必为锐角,因此C =30°. 考点:正弦定理10.设等差数列{a n }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取最大值时,n 的值为____________. 【答案】6 【解析】试题分析:由题意得,等差数列为单调递减数列,因此其前n 项的和为Sn 为开口向下的二次函数,对称轴为48,62n n +==,所以当Sn 取最大值时,n 的值为6. 考点:等差数列前n 项的和性质11.已知等差数列{a n }的前20项的和为100,那么a 7·a 14的最大值为_________. 【答案】25 【解析】试题分析:因为等差数列{an}的前20项的和为100,所以12012071420()100,10,10.2a a a a a a +=+=+=因此2714714()252a a a a +≤=,即a 7·a 14的最大值为25.考点:等差数列性质,基本不等式12.已知等差数列{a n }的前n 项和为S n =(a +1)n 2+a ,某三角形三边之比为a 2∶a 3∶a 4,则该三角形的最大角为________. 【答案】23π 【解析】试题分析:因为{a n }为等差数列,所以前n 项和中常数项为零,即212340,,1,3,5,7.n a S n a a a a ======三角形的最大角的余弦为22235712352+-=-⨯⨯,因此最大角为23π考点:等差数列前n 项和性质,余弦定理 13.若f (x)=x +1ax -在x ≥3时有最小值4,则a =_________. 【答案】2 【解析】试题分析:当0a >时()111111a a f x x x x x =+=-++≥=--,当且仅当1x =时取等号.由14=得:95,342a x ==<,舍去;因此()1af x x x =+-在[3,)+∞上单调增函数,所以min ()(3)34,22a f x f a ==+==,当0a ≤时()1af x x x =+-为单调增函数,所以min ()(3)34,22af x f a ==+==,舍去. 考点:基本不等式14.已知△ABC 中,角A,B,C 所对的边分别为a,b,c ,且BC 边上的高为a ,则b c +cb的取值范围为______.【答案】【解析】试题分析:由三角形面积公式得:2211sin ,sin 22a bc A a bc A==,由余弦定理得:2222cos b c a bc A+=+,所以2222cos sin 2cossin 2cos b c b c a bc A bc A bc AA A c b bc bc bc++++====+≤,又2b c c b +≥,所以bc +cb的取值范围为 考点:三角形面积公式,余弦定理,基本不等式15.已知a 、b 、c 分别是△ABC 三个内角A 、B 、C 的对边.(1)若△ABC ,c =2,A =60º,求a ,b 的值; (2)若acosA =bcosB ,试判断△ABC 的形状,证明你的结论.【答案】(1)a b =1,(2)直角三角形或等腰三角形 【解析】试题分析:(1)解三角形问题,一般利用正余弦定理进行边角转化.=12bcsinA =bsin60º,∴b =1.再由余弦定理a 2=b 2+c 2-2bccosA =3,∴a (2)由正弦定理得2RsinA =a ,2RsinB =b ,∴2RsinAcosA =2RsinBcosB ,即sin2A =sin2B ,由已知A 、B 为三角形内角,∴A +B =90º或A =B .∴△ABC 为直角三角形或等腰三角形.本题也可从余弦定理出发:222222222222222222222,()(),()()(),22b c a a c b a b a b c a b a c b a b c a b a b bc ac+-+-=+-=+--=+-所以222c a b =+或220a b -=.解:(112bcsinA =bsin60º,∴b =1.由余弦定理a 2=b 2+c 2-2bccosA =3,∴a(2)由正弦定理得2RsinA =a ,2RsinB =b ,∴2RsinAcosA =2RsinBcosB ,即sin2A =sin2B ,由已知A 、B 为三角形内角, ∴A +B =90º或A =B .∴△ABC 为直角三角形或等腰三角形 考点:正余弦定理16.设函数f (x)=cos(2x +3π)+2a (1)求函数f (x)的单调递增区间(2)当0≤x ≤4π时,f (x)的最小值为0,求a 的值. 【答案】(1)[,]()36k k k Z ππππ-+∈,(2)a =-14.【解析】试题分析:(1)研究三角函数性质首先化为基本三角函数形式.即sin()y A x B ωϕ=++. f (x)=12cos2x +2a =sin(2x +6π)+2a .再根据基本三角函数性质列不等关系:由222262k x k πππππ-≤+≤+得f (x)的单调递增区间为[,]()36k k k Z ππππ-+∈(2)由0≤x≤4π,得22663x πππ≤+≤,故12≤sin(2x +6π)≤1.由f (x)的最小值为0,得12+2a =0.解得a =-14.解:(1)f (x)=12cos2x +2a =sin(2x +6π)+2a . 由222262k x k πππππ-≤+≤+,得k -3π≤x ≤k +6π(k ∈Z ). 所以,f (x)的单调递增区间为[,]()36k k k Z ππππ-+∈. (2)由0≤x ≤4π,得22663x πππ≤+≤,故12≤sin(2x +6π)≤1.由f (x)的最小值为0,得12+2a =0.解得a =-14.考点:三角函数性质17.已知圆的内接四边形ABCD 的边长分别为AB =2,BC =6, CD =DA =4, (1)求角A 的大小;(2)求四边形ABCD 的面积.【答案】(1)A =120º(2)【解析】 试题分析:(1)解三角形问题,一般利用正余弦定理进行边角转化. 由面积公式有四边形ABCD 的面积S =S △ABD +S △BCD =12AB ·AD ·sinA +12BC ·CD ·sinC ,∵A +C =180º∴sinA =sinC ∴S =16sinA .由余弦定理得:BD 2=AB 2+AD 2-2AB ·AD ·cosA=20-16cosA ,BD 2=CB 2+CD 2-2CB ·CD ·cosC=52-48cosC ,∴20-16cosA =52-48cosC 解之:cosA =-12, 又0º<A <180º, ∴A =120º,(2)由(1)有四边形ABCD 的面积S =16sin a ,所以S =16sin120º=解:四边形ABCD 的面积S =S △ABD +S △BCD =12AB ·AD ·sinA +12BC ·CD ·sinC ∵A +C =180º∴sinA =sinC ∴S =16sinA .由余弦定理得:BD 2=AB 2+AD 2-2AB ·AD ·cosA=20-16cosA , BD 2=CB 2+CD 2-2CB ·CD ·cosC=52-48cosC , ∴20-16cosA =52-48cosC 解之:cosA =-12, 又0º<A <180º, ∴A =120º,S =16sin120º=考点:正余弦定理,三角形面积公式18.已知{a n }是公比为q 的等比数列,且a m 、a m+2、a m+1成等差数列. (1)求q 的值;(2)设数列{a n }的前n 项和为S n ,试判断S m 、S m+2、S m+1是否成等差数列?并说明理由. 【答案】(1)q =1或-12.(2)当q =1时,S m , S m+2 , S m+1不成等差数列;q =-12时,S m , S m+2 , S m+1成等差数列.【解析】试题分析:(1)根据三数成等差数列,列出等量关系:2a m+2=a m+1+a m ∴2a 1q m+1=a 1q m +a 1qm –1,在等比数列{a n }中,a 1≠0,q ≠0,∴2q 2=q +1,解得q =1或-12.(2)根据等比数列前n 项和公式11,1(1),11n n na q S q a q q=⎧⎪=-⎨≠⎪-⎩分类讨论:若q =1,S m +S m+1=ma 1+(m +1)a 1=(2m +1)a 1,S m+2=(m +2)a 1∵a 1≠0,∴2S m+2≠S m +S m+1若q =-12 ,S m+2=2112112m +⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1=211362m ⎡⎤⎛⎫-⋅-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦·a 1 ,S m +S m+1=112112m⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1+1112112m +⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1=142113322m m +⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫-⋅-+-⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭·a 1=411332m ⎡⎤⎛⎫-⋅-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦·a 1,∴2 S m+2=S m +S m+1解:(1)依题意,得2a m+2=a m+1+a m ∴2a 1q m+1=a 1q m +a 1qm – 1在等比数列{a n }中,a 1≠0,q ≠0,∴2q 2=q +1,解得q =1或-12. (2)若q =1,S m +S m+1=ma 1+(m +1)a 1=(2m +1)a 1,S m+2=(m +2)a 1 ∵a 1≠0,∴2S m+2≠S m +S m+1若q =-12,S m+2=2112112m +⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1=211362m⎡⎤⎛⎫-⋅-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦·a 1S m +S m+1=112112m⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1+1112112m +⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1=142113322m m +⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫-⋅-+-⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭·a 1=411332m ⎡⎤⎛⎫-⋅-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦·a 1 ∴2 S m+2=S m +S m+1 故当q =1时,S m , S m+2 , S m+1不成等差数列;q =-12时,S m , S m+2 , S m+1成等差数列. 考点:等比数列前n 项和公式19.某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S 平方米.(1)分别写出用x 表示y 和S 的函数关系式(写出函数定义域); (2)怎样设计能使S 取得最大值,最大值为多少?【答案】(1)y =3000x (6<x <500).S=3030-150006x x ⎛⎫+ ⎪⎝⎭,6<x <500. (2)x =50 m ,y =60 m 时,最大面积是2430 m 2.【解析】 试题分析:(1)解实际问题应用题,关键正确理解题意,列出函数关系式,注意交代定义域.由已知xy =3000,2a +6=y ∴x >6,y >6,故y =3000x ,由y >6,解得x <500,∴y =3000x(6<x <500).S =(x -4)a +(x -6)a =(2x -10)a ,根据2a +6=y ,得a =2y -3=1500x-3,∴S =(2x -10)15003x ⎛⎫-⎪⎝⎭=3030-150006x x ⎛⎫+ ⎪⎝⎭,6<x <500.(2)由基本不等式求最值,注意等于号取值情况.S =3030-150006x x ⎛⎫+⎪⎝⎭≤3030-3030-2×300=2430,当且仅当6x =15000x,即x =50时等号成立,此时y =60. 解:(1)由已知xy =3000,2a +6=y ∴x >6,y >6,故y =3000x,由y >6,解得x <500,∴y =3000x(6<x <500).S =(x -4)a +(x -6)a =(2x -10)a , 根据2a +6=y ,得a =2y -3=1500x-3, ∴S =(2x -10)15003x ⎛⎫-⎪⎝⎭=3030-150006x x ⎛⎫+ ⎪⎝⎭,6<x <500.(2)S =3030-150006x x ⎛⎫+ ⎪⎝⎭≤3030-3030-2×300=2430, 当且仅当6x =15000x,即x =50时等号成立,此时y =60. 所以,矩形场地x =50 m ,y =60 m 时,运动场的面积最大,最大面积是2430 m 2. 考点:函数应用题,基本不等式求最值20.已知数列{a n }是等差数列,数列{b n }是等比数列,且对任意的n ∈N*,都有a 1b 1+a 2b 2+a 3b 3+···+a n b n =n ·2n+3.(1)若{b n }的首项为4,公比为2,求数列{a n +b n }的前n 项和S n ; (2)若a 1=8.①求数列{a n }与{b n }的通项公式;②试探究:数列{b n }中是否存在某一项,它可以表示为该数列中其它r (r ∈N ,r ≥2)项的和?若存在,请求出该项;若不存在,请说明理由.【答案】(1)S n =2n+2+n 2+3n -4(2)①a n =4n +4,b n =2,②不存在 【解析】试题分析:(1)条件“a 1b 1+a 2b 2+a 3b 3+···+a n b n ”实质为数列{}n n a b 前n 项的和,所以按已知n S 求n a 方法进行化简. ∵a 1b 1+a 2b 2+a 3b 3+···+a n b n =n ·2n+3∴a 1b 1+a 2b 2+a 3b 3+···+a n -1b n -1=(n -1)·2n+2(n ≥2) 两式相减得:a n b n =n ·2n+3-(n -1)·2n+2=(n +1)·2n+2 (n ≥2) 而当n =1时,a 1b 1=24适合上式,∴a n b n =(n +1)·2n+2(n ∈N*)∵{b n }是首项为4、公比为2的等比数列 ∴b n =2n+1∴a n =2n +2,∴{a n +b n }的前n 项和S n =()4222n n +++()41212n--=2n+2+n 2+3n -4(2)①由(1)有a n b n =(n +1)·2n+2,设a n =kn +b ,则b n=()212n n kn b++⋅+∴b n -1=12n n kn k b +⋅-+ (n ≥2) 设{b n }的公比为q ,则1n n bb -=()()()21n kn k b kn b n+⋅-++=q 对任意的n ≥2恒成立,即k(2-q)n 2+b(2-q)n +2(b -k)=0对任意的n ≥2恒成立,∴2k b q =⎧⎨=⎩又∵a 1=8,∴k +b =8∴k =b =4,∴a n =4n +4,b n =2n②存在性问题,一般从假设存在出发,有解就存在,无解就不存在.本题从范围角度说明解不存在.解:(1)∵a 1b 1+a 2b 2+a 3b 3+···+a n b n =n ·2n+3∴a 1b 1+a 2b 2+a 3b 3+···+a n -1b n -1=(n -1)·2n+2(n ≥2)两式相减得:a n b n =n ·2n+3-(n -1)·2n+2=(n +1)·2n+2(n ≥2)而当n =1时,a 1b 1=24适合上式,∴a n b n =(n +1)·2n+2(n ∈N*)∵{b n }是首项为4、公比为2的等比数列 ∴b n =2n+1∴a n =2n +2,∴{a n +b n }的前n 项和S n =()4222n n +++()41212n--=2n+2+n 2+3n -4(2)①设a n=kn +b ,则b n=()212n n kn b++⋅+,∴bn -1=12n n kn k b+⋅-+(n ≥2) 设{b n }的公比为q ,则1nn b b -=()()()21n kn k b kn b n +⋅-++=q 对任意的n ≥2恒成立, 即k(2-q)n 2+b(2-q)n +2(b -k)=0对任意的n ≥2恒成立,∴()()()202020k q b q b k -=⎧⎪-=⎨⎪-=⎩ ∴2k b q =⎧⎨=⎩ 又∵a 1=8,∴k +b =8∴k =b =4,∴a n =4n +4,b n =2n②假设数列{b n }中第k 项可以表示为该数列中其它r 项1212,,,()r t t t r b b b t t t ⋅⋅⋅<<⋅⋅⋅<的和,即12r k t t t b b b b =++⋅⋅⋅+,从而122222r t t tk =++⋅⋅⋅+,易知k ≥t r +111121232(12)2222222222212r t t r r rrt t t t t k++-=++⋅⋅⋅+≤+++⋅⋅⋅+==-<-∴k <t r +1,此与k ≥t r +1矛盾,从而这样的项不存在. 考点:已知n S 求n a ,等差数列与等比数列基本性质。
扬州市梅岭中学教育集团2018-2019学年第二学期期中考试试卷初二年级 数学学科 (时间:120分钟;命题人:夏玉豹 ;审核人:张怡)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填在答题纸相应位置.......上) 1.在等腰直角三角形、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图 形,又是中心对称图形的有A.3个B.4个C.5个D.6个 2.若代数式2x -在实数范围内有意义,则x 的取值范围是( )A.2x ≥-B.2x >-C.2x ≥D.2x ≤3.已知点12(1,),(3,)A y A y --都在反比例函数(0)ky k x=>的图像上,则1y 与2y 的大小关系为( ) A. 12y y > B. 12y y < C. 12y y = D.无法确定 4.如图,△ABC 中,∠ACB=90°,∠ABC=25°,以点C 为旋转中心顺时针旋转后得到 △A ′B ′C ,且点A 在边A ′B ′上,则旋转角的度数为( )A .65°B . 60°C .50°D . 40°5.如图,在□ABCD 中,BM 是ABC ∠的平分线,交CD 于点M ,且DM=2, □ABCD 的周长是14,则BC 的长等于( ) A .2 B . 2. 5 C .3 D . 3. 5第4题 第5题 第7题 第8题 6. 把分式中的x 、y 都扩大到原来的4倍,则分式的值( )A .扩大到原来的8倍B .扩大到原来的4倍C .缩小到原来的D .不变7.如图,将矩形纸片ABCD 的四个角向内翻折,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =12厘米,EF =16厘米,则边AD 的长是( )A .12厘米B .16厘米C .20厘米D .28厘米8.如图,正方形ABCD 与矩形EFGH 在直线l 的同侧,边,AD EH 在直线l 上,且AD =5 cm,EH =4 cm, EF =3 cm.保持正方形ABCD 不动,将矩形EFGH 沿直线l 左右移动,连接BF 、CG ,则BF CG +的最小值为( ) A.4 B.17 C.245D. 5 二、填空题(本大题共10小题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题..纸相应位置.....上) 9.4= ▲ .10.若点A (a ,b )在反比例函数2y x=的图像上,则代数式ab -4的值为 ▲ . 11.关于x 的方程122x ax x +=--有增根,则a 的值为 ▲ . 12.菱形ABCD 的对角线AC=5,BD=6,则菱形ABCD 的面积为 ▲ .13.如图,在平面直角坐标系中,点A 是函数y=(x <0)图象上的点,过点A 与y 轴垂直的直线交y 轴于点B ,点C 、D 在x 轴上,且BC ∥AD .若四边形ABCD 的面积为3,则k 值为 ▲ . 14.反比例函数y=,当x 的值小于-3时,y 的取值范围是 ▲ .15.如图,在△ABC 中,AB=6,D 、E 分别是AB 、AC 的中点,点F 在DE 上,且DF=3FE.当AF ⊥BF 时,BC 的长是 ▲ .16.在平行四边形ABCD 中,对角线AC 与BD 相交于点O .要使四边形ABCD 是正方形,还需添加一组条件.下面给出了五组条件:①AD AB =,且BD AC =;②AD AB ⊥, 且BD AC ⊥;③AD AB ⊥,且AD AB =;④BD AB =,且BD AB ⊥;⑤OC OB =, 且OC OB ⊥.其中正确的是 ▲ (填写序号).第13题 第15题 第17题 第18题 17.如图,将正方形 A BCD 绕点 A 按逆时针方向旋转到正方形AB ' C ' D ' ,旋转角为 α (18.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数(0)ky x x=>与AB 相交于点D ,与BC 相交于点E ,若3BD AD =,且ODE ∆的面积是9,则k 的值是 ▲ .三、解答题(本大题共10题,共96分,解答时在答题卷上写出证明过程或演算步骤.) 19.(本题8分)计算:(1)53123452÷ (2)32212332aa a ⨯÷20.(本题8分)解方程:224124x x x +-=--;21. (本题8分)先化简,再求值: 2111()1121m m m m m --÷-+-+,其中21m =-.22. (本题8分)小明用12元买软面笔记本,小丽用21元买硬面笔记本,已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?23. (本题10分)如图,在ABC Rt △中,︒=∠90BAC ,AD 为BC 边上的中线,AE ∥BC ,且BC AE 21=,连接CE . (1)求证:四边形ADCE 为菱形;(2)连接BE ,若BE 平分ABC ∠,2=AE ,求BE 的长.EDCB A (第25题)24.(本题8分)已知实数a,b,c在数轴上的位置如图,且|a|=|b|,化简|a|+|b|+|c|﹣﹣2GF EDCBA25. (本题10分)如图,在平面直角坐标系中,一次函数()02≠+=m mx y 的图像与反比例函数()0≠=k xky 的图像交于第一、三象限内的A 、B 两点,与y 轴交于点C ,点M 在x 轴负半轴上,OC OM =,且四边形OCMB 是平行四边形,点A 的纵坐标为4.(1)求该反比例函数和一次函数的表达式; (2)连接AO ,求AOB △的面积;(3)直接写出关于x 的不等式2-xkmx <的解集.26. (本题12分)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指数y 随时间x (分钟)的变化规律如下图所示(其中AB 、BC 分别为线段,CD 为双曲线的一部分): (1)求出线段AB 、曲线CD 的解析式,并写出自变量的取值范围(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?27.(本题12分)如图,在正方形ABCD 中,点E 是BC 边上的一动点,点F 是CD 上一点,且DF CE =,AF 、DE 相交于点G .(1)求证:DCE ADF ≌△△; (2)求AGD ∠的度数(3)若BC BG =,求AGDG的值.(第25题)OMC BA yx28.(本题12分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点B 在反比例函数()0≠=k xky 的第一象限内的图像上,4=OA ,3=OC ,动点P 在x 轴的上方,且满足OABC PAO S S 矩形△31=.(1)若点P 在这个反比例函数的图像上,求点P 的坐标; (2)连接PO 、PA ,求PA PO +的最小值;(3)若点Q 是平面内一点,使得以A 、B 、P 、Q 为顶点的四边形是菱形,则请你直接写出满足条件的所有点P 的坐标.(备用图)xyO ABCCB AO yx(第28题)扬州市梅岭中学教育集团2018-2019学年期中考试答案初二年级 数学学科答案一、选择题 题号 1 2 3 4 5 6 7 8 答案ACBCBDCB二、填空题:9.____2___ 10.____-2____ 11.____2____ 12.____15___ 13.___-3________14._-1<_y<0___ 15.____8_______ 16.○1○2○3○5 17.__60O _ 18. __________三、解答题(本大题共10小题,共96分.解答时应写出必要的计算或说明过程)19.计算:(1)53123452÷ (2)32212332aa a ⨯÷ == =20.解方程:224124x x x +-=--; 解析:方程两边同时乘以(2)(2)x x -+得,22(2)44x x +-=-441x x =-=-检验:当1x =-时,(2)(2)0x x -+≠,所以1x =-是原方程的解.21.先化简,再求值: 2111()1121m m m m m --÷-+-+,其中21m =-. 解:原式= 把21m =-代入,原式=+122. 解:设软面积笔记本每本x 元,则硬面笔记本每本(x +1.2)元 根据题意得:解得:x =1.6经检验,x =1.6是分式方程的解但按此价格,他们都买了7.5本笔记本,不符合实际意义.答小明和小丽不能买到相同数量的笔记本.23.解:(1)∵AD为BC边上的中线∴BD=CD=BC∵AE=BC∴AE=CD∵AE∥BC∴四边形ADCE为平行四边形∵∠BAC=90°,AD为BC边上的中线∴AD=BC=CD∴四边形ADCE为菱形(2)连接BE与AD相交于点O∵若BE平分∠ABC∴∠ABE=∠CBE∵AE∥BC∴∠AEB=∠CBE∴∠ABE=∠AEB∴AB=AE∵BD=BC=AE∴AB=BD∴∠BOD=90°∵四边形ADCE为菱形,AE=2∴AD=DC=CE=AE=2,BC=4∵A D∥CE∴∠BEC=∠BOD=90°∴BE==224.【解答】解:由题意得:c<a<0<b,又∵|a|=|b|,∴c﹣a<0,∴|a|+|b|+|c|﹣﹣2=﹣a+b﹣c﹣a+c+2c=﹣2a+b+2c.25.解:(1)当x=0时,y=mx+2=2,则C(0,2),∴OM=OC=2,∵四边形OCMB是平行四边形∴BM∥OC,BM=OC=2,∴B(﹣2,﹣2),把B(﹣2,﹣2)代入y=得k=﹣2×(﹣2)=4,∴反比例函数解析式为y=;把B(﹣2,﹣2)代入y=kx+2得﹣2k+2=﹣2,解得k=2,∴一次函数解析式为y=2x+2;(2)当y=4时,2x+2=4,解得x=1,则A(1,4),S△AOB=S△AOC+S△BOC=×2×1+×2×2=3;(3)当x<﹣2或0<x<1时,mx+2<,∴不等式mx<﹣2的解集为x<﹣2或0<x<1.26.解:(1)设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2=,把C(25,40)代入得,k2=1000,∴y2=.(2)当x1=5时,y1=2×5+20=30,当x2=30时,y2==,∴y1<y2∴第30分钟注意力更集中.(3)令y1=36,∴36=2x+20,∴x1=8令y2=36,∴36=,∴x2=≈27.8∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.27.(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADF=∠DCE=90°,在△ADF和△DCE中∴△ADF≌△DCE(SAS),(2)解:由(1)得△ADF≌△DCE,∴∠DAF=∠CDE,∵∠ADG+∠CDE=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,(3)过点B作BH⊥AG于H∵BH⊥AG,∴∠BHA=90°,∴∠BHA=∠AGD,∵四边形ABCD是正方形,∴AB=AD=BC,∠BAD=90°,∵∠ABH+∠BAH=90°,∠DAG+∠BAH=90°,∴∠ABH=∠DAG,在△ABH和△ADG中,∴△ABH≌△ADG(AAS),∴AH=DG,∵BG=BC,BA=BC,∴BA=BG,∴AH=AG,∴DG=AG,∴=.28.解:(1)∵四边形OABC是矩形,OA=4,OC=3,∴点B的坐标为(4,3),∵点B在反比例函数y=(k≠0)的第一象限内的图象上∴k=12,∴y=,设点P的纵坐标为m(m>0),∵S△P AO=.∴•OA•m=OA•OC•,∴m=2,当点,P在这个反比例函数图象上时,则2=,∴x=6∴点P的坐标为(6,2).(2)过点(0,2),作直线l⊥y轴.由(1)知,点P的纵坐标为2,∴点P在直线l上作点O关于直线l的对称点O′,则OO′=4,连接AO′交直线l于点P,此时PO+P A的值最小,则PO+P A的最小值=PO′+P A=O′A==4.(3)①如图2中,当四边形ABQP是菱形时,易知AB=AP=PQ=BQ=3,P1(4﹣,2),P2(4+,2),且Q1(4﹣,5),Q2(4+,5).②如图3中,当四边形ABPQ是菱形时,P3(4﹣2,2),P4(4+2,2),且Q3(4﹣2,﹣1),Q4(4+2,﹣1).综上所述,点P的坐标为P1(4﹣,2),P2(4+,2),P3(4﹣2,2),P4(4+2,2)。
江苏省扬州中学2018-—2019学年第二学期期中测试高二语文试卷语言文字运用1。
依次填入下列各句横线处的成语,最恰当的一组是艺术心灵的诞生,在人生忘我的一刹那,即美学上所谓“静照”。
静照的起点在于空诸一切, ,和世务暂时绝缘。
这时一点觉心,静观万象,万象如在镜中,,各得其所,呈现着它们各自的充实的、内下的、自由的生命,所谓万物静观皆自得。
这自得的、自由的各个生命在里吐露光辉。
A。
心无挂碍光明莹洁静默 B。
忘乎所以玲珑剔透静默C。
心无挂碍玲珑剔透平静 D。
忘乎所以光明莹洁平静【答案】A【解析】【详解】试题分析:本题考查辨析近义词语(包括成语)的能力。
辨析近义词语(包括成语)的关键就是要仔细分辨它们的细微差别。
首先阅读语境,把握语境含义,然后抓住相异语素,分析其意义差异,同时可联系日常习惯用语,推断词语意义及用法。
第一处,心无挂碍:内心没有任何牵挂。
忘乎所以:由于过度兴奋或骄傲自满而忘记了言行应该把握的分寸。
根据语境“在于空诸一切"“和世务暂时绝缘”,此处所说的是静照的起点,因此应填“心无挂碍”;第二处,光明莹洁:光亮透明,晶莹而光洁.玲珑剔透:形容器物精致,孔穴明晰,结构奇巧(多指镂空的工艺品和供玩赏的太湖石等)。
也形容人聪明伶俐。
此处是说静观万象的特点,因此应该用“光明莹洁”。
第三处,此处空格说的是各个生命在静照中的状态,静默:寂静,没有声音。
平静:(心情、环境等)没有不安或动荡。
根据语境“这自得的、自由的各个生命吐露光辉”,应选“静默”。
故选A。
2。
下列各句中,没有语病的一句是A。
生产景泰蓝的北京工艺美术厂以背负4000多万元债务、资不抵债等四项“罪名”被法院裁定破产。
据悉,导致这家老字号企业破产的主要原因是由人才断档引起的。
B. 文化产业与旅游产业的融合应是一个以文化带旅游、以旅游促文化的过程,因此,旅游产业要持续健康发展,就必须合理利用文化资源,不断丰富旅游产业的文化内涵和品位。
2018-2019学年江苏省扬州市邗江中学高一上学期期中数学试题一、单选题1.M={1,2,m 2-3m-1},N={-1,3},M∩N={3},则m 的值为( ) A .4 B .-1C .4或-1D .-4或1【答案】C【解析】由{}3M N ⋂=,可得3M ∈,则2313m m --=,即可求解答案. 【详解】由题意知,3M ∈,∴2313m m --=,解得1m =-或4m =.经检验1m =-或4m =均满足{}3M N ⋂=,所以m 的值为4或1-,故选C. 【点睛】本题主要考查了集合的交集的概念和集合与运算的关系的应用,其中熟记集合交集的概念和集合中运算的基本特征是解答的关键,着重考查了推理与运算能力. 2.下面各组函数中是同一函数的是( )A .()()2f xg x ==B .()()2111x f x g x x x -==+-,C .()()f x x g x ==,D .()()f xg x ==【答案】C【解析】先判断每组函数的定义域是否相同,然后再判断每组函数的对应关系是否相同,由此判断是否为同一函数. 【详解】A .()f x =R ,()2g x =的定义域为[)0,+∞,故不是同一函数;B .()211x f x x -=-的定义域为{}|1x x ≠,()g x 的定义域为R ,故不是同一函数;C .()()f x x g x ==,R ,且()g x x ==,故是同一函数;D .()f x =[)1,+∞,()g x(][),11,-∞-+∞U ,故不是同一函数.故选:C. 【点睛】本题考查同一函数的判断,难度一般.判断两个函数是否为同一函数,先要从定义域的角度判断,若定义域不同,则一定不是同一函数,若定义域相同,则需要再判断对应关系是否相同,若对应关系不同,则不是同一函数,若对应关系相同,则为同一函数. 3.α是一个任意角,则α的终边与3απ+的终边一定( ) A .关于坐标原点对称 B .关于x 轴对称 C .关于y 轴对称 D .关于直线y x =对称【答案】A【解析】将2απ+终边逆时针旋转π,可得3απ+,然后根据终边相同的角,可得结果. 【详解】因为α终边与2απ+的终边相同, 将2απ+终边逆时针旋转π得3απ+,2απ+终边与3απ+终边关于坐标原点对称则α的终边与3απ+的终边关于坐标原定对称 故选:A 【点睛】本题考查两角终边的位置关系,属基础题4.若函数243y x x =-+-的定义域为[]0,t ,值域为[]3,1-,则t 的取值范围是( )A .(]0,4 B .3,32⎡⎤⎢⎥⎣⎦C .[)2,+∞D .[]2,4【答案】D【解析】利用数形结合,结合值域,可得结果. 【详解】 如图令()243y f x x x ==-+-则()()()03,43,21f f f =-=-= 又定义域为[]0,t ,值域为[]3,1- 所以[]2,4t ∈ 故选:D 【点睛】本题主要考查二次函数的应用,属基础题. 5.设0.64a =,0.348b =,0.912c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>【答案】A【解析】将,,a b c 均化简为以2为底的指数幂,然后根据2xy =的单调性,可得结果.【详解】由0.6 1.242a ==,0.34 1.0282b ==,0.90.9122c -⎛⎫== ⎪⎝⎭由2xy =为R 上的单调递增函数 所以a b c >> 故选:A 【点睛】本题考查利用函数单调性比较式子大小,属基础题.6.要得到函数y =23-x 的图象,只需将函数1()2xy =的图象( )A .向右平移3个单位B .向左平移3个单位C .向右平移8个单位D .向左平移8个单位【答案】A 【解析】33112,22x x xy y --⎛⎫⎛⎫==∴= ⎪ ⎪⎝⎭⎝⎭Q 的图象向右平移3个单位得到312x y -⎛⎫= ⎪⎝⎭即是32xy -=的图象,故选A.二、填空题 7.4sin3π=______. 【答案】3-【解析】根据诱导公式,以及特殊角的正弦值,可得结果. 【详解】43sinsin sin 333ππππ⎛⎫=+=-=- ⎪⎝⎭故答案为:3- 【点睛】本题主要考查诱导公式,属基础题. 8.计算:2lg5lg 4+=______. 【答案】2【解析】根据对数的运算性质,可得结果. 【详解】222lg5lg 4lg5lg 4lg100lg102+=+===故答案为:2 【点睛】本题考查对数的运算性质,属基础题.9.已知函数2log ,0()2,0xx x f x x >⎧=⎨≤⎩若1()2f a =,则a =_____. 【答案】【解析】试题分析:当0a >时,21()log 2f a a ==,解得2a =0a ≤时,1()22a f a ==,解得1a =-. 【考点】分段函数的求法.10.已知函数()28xf x x =+-的零点为0x ,且()0,1x k k ∈+,则整数k =______.【答案】2【解析】计算()()2,3f f ,根据零点存在性定理,可得结果. 【详解】由()()220,330f f =-<=> 所以()()230f f ⋅<故函数()f x 在()2,3存在零点,所以2k = 故答案为:2 【点睛】本题主要考查函数的零点存在性定理,属基础题. 11.已和幂函数()f x k x α=⋅的图象过点12⎛⎝⎭,则k α+=__________. 【答案】32【解析】由幂函数的定义和解析式求出k 的值,把已知点代入求出α的值,可得答案. 【详解】解:∵()f x k x α=⋅是幂函数,∴1k =,所以幂函数()f x x α=的图象过点12⎛ ⎝⎭,∴122α⎛⎫= ⎪⎝⎭,则12α=,则13122k α+=+=, 故答案为:32. 【点睛】本题考查了幂函数的定义与解析式的应用,属于基础题. 12.如图,矩形ABCD 的三个顶点,,A B C分别在函数y x=,12y x =,2xy ⎛⎫= ⎪ ⎪⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为______.【答案】11,24⎛⎫⎪⎝⎭【解析】先利用已知求出,A B C x x y ,的值,再求点D 的坐标. 【详解】由图像可知,点(),2A A x 在函数2logy x=的图像上,所以22logAx =,即22122A x ⎛== ⎝⎭. 因为点(),2B B x 在函数12y x =的图像上,所以122Bx =,4B x =.因为点()4,C C y 在函数22x y ⎛= ⎝⎭的图像上,所以42124C y ⎛⎫== ⎪ ⎪⎝⎭. 又因为12D A x x ==,14D C y y ==, 所以点D 的坐标为11,24⎛⎫⎪⎝⎭. 故答案为11,24⎛⎫⎪⎝⎭【点睛】本题主要考查指数、对数和幂函数的图像和性质,意在考查学生对这些知识的理解掌握水平.13.已知11221a a --=,则22a a -+的值为______. 【答案】7【解析】根据11221a a -⋅=,两边平方可得1a a -+,然后计算()21a a -+,可得结果.【详解】由11221a a--=,则211221a a -⎛⎫-= ⎪⎝⎭所以1112221a a a a --+-=,则13a a -+= 所以()21239a a -+==,则227a a -+=故答案为:7 【点睛】本题主要考查指数幂的运算,难点在于112222,a a a a --⋅⋅是个定值,属基础题.14.已知不等式22log (22)2ax x -+>在[]1,2x ∈上恒成立,则实数a 的取值范围是_______【答案】(4,)+∞【解析】将对数不等式化简得二次不等式,根据在[]1,2上恒成立即可求得a 的取值范围. 【详解】不等式22log (22)2ax x -+>化简得222log (22)log 4ax x -+>根据对数的单调性可得2224ax x -+>,即2220ax x -->,即有12a >(211x x +)max , 由211x x +=(112x +)214-,x ∈[1,2],即有1x ∈[12,1], 可得x =1,即1x=1,取得最大值2.则12a >2,解得a >4. 故答案为:(4,+∞). 【点睛】本题考查了对数不等式的解法,二次不等式在指定区间内的恒成立问题, 注意运用参数分离和二次函数的最值的求法,考查运算能力,属于中档题. 15.已知函数()3123f x x x =+,对任意的[]3,3t ∈-,()()20f tx f x -+<恒成立,则x 的取值范围是______. 【答案】11,2⎛⎫- ⎪⎝⎭【解析】根据函数奇偶性以及单调性,可得2tx x -<-,然后构造新函数()2g t tx x =+-,最后根据一次函数的图像与性质可得结果.【详解】 由()3123f x x x =+,可知定义域为R 则()()f x f x -=-,可知函数()f x 为奇函数 又31,23y x y x ==均为单调递增的函数, 所以()f x 为单调递增的函数,由()()20f tx f x -+<,则()()2f tx f x -<- 即()()2f tx f x -<-,则2tx x -<-, 所以20tx x +-<. 据题意可知:对任意的[]3,3t ∈-,()()20f tx f x -+<恒成立 即任意的[]3,3t ∈-,20tx x +-<恒成立 令()2g t tx x =+-所以()()33201133202g x x x g x x ⎧-=-+-<⎪⇒-<<⎨=+-<⎪⎩ 所以11,2x ⎛⎫∈- ⎪⎝⎭故答案为:11,2⎛⎫- ⎪⎝⎭【点睛】本题考查利用函数的奇偶性及单调性求解不等式,掌握等价转换的方法,同时当含多个未知量的时候,一般给出谁的范围,谁就是主元,属中档题.16.设函数()f x 满足()22221x f x ax a =-+-,且()f x 在21222,2a a a --+⎡⎤⎣⎦上的值域为[]1,0-,则实数a 的取值范围为______.【答案】332,22⎡⎤⎡-+⋃⎢⎥⎢⎣⎦⎣⎦【解析】利用换元法,可得()2221g x x ax a =-+-,然后采用等价转换的方法,可得()g x 在21,22a a a ⎡⎤--+⎣⎦的值域为[]1,0-,最后根据二次函数的性质,可得结果.【详解】 由()22221xf xax a =-+-令22,log xt x t ==,所以()()2222log 2log 1f t t a t a =-+- 则令()2221g x x ax a =-+-由()f x 在21222,2a a a --+⎡⎤⎣⎦上的值域为[]1,0-等价为()g x 在21,22a a a ⎡⎤--+⎣⎦的值域为[]1,0-()g x 的对称轴为x a =,且()()1,10g a g a =--= 所以()()22122222a a a a a a -+-+≤≤-+可得3512a -≤≤或352a +≤≤ 所以3535,12,22a ⎡⎤⎡⎤-+∈⋃⎢⎥⎢⎥⎣⎦⎣⎦故答案为:3535,12,⎡⎤⎡⎤-+⋃⎢⎥⎢⎥⎣⎦⎣⎦【点睛】本题主要考查函数值域的应用,难点在于使用等价转换思想,使问题化繁为简,属中档题.三、解答题17.已知集合{}2514A x y x x ==--,集合(){}2|lg 712B x y x x ==---,集合{}|121C x m x m =+≤≤-.(1)求A B I ;(2)若A C A ⋃=,求实数m 的取值范围. 【答案】(1)(4,3)--;(2)或.【解析】试题分析:(1)根据定义域求得集合A ,根据值域求得集合B ,再根据数轴求交集(2)先将条件转化为集合包含关系:A C ⊃ ,再根据空集讨论,最后根据数轴研究两集合包含关系.试题解析:(1)25140x x --≥Q ,27x x ∴≤-≥或即(][),27,A =-∞-⋃+∞27120x x ---> 43x ∴-<<-即 ()4,3B =--()4,3A B ∴⋂=--(2)C A ∴⊆当2112m m m -<+<时即时 C 为空集满足条件2m ∴<; 当211m m -≥+即2m ≥时21217m m -≤-+≥或,162m m ∴≤-≥或;又2m ≥ 6m ∴≥综上或.点睛:(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.18.(1)已知角α的终边经过点()()12,50P a a a <,求sin α,cos α,tan α的三角函数值. (2)求函数cos sin 2tan sin cos tan x x xy x x x=++的值域. 【答案】(1)5sin 13α=-,12cos 13α=-,5tan 12α=; (2){}4,2,0-. 【解析】(1)根据三角函数的概念2222sin tan yxx y x y ααα===++,可得结果.(2)根据分类讨论的方法,讨论x 的终边在哪个象限,判断sin ,cos ,tan x x x 的符号,可得结果. 【详解】(1)由0a <,则()()2212513OP a a a =+=-5sin 13α=-,12cos 13α=-,5tan 12α=;(2)当x 为第一象限角时sin 0,cos 0,tan 0x x x >>>所以1124y =++=当x 为第二象限角时,sin 0,cos 0,tan 0x x x ><<所以()1122y =+--=-,当x 为第三象限角时,sin 0,cos 0,tan 0x x x <<>所以()1120y =-+-+=,当x 为第四象限角时,sin 0,cos 0,tan 0x x x <><所以1122y =-+-=-,函数的值域是{}4,2,0-.【点睛】本题考查三角函数的概念,属基础题.19.函数()f x 是实数集R 上的奇函数, 当0x >时, 2()log 3f x x x =+-. (1)求(1)f -的值;(2)求函数()f x 的表达式;(3)求证:方程()0f x =在区间(0,+∞)上有唯一解.【答案】(1)2(2)f (x )=()22log 3?,?0,{0,0,log 3,0x x x x x x x --++<=++>(3)见解析【解析】试题分析:(1)由题函数()f x 是实数集R 上的奇函数.所以()(1)1f f -=- .则(1)f -易求(2)由题函数()f x 是R 当上的奇函数()00f ∴= ;又当0x < 时,0x -> ,所以22()()()3()3f x log x x log x x -=-+--=---.所以-f (x )=log 2(-x )-x -3,从而f (x )=-log 2(-x )+x +3.所以()f x = ()22log 3,0,0,0,log 3,0x x x x x x x -⎧-++<⎪=⎨⎪++>⎩(3)因为()222230f log =+-= ,所以方程()0f x = 在区间(0)∞,+ 上有解2x =.又方程()0f x = 可化为23log x x =-.设函数()()23g x log x h x x =,=-. 以下证明方程()()g x h x = 在区间(0)∞,+上只有一个解即可.试题解析(1)函数f (x )是实数集R 上的奇函数.所以f (-1)=-f (1).因为当x >0时,f (x )=log 2x +x -3,所以f (1)=log 21+1-3=-2.所以f (-1)=-f (1)=2.(2)当x =0时,f (0)=f (-0)=-f (0),解得f (0)=0;当x <0时,-x >0,所以f (-x )=log 2(-x )+(-x )-3=log 2(-x )-x -3.所以-f (x )=log 2(-x )-x -3,从而f (x )=-log 2(-x )+x +3.所以f (x )=()22log 3,0,0,0,log 3,0x x x x x x x -⎧-++<⎪=⎨⎪++>⎩(3)因为f (2)=log 22+2-3=0,所以方程f (x )=0在区间(0,+∞)上有解x =2.又方程f (x )=0可化为log 2x =3-x .设函数g (x )=log 2x ,h (x )=3-x .由于g (x )在区间(0,+∞)上是单调增函数h (x )在区间(0,+∞)上是单调减函数,所以,方程g (x )=h (x ) 在区间(0,+∞)上只有一个解.所以,方程f (x )=0在区间(0,+∞)上有唯一解.20.某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD 是矩形,其中2AB =米,1BC =米;上部CDG 是等边三角形,固定点E 为AB 的中点.EMN ∆是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN 是可以沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆.(1)设MN与AB之间的距离为x米,试将EMN∆的面积S(平方米)表示成关于x 的函数;(2)求EMN∆的面积S(平方米)的最大值.【答案】(1)()() 2,01331,113x xSx x x⎧<≤⎪=⎛⎫⎨-++<<+⎪⎪ ⎪⎝⎭⎩;(2)132+平方米. 【解析】(1)采用分类讨论的方法,当01x<≤时,利用面积公式即可;当113x<<+时,连接EG交CD于点F,交MN于点H,计算GF,GH利用相似,可得MN,可得结果.(2)根据(1)的结论,研究函数的单调性,可得结果.【详解】(1)①当MN在矩形区域滑动,即01x<≤时,所以EMN∆的面积122S x x=⨯⨯=;②当MN在三角形区域滑动,即113x<<+时,如图,连接EG,交CD于点F,交MN于点H,∵E为AB中点,∴F为CD中点,GF CD⊥,且3FG=又∵MN//CD,∴MNG DCG∆∆:.∴MN GH DC GF =,即21x MN ⎤-=. 故EMN ∆的面积2112x S x ⎤-=即21S x x ⎛=+ ⎝⎭; 综合可得:()(2,011,11x x S x x x ⎧<≤⎪=⎛⎨+<<+ ⎪ ⎝⎭⎩. (2)①当MN 在矩形区域滑动时,S x =,所以有01S <≤;②当MN 在三角形区域滑动时,2133S x x ⎛=-++ ⎝⎭,当12x =(米)时, S得到最大值,最大值123+(平方米).∵112+>, ∴S有最大值,最大值为12+. 【点睛】 本题考查实际问题中的数学建模以及函数值域的求法,属中档题.21.已知函数()2f x x bx c =++. (1)若()()g x xf x =是奇函数,求b 的值;(2)若2b a =-,58a c -=,且()20f x >对任意的实数x 都成立,求a 的取值范围; (3)对于任意的[]12,1,1x x ∈-,总有()()124f x f x -≤,求b 的取值范围. 【答案】(1)0;(2)1,52⎛⎫ ⎪⎝⎭;(3)[]22-,.【解析】(1)根据奇函数的判断方法,可得结果(2)利用换元法,结合构造函数可得()()28825,0h t t a t a t =+-+-≥,然后根据讨论对称轴与[)0,+∞的位置,可得结果.(3)根据题意等价转换为()()max min 4f x f x -≤,结合分类讨论的方法,讨论2b x =-与区间[]1,1-的位置关系,判断函数的单调性并求出最值,可得结果.【详解】(1)()()0g x g x -+=,220bx =由对任意x 恒成立,所以0b =.(2)依题意: ()()2425208a f x x a x -=+-+>, 令20x t =≥, 则()()288250h t t a t a =+-+->, 当对称轴202a --≤时, ()050h a =->,[)2,5a ∈, 当对称轴202a -->时, ∆<0,1,32a ⎛⎫∈⎪⎝⎭,则1,22a ⎛⎫∈ ⎪⎝⎭, 综上:1,52⎛⎫ ⎪⎝⎭.(3)法1:取11x =,21x =-,可得()()114f f --≤,24b ≤,所以[]2,2b ∈-,[]1,12b -∈-. 函数()f x 在区间[]1,1-上的最小值2b f ⎛⎫- ⎪⎝⎭最大值为在()1f 或()1f -,所以()()142142b f f b f f ⎧⎛⎫--≤⎪ ⎪⎝⎭⎪⎨⎛⎫⎪---≤ ⎪⎪⎝⎭⎩,解得:[]2,2b ∈-.法2:分四种情况进行讨论, 当12b -≤-时,即2b ≥时, ()f x 在[]1,1-上单调增,()()1124f f b --=≤,2b ≤,2b =, 当12b -≥时,即2b ≤-时, ()f x 在[]1,1-上单调减,()()1124f f b --=-≤,2b ≥-,2b =-, 当()1,02b -∈-,即()0,2b ∈时 ()()max 1f x f =,()min 2b f x f ⎛⎫=- ⎪⎝⎭, ()211422b b f f ⎛⎫⎛⎫--=+≤ ⎪ ⎪⎝⎭⎝⎭, 得[]6,2b ∈-,∴()0,2b ∈. 当()0,12b -∈,即()2,0b ∈-时 ()()max 1f x f =-,()min 2b f x f ⎛⎫=- ⎪⎝⎭, ()211422b b f f ⎛⎫⎛⎫---=-≤ ⎪ ⎪⎝⎭⎝⎭, 得[]2,6b ∈-,∴()2,0b ∈-.综上,[]2,2b ∈-.【点睛】本题主要考查二次函数动轴定区间的问题,难点在于分类讨论对称轴与定区间的位置关系,属难题.22.已知函数()y f x =,若在定义域内存在0x ,使得()()00f x f x -=-成立,则称0x 为函数()y f x =的局部对称点.(1)若,a b ∈R 且0a ≠,证明:函数()2f x ax bx a =+-必有局部对称点;(2)若函数()2xf x c =+在定义域[]1,2-内有局部对称点,求实数c 的取值范围; (3)若函数()124231x x m m f x +-⋅+-=在R 上有局部对称点,求实数m 的取值范围.【答案】(1)证明见解析;(2)1718c --≤≤;(3)1m ≤【解析】(1)根据新定义的“局部对称点”的概念,计算()()0f x f x -+=,可得结果. (2)根据“局部对称点”的概念,利用分离参数的方法,可得222x x c --=+,然后构造新函数,研究新函数的值域与c 的关系,可得结果.(3)根据“局部对称点”的概念,以及换元法,可得222280t mt m -+-=在[)2,+∞有解然后构造函数()22228f t t mt m =-+-,利用函数性质,可得结果. 【详解】(1)由()2f x ax bx a =+-得()2f x ax bx a -=--,代入()()0f x f x -+=得,()()220ax bx a ax bx a +-+--=,得到关于x 的方程()200ax a a -=≠,1x =±, 则函数()f x 必有局部对称点.(2)方程2220x x c -++=在区间[]1,2-上有解则222x x c --=+,设()212x t x =-≤≤,12t ≤≤4,12c t t -=+,其中11724t t +≤≤, 所以1718c --≤≤.(3)()12423x x f x m m --+-=-⋅+-,由于()()0f x f x -+=,所以()1212423423x x x x m m m m --++-⋅+-=--⋅+-, 则()()()()244222230*x x x x m m --+-++-= 所以可知方程()*在R 上有解,令()222x x t t -+=≥,则2442x x t -+=-,解法1:当()12423x x f x m m +=-+-时,由()()0f x f x +-=,可得()244222260x x x x m m --+-++-=.[)222,x x t -=+∈+∞,则2442x x t -+=-, 从而222280t mt m -+-=在[)2,+∞有解即可保证()f x 为“局部奇函数”.令()22228F t t mt m =-+-, 1︒ 当()20F ≤,222280t mt m -+-=在[)2,+∞有解,由()20F ≤,即22440m m --≤,解得11m ≤;2︒ 当()20F >时,222280t mt m -+-=在[)2,+∞有解等价于()()2244280220m m m F ⎧∆=--≥⎪⎪>⎨⎪>⎪⎩,解得1m +≤综上,所求实数m的取值范围为1m ≤解法2:方程()*变为222280t mt m -+-= 在区间[)2,+∞需满足条件:()2248402m m ⎧∆=--≥≥,即1m m ⎧-≤≤⎪⎨≤≤⎪⎩化简得1m ≤【点睛】本题考查新定义的理解以及二次函数的综合应用,属难题.。
扬州中学2022-2023学年高一下学期月考数学试卷 2023.3第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 设a 、b 是非零向量,则“a 、b 共线”是“a b a b +=+”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件2. 如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,点E 在线段BD 上,且3EB DE =,若(),R AE AD AC λμλμ=+∈,则( )A .12λμ=B .2λμ=C .3λμ=D .13λμ=3. 已知单位向量a b ,满足14a b ⋅=,且2c a b =+,则sin ,a c <>=( )A .8B .8C .38D .84. 在ABC 中,若sin2sin2sin2B C A +=,则ABC 的形状为( ) A .钝角三角形B .直角三角形C .等边三角形D .等腰直角三角形5. 已知()()11tan sin sin 34tan ααβαββ⎛⎫+=-==⎪⎭,,则( ) A . -2B .12-C . 2D .126. 如图所示,在平面四边形ABCD 中,BCD △是等边三角形,2AD =,27BD =,23πBAD ∠=,则ABC 的面积为( )A .B .C .D .7. 《周髀算经》中给出的弦图是由四个全等的直角三角形和中间一个小正方形拼成的一个大正方形,如图所示,直角三角形中最小的一个角为()045αα<<,且小正方形与大正方形的面积之比为1:4,则tan α=( )C.43 D.458. 已知函数()s i n 24f x x π⎛⎫=+ ⎪⎝⎭,()3πsin 24g x x ⎛⎫=+ ⎪⎝⎭,若当120x x t ≤<≤时,总有()()()()1212f x f x g x g x -<-,则正实数t 的最大值为( ) A .6πB .4π C .3π D .2π二、多选题(本大题共4小题,共20.0分。
江苏省扬州中学2021-2022学年度第二学期期中试题高二数学试卷满分:150分,考试时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分.1.已知从甲地到乙地有乘飞机或者坐轮渡两种交通方式,从乙地到丙地有乘大巴车、高铁或者乘飞机三种交通方式,则从甲地经乙地到丙地不同的交通方式的种数为()A.4B.5C.6D.82.直三棱柱111ABC A B C -中,若CA a = ,CB b = ,1CC c =,则1A B = ()A.a b c-+-B.a b c-+C.a b c-++D.a b c+-r r r3.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率()P A 是()A.23B.13C.19D.1184.设m 为正整数,2()m x y +的展开式中二项式系数的最大值为a ,21()m x y ++的展开式中的二项式系数的最大值为b .若158a b =,则m 的值为()A.5B.6C.7D.85.青年大学习是共青团中央发起的青年学习行动,每期视频学习过程中一般有两个问题需要点击回答.某期学习中假设同学小华答对第一、二个问题的概率分别为13,35,且两题是否答对相互之间没有影响,则至少答对一个问题的概率是()A.1115B.415C.215D.7156.椭圆22221(0)x y a b a b+=>>的左、右焦点为1F 、2F ,P 是椭圆上一点,O 为坐标原点,若2POF V 为等边三角形,则椭圆的离心率为()A.1- B.1- C.2D.37.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1CC 的中点,则直线1AD 与平面BDE 所成角的正弦值为()A.6B.3C.3D.68.23(2ln3)1ln3,,3a b c e e -===,则a ,b ,c 的大小顺序为()A.a c b <<B.c a b <<C.a b c<< D.b a c<<二、多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中.)9.已知空间向量()2,1,1a =-- ,()3,4,5b =,则下列结论正确的是()A.()2//a b a+B.5a =C.()56a a b⊥+D.a 与b夹角的余弦值为6-10.已知随机变量i ξ满足()()1,01,1,2i i i i P p P p i ξξ====-=.若12102p p <<<,则下列结论正确的是()A.12()()E E ξξ<B.12()()E E ξξ>C.12()()D D ξξ<D.12()()D D ξξ>11.已知)66016xa a x a x -=+++ ,则()A.20log 3a = B.016,,a a a ⋯这7个数中只有3个有理数C.3a =-D.)251236360a a a++++= 12.如图,已知椭圆221:14x C y +=,过抛物线22:4C x y =焦点F 的直线交抛物线于M 、N 两点,连NO 、MO 并延长分别交1C 于A 、B 两点,连接AB ,OMN 与OAB 的面积分别记为OMN S △、OAB S .则下列说法正确的是()A.若记直线NO 、MO 的斜率分别为1k 、2k ,则12k k 的大小是定值14-B.OAB 的面积OAB S 是定值1C.线段OA 、OB 长度的平方和22OA OB +是定值4D.设OMNOABS S λ=△△,则2λ≥三、填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13.已知离散型随机变量X 的分布列如下表所示,则()E X =_________.X 123P0.2a0.514.在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60,则1AC uuu r的长为________.15.若(2)(0)na x a ->的展开式中各项的二项式系数之和为256,且仅有展开式的第5项的系数最大,则a的取值范围为___________.16.已知函数()e ln xaf x a x x x =+--,0a >.当a=1时,函数()f x 在点P (1,()1f )处的切线方程为________;若()1,x ∈+∞,()0f x ≥,则实数a 的最大值为________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17.(1)计算:5488858927A A A A +-;(2)若33210n n A A =,求正整数n .18.已知()727012712x a a x a x a x -=++++ .求:(1)1237a a a a ++++ ;(2)1357a a a a +++;(3)0127a a a a ++++L .19.甲、乙两人在罚球线投球命中的概率分别为12与P ,投中得1分,投不中得0分.乙投球两次均未命中的概率为925.(1)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;(2)甲、乙两人在罚球线各投球一次,求两人得分之和的数学期望.20.如图,在三棱锥A BCD -中,ABC 是正三角形,平面ABC ⊥平面BCD ,BD CD ⊥,点E ,F 分别是BC ,DC 的中点.(1)证明:平面ACD ⊥平面AEF ;(2)若60BCD ∠=︒,点G 是线段BD 上的动点,问:点G 运动到何处时,平面A E G 与平面ACD 所成的锐二面角最小.21.已知椭圆()2222:10x y C a b a b+=>的上顶点为B ,左焦点为F ,P 为椭圆C 上一点,()2,0A ,且3AB PA =,BF BP ⊥.(1)求椭圆C 的方程.(2)若直线:l y kx m =+与椭圆C 相切,过A 作l 的垂线,垂足为Q ,试问OQ 是否为定值?若是定值,求OQ 的值;若不是,请说明理由.22.设函数ln e ()xx f x a x=-,其中a ∈R 且0a ≠,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若34ea ≥,证明:()0f x <.江苏省扬州中学2021-2022学年度第二学期期中试题高二数学试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码.2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效.3.考试结束后,请将机读卡和答题卡交监考人员.一、单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1.已知从甲地到乙地有乘飞机或者坐轮渡两种交通方式,从乙地到丙地有乘大巴车、高铁或者乘飞机三种交通方式,则从甲地经乙地到丙地不同的交通方式的种数为()A.4B.5C.6D.8【1题答案】【答案】C 【解析】【分析】根据分步乘法原理求解即可.【详解】解:由题意可知,从甲地经乙地到丙地所有可能的交通方式的种数为236⨯=种.故选:C2.直三棱柱111ABC A B C -中,若CA a = ,CB b = ,1CC c =,则1A B = ()A.a b c-+-B.a b c-+ C.a b c-++ D.a b c+-r r r 【2题答案】【答案】A 【解析】【分析】根据空间向量的线性运算直接可得解.【详解】由已知得111A B A A AB C C CB CA a b c =+=+-=-+-,故选:A.3.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率()P A 是()A.23B.13 C.19 D.118【3题答案】【答案】A 【解析】【分析】因为两个独立事件A 和B ,所以()()()P AB P A P B =⋅,(()(),P AB P A P B =()()(),P AB P A P B =结合1()()()(),()()9P A P B P A P B P A P B ==,()1(),P A P A =-()1(P B P B =-即可求出答案.【详解】由题设条件可得,1()()((),(()9P A P B P A P B P A P B ==,又()1()()1()P A P A P B P B =-=-且,解得1(()3P A P B ==.所以2()1(3P A P A =-=.故选:A.4.设m 为正整数,2()m x y +的展开式中二项式系数的最大值为a ,21()m x y ++的展开式中的二项式系数的最大值为b .若158a b =,则m 的值为()A.5B.6C.7D.8【4题答案】【答案】C 【解析】【分析】根据二项式系数的性质得到a ,b 的值,列出方程求出m .【详解】2()m x y +的展开式中二项式系数的最大值为2m m C ,故2m ma C =,21()m x y ++的展开式中的二项式系数的最大值为21m m C +或121m m C ++,两者相等,不妨令21m m b C +=,则有221158m mm m C C +=,解得:7m =.故选:C5.青年大学习是共青团中央发起的青年学习行动,每期视频学习过程中一般有两个问题需要点击回答.某期学习中假设同学小华答对第一、二个问题的概率分别为13,35,且两题是否答对相互之间没有影响,则至少答对一个问题的概率是()A.1115B.415C.215D.715【5题答案】【答案】A 【解析】【分析】结合相互独立事件概率计算公式,计算出所求概率.【详解】依题意,至少答对一个问题的概率是131********⎛⎫⎛⎫--⨯-= ⎪ ⎪⎝⎭⎝⎭.故选:A6.椭圆22221(0)x y a b a b+=>>的左、右焦点为1F 、2F ,P 是椭圆上一点,O 为坐标原点,若2POF V 为等边三角形,则椭圆的离心率为()A.1B.1C.2D.3【6题答案】【答案】A 【解析】【分析】利用2POF V 为等边三角形,构造焦点三角形12F PF ,根据几何关系以及椭圆定义,得到,a c 的等量关系,即可求得离心率.【详解】连接1F P,根据题意,作图如下:因为2POF V 为等边三角形,即可得:12OF OP OF c ===,则122190,60F PF PF F ∠=︒∠=︒则112sin 603PF F F c =︒⨯=,由椭圆定义可知:21223PF a PF a c c =-=-=,故可得:3131c a ==+.故选:A.7.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1CC 的中点,则直线1AD 与平面BDE 所成角的正弦值为()A.336B.33C.33D.36【7题答案】【答案】D 【解析】【分析】以点D 为原点,DA ,DC ,1DD 分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,求平面BDE 的一个法向量()1,1,2m =-,进而可求直线1AD 与平面BDE 所成角.【详解】以点D 为原点,DA ,DC ,1DD分别为x 轴、y 轴、z轴的正方向建立空间直角坐标系,如图所示:则()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,2,1E ,()10,0,2D ,所以()2,2,0DB = ,()0,2,1DE = ,()12,0,2AD =-,设平面BDE 的一个法向量(),,m x y z=,则00m DB m DE ⎧⋅=⎨⋅=⎩ ,即22020x y y z +=⎧⎨+=⎩,令1x =,则1y =-,2z =,所以平面BDE 的一个法向量()1,1,2m =-,设直线1AD 与平面BDE 所成角为θ,所以1sin cos ,6AD m θ==.故选:D.8.23(2ln3)1ln3,,3a b c e e -===,则a ,b ,c 的大小顺序为()A.a c b<< B.c a b <<C.a b c<< D.b a c<<【8题答案】【答案】A 【解析】【分析】构造函数ln ()x f x x =,应用导数研究其单调性,进而比较2(3e af =,()b f e =,(3)c f =的大小,若ln x t x =有两个解12,x x ,则121x e x <<<,1(0,)t e ∈,构造2(1)()ln (1)1x g x x x x -=->+,利用导数确定()0>g x ,进而得到212121ln ln 2x x x x x x ->-+,即可判断a 、c 的大小,即可知正确选项.【详解】令ln ()xf x x=,则222ln 3(33e e af e ==,ln ()e b f e e ==,ln 3(3)3c f ==,而21ln ()x f x x -'=且0x >,即0x e <<时()f x 单调增,x e >时()f x 单调减,又2133e e <<<,∴b c >,b a >.若ln xtx =有两个解12,x x ,则121x e x <<<,1(0,)t e ∈,即2121ln ln x x t x x -=-,1212ln x x x x t+=,令2(1)()ln (1)1x g x x x x -=->+,则22(1)()0(1)x g x x x -'=>+,即()g x 在(1,)+∞上递增,∴()(1)0g x g >=,即在(1,)+∞上,2(1)ln 1x x x ->+,若21x x x =即212121ln ln 2x x x x x x ->-+,故122ln tt x x >,有212x x e >∴当23x =时,213e e x >>,故21()()(3)3e f f x f <=,综上:b c a >>.故选:A【点睛】关键点点睛:利用函数与方程的思想,构造函数,结合导数研究其单调性或极值,从而确定a ,b ,c 的大小.二、多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中.)9.已知空间向量()2,1,1a=--,()3,4,5b=,则下列结论正确的是()A.()2//a b a+B.5a = C.()56a a b⊥+ D.a 与b夹角的余弦值为6-【9题答案】【答案】BCD 【解析】【分析】由空间向量平行的性质及空间向量模长,数量积,夹角的坐标运算进行判断即可.【详解】对于A 选项:2(1,2,7)ab +=-,不存在λ,使得2a b a λ+=,故A 错误;对于B选项:55a ====,故B 正确;对于C 选项:56(8,19,35)a b += ,6)281191350a b ⋅+=-⨯-⨯+⨯=,则(56)a a b ⊥+,故C 正确;对于D选项:a ==,b == 6455a b ⋅=--+=-所以c 6os ,a b a b a b⋅===-,故D 正确;故选:BCD.10.已知随机变量i ξ满足()()1,01,1,2i i i i P p P p i ξξ====-=.若12102p p <<<,则下列结论正确的是()A.12()()E E ξξ< B.12()()E E ξξ> C.12()()D D ξξ< D.12()()D D ξξ>【10题答案】【答案】AC 【解析】【分析】由已知得12102p p <<<,2111112p p <-<-<,由期望公式求出1122(),()E p E p ξξ==,再根据方差公式求出12,()()D D ξξ,作差比较大小,由此能求出结果.【详解】∵随机变量i ξ满足()()1,01,1,2i i i i P p P p i ξξ====-=,12102p p <<<,∴2111112p p <-<-<,又()()1111101E p p p ξ=⨯+⨯-=,2222101E p p p ξ=⨯+⨯-=()(),∴12()()E E ξξ<,又()()()()2221111111101D p p p p p p ξ=-+--=-,()()()()2222222222101D p p p p p p ξ=-+--=-,所以()()()()()22121122211210D D p p p p p p p p ξξ-=---=-+-<,所以12()()D D ξξ<.故选:AC.11.已知)66016xa a x a x =+++ ,则()A.20log 3a = B.016,,a a a ⋯这7个数中只有3个有理数C.3a =-D.25123636a a a ++++= 【11题答案】【答案】ACD 【解析】【分析】根据二项式定理对选项逐一判断【详解】由二项式定理知展开式的通项公式为61606r r r r TC x r r N-+=-≤≤∈(),,对于A ,令0x =,得608a ==,则20log 3a =,A 正确.对于B ,016,,a a a ⋯这7个数中,当r 为偶数时,对应0246,,,a a a a 为有理数,B 错误.对于C ,()33336C1a=-=-C 正确.对于D ,对)66016x a a x a x=+++ 两边同时求导,得)55126626x a a x a x --=+++ ,令x =251236360a a a ++++= ,D 正确.故选:ACD12.如图,已知椭圆221:14x C y +=,过抛物线22:4C x y =焦点F 的直线交抛物线于M 、N 两点,连NO 、MO 并延长分别交1C 于A 、B 两点,连接AB ,OMN 与OAB 的面积分别记为OMN S △、OAB S .则下列说法正确的是()A.若记直线NO 、MO 的斜率分别为1k 、2k ,则12k k 的大小是定值14-B.OAB 的面积OAB S 是定值1C.线段OA 、OB 长度的平方和22OA OB+是定值4D.设OMN OABS S λ=△△,则2λ≥【12题答案】【答案】ABD 【解析】【分析】设直线MN 的方程为1y kx =+,与抛物线方程联立,利用韦达定理结合斜率公式可判断A 选项;利用三角形的面积公式可判断B 选项;利用弦长公式可判断C 选项;利用三角形的面积公式结合基本不等式可判断D 选项.【详解】对于A 选项,抛物线2C 的焦点为()0,1F ,若直线MN 与y 轴重合,则该直线与抛物线2C 只有一个公共点,不合乎题意,所以,直线MN 的斜率存在,设直线MN 的方程为1y kx =+,设点()11,M x y 、()22,N x y ,联立214y kx x y =+⎧⎨=⎩可得2440x kx --=,216160k ∆=+>,则124x x =-,121212121164y y x x k k x x ===-,A 对;对于B 选项,设10k >,则20k <,联立12244y k x x y =⎧⎨+=⎩可得()221414k x +=,解得x =,不妨设点A在第三象限,则A ⎛⎫ ⎝,设点B在第四象限,同理可得B ⎛⎫,点B 到直线OA 的距离为d =,OA =,所以,1111122112122OABk k S OA d k k +=⋅==+△,B 对;对于C 选项,()()22221222221212414133241414141k k OA OB k k k k +++=+=++++++()()()()2222121222221212344234422254424141k k k k k k kk ++++=+=+=++++,C 错;对于D 选项,1214OMN OABOM ONx x S S OB OA ⋅===⋅△2≥=,当且仅当112k=±时,等号成立,D 对.故选:ABD.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.三、填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13.已知离散型随机变量X 的分布列如下表所示,则()E X =_________.X 123P 0.2a 0.5【13题答案】【答案】2.3【解析】【分析】先由概率总和为1求出参数a ,再根据期望公式即可求得结果.【详解】由题,由概率性质,()()()1231P X P X P X =+=+==,可解得0.3a =,故()10.220.330.5 2.3E X =⨯+⨯+⨯=,故答案为:2.314.在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60,则1AC uuu r的长为________.【14题答案】【解析】【分析】由已知可得11AB AD AA === ,且1160BAD BAA DAA ∠=∠=∠= ,利用空间向量数量积的运算求出21AC 的值,即可得解.【详解】由已知可得11AB AD AA ===,且1160BAD BAA DAA ∠=∠=∠= ,由空间向量数量积的定义可得11111cos 602AB AD AB AA AD AA ⋅=⋅=⋅=⨯⨯=,所以,()22222111112226AC AB AD AA AB AD AA AB AD AB AA AD AA =++=+++⋅+⋅+⋅=,因此,1AC =.15.若(2)(0)n a x a ->的展开式中各项的二项式系数之和为256,且仅有展开式的第5项的系数最大,则a 的取值范围为___________.【15题答案】【答案】(,104【解析】【分析】根据给定条件,求出幂指数n 的值,再求出第r +1项的系数,列出不等式并求解作答.【详解】因(2)n ax -的展开式中各项的二项式系数之和为256,则2256n =,解得8n =,(2)n a x -的展开式中第r +1项的系数为88(1)(2)C r r r a --⋅,N,8r r ∈≤,而0a >,则当r 为奇数时,第r +1项的系数为负,当r 为偶数时,第r +1项的系数为正,由仅有展开式的第5项的系数最大得:446288442688(2)C (2)C (2)C (2)C a a a a ⎧>⎨>⎩,化简整理得:215108a <<,解得104a <<,所以a的取值范围为,)104.故答案为:,)104【点睛】关键点睛:二项式定理的核心是通项公式,求解二项式问题先正确求出通项公式,再结合具体条件推理计算作答.16.已知函数()e ln x a f x a x x x =+--,0a >.当a=1时,函数()f x 在点P (1,()1f )处的切线方程为________;若()1,x ∈+∞,()0f x ≥,则实数a 的最大值为________.【16题答案】【答案】①.(e 1)1y x =--②.e 【解析】【分析】求导,代入1x =求出(1)e 1f '=-,用点斜式求出切线方程;(2)对函数变形,利用同构及函数单调性得到e a x x ≤,参变分离构造新函数,通过其单调性求出极值,最值,进而求出实数a 的最大值.【详解】由题意当1a=时,()e ln 2x f x x x =+-,1()e 2xf x x'=+-,则(1)e 2f =-,(1)e 1f '=-,所以函数()f x 在点(1,(1))P f 处的切线方程为(e 1)1y x =--.因为(1,),()0x f x ∈+∞≥,即e ln 0x a a x x x +--≥,则ln ln e e a a x x x x -≥-,令()ln ,1m t t t t =->,故11()10tm t t t-'=-=<,在(1,)+∞上恒成立,故()m t 在(1,)+∞上单调递减,故e a x x ≤,得ln a x x ≤,即ln x a x≤,记()(1)ln xx x x ϕ=>,则2ln 1()(1)ln x x x xϕ-'=>,当(1,e)x ∈时,()0x ϕ'<,当(e,)x ∈+∞时,()0x ϕ'>,故函数()ϕx 在(1,e)单调递减,在(e,)+∞单调递增,故()ϕx 的最小值是(e)e ϕ=,故e a ≤,即实数a 的最大值是e .故答案为:(e 1)1y x =--;e .四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17.(1)计算:5488858927A A A A +-;(2)若33210n nA A =,求正整数n .【17题答案】【答案】(1)1;(2)8.【解析】【分析】(1)(2)按照排列数公式计算即可.【详解】(1)54888589272876547876518765432198765A A A A +⨯⨯⨯⨯⨯+⨯⨯⨯⨯==-⨯⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯;(2)∵33210n nA A =,∴2(21)(22)10(1)(2)⨯-⨯-=⨯⨯-⨯-n n n n n n ,又3n ≥,化简得42510n n -=-,解得8n =.18.已知()727012712x a a x a x a x -=++++ .求:(1)1237a a a a ++++ ;(2)1357a a a a +++;(3)0127a a a a ++++L .【18题答案】【答案】(1)2-(2)1094-(3)2187【解析】【分析】(1)分别令0x =、1x =可求得0a 、01234567+++++++a a a a a a a a 的值,即可求得1237a a a a ++++ 的值;(2)分别令1x =、1x =-,将所得两式作差可求得1357a a a a +++的值;(3)分析可知当k 为偶数时,0k a >,当k 为奇数时,0k a <,然后令1x =-可得出所求代数式的值.【小问1详解】解:令0x =,则01a =,令1x =,则()7012345671211a a a a a a a a +++++++=-⨯=-,①因此,()12372370102a a a a a a a a a a ++++++++=+-=- .【小问2详解】解:令1x =-可得70123456732187a a a a a a a a ++=-=-+--,②①-②可得13571218710942aa a a --+++==-.【小问3详解】解:()712x -的展开式通项为()()177C 2C 2k kk k kk Tx x+=⋅-=⋅-,则()7C 2kk ka=⋅-,其中07k ≤≤且N k ∈,当k 为偶数时,0k a >;当k 为奇数时,0k a <.所以,7012345601234567732187a a a a a a a a a a a a a a a a +++++++=+++==----.20.甲、乙两人在罚球线投球命中的概率分别为12与P ,投中得1分,投不中得0分.乙投球两次均未命中的概率为925.(1)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;(2)甲、乙两人在罚球线各投球一次,求两人得分之和的数学期望.【20题答案】【答案】(1)91100(2)910【解析】【分析】(1)利用对立事件的概率去求解四次投球中至少一次命中的概率;(2)先求得概率P 的值,再去列两人得分之和的分布列求数学期望.【小问1详解】记“这四次投球中至少一次命中”为事件C ,则“这四次投球均未命中”是事件C 的对立事件,则()1199112225100P C =-⨯⨯=【小问2详解】依题意,29(1)25P -=,则25P =记“甲投一次命中”为事件A ,“乙投一次命中”为事件B ,则1213(),(),()()2525P A P B P A P B ====甲、乙两人得分之和ξ的可能取值为0,1,2,()()13302510P P AB ξ===⨯=,()()()13121125252P P AB P AB ξ==+=+=,()()1212255P P AB ξ===⨯=,则ξ的分布列为:ξ012P31012153119()012102510E ξ=⨯+⨯+⨯=22.如图,在三棱锥A BCD -中,ABC 是正三角形,平面ABC ⊥平面BCD ,BD CD ⊥,点E ,F 分别是BC ,DC 的中点.(1)证明:平面ACD ⊥平面AEF ;(2)若60BCD ∠=︒,点G 是线段BD 上的动点,问:点G 运动到何处时,平面A E G 与平面ACD 所成的锐二面角最小.【22题答案】【答案】(1)证明见解析;(2)点G 为BD 的中点时.【解析】【分析】(1)由面面垂直可得AE⊥平面BCD ,得出CD ⊥AE ,再由CD ⊥EF 可得CD ⊥平面AEF ,即可得出平面ACD ⊥平面AEF ;(2)建立空间直角坐标系,利用向量法求出锐二面角的余弦值,当0,cos y =θ最大,θ最小,即可得出此时点G 为BD 的中点.【小问1详解】(1)因为△ABC 是正三角形,点E 是BC 中点,所以AE ⊥BC ,又因为平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,AE ⊂平面ABC ,所以AE⊥平面BCD ,又因为CD ⊂平面BCD ,所以CD⊥AE ,因为点E ,F 分别是BC ,CD 的中点,所以EF //BD ,又因为BD⊥CD ,所以CD ⊥EF ,又因为CD ⊥AE ,AE ∩EF E =,AE ⊂平面AEF ,EF ⊂平面AEF ,所以CD ⊥平面AEF ,又因为CD ⊂平面ACD ,所以平面ACD ⊥平面AEF .【小问2详解】在平面BCD 中,过点E 作EH ⊥BD ,垂足为H ,设BC =4,则EA =,DF =FC =l ,E F 以{,,}EH EF EA为正交基底,建立如图空间直角坐标系E -xyz ,则(0,0,0),(0,0,(1,(1,E A C D -,设(1,,0)G y ,则(0,0,(1,EA AD ==- ,(2,0,0),(1,,0)CD EG y ==,设平面AEG 的法向量为1111(,,)n x y z →=,由1100n EA n EG ⎧⋅=⎪⎨⋅=⎪⎩,得1110x yy ⎧=⎪⎨+=⎪⎩,令11y =-,故1(,1,0)n y →=-,设平面ACD 的法向量为2222(,,)nx y z →=,则2200n CD n AD ⎧⋅=⎪⎨⋅=⎪⎩ ,即2222200x x =⎧⎪⎨-=⎪⎩,令21z =,则2(0,2,1)n →=,设平面AEG 与平面ACD 所成的锐二面角为θ,则12cos |cos ,||n n →→=<>==θ,当0,cos y =θ最大,此时锐二面角θ最小,故当点G 为BD 的中点时,平面AEG 与平面ACD 所成的锐二面角最小.24.已知椭圆()2222:10x y C a b a b+=>>的上顶点为B ,左焦点为F ,P 为椭圆C 上一点,()2,0A ,且3AB PA = ,BF BP ⊥.(1)求椭圆C 的方程.(2)若直线:ly kx m =+与椭圆C 相切,过A 作l 的垂线,垂足为Q ,试问OQ是否为定值?若是定值,求OQ的值;若不是,请说明理由.【24题答案】【答案】(1)22184x y +=;(2)是定值,OQ =【解析】【分析】(1)设出点P 的坐标,进而根据3AB PA →→=求出它的坐标代入椭圆方程,再根据BF BP ⊥,结合斜率公式求得答案;(2)联立22184y kx m x y=+⎧⎪⎨+=⎪⎩并化简,根据判别式为0得到k ,m 的关系,再联立()12y x k y kx m ⎧=--⎪⎨⎪=+⎩求出点Q 的坐标,进而求出答案.【小问1详解】设()00,P x y ,易知()0,B b ,因为3AB PA →→=,所以()()002,32,b x y -=--,所以083x =,03b y =-.因为P 在椭圆C 上,所以22264991b a b+=,所以28a =.因为BF BP ⊥,所以12b b c ⎛⎫⨯-=- ⎪⎝⎭,所以22b c =.因为222a b c =+,所以28a =,224b c ==,故椭圆C 的方程为22184x y +=.【小问2详解】联立方程组22184y kx m x y =+⎧⎪⎨+=⎪⎩,得()222124280k x kmx m +++-=,则()()222216412280k m k m ∆=-+-=,得2284m k =+.当0k =时,直线l 的方程为2y =±,OQ =当0k ≠时,直线AQ 的方程为()12y x k=--,联立方程组()12y x k y kx m⎧=--⎪⎨⎪=+⎩,得Q 的坐标为2222,11km m k k k -+⎛⎫⎪++⎝⎭,所以()()()()222222222224111km m k m OQk k k -++=+=+++.因为2284m k =+,所以22284481k OQ ++==+,所以OQ =故OQ为定值,且OQ =.【点睛】本题第(2)问运算量较大,但充分体现了“设而不求”的思想,本题可以作为范题进行归纳总结.26.设函数ln e ()xx f x a x=-,其中a ∈R 且0a ≠,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若34e a≥,证明:()0f x <.【26题答案】【答案】(1)1ey x =--(2)证明见解析【解析】【分析】(1)依题意可得e ()ln xf x x x=-,即可得到()1f ,再求出函数的导函数,即可求出()1f ',最后利用点斜式求出切线方程;(2)依题意即证2e ln 0x a x x x ->,令2e ()x a g x x=、ln ()x h x x=,,()0x ∈+∞,利用导数求出函数的单调区间,即可得到函数的最值,从而得证;【小问1详解】21解:当1a =时e ()ln x f x x x=-,所以()1e 1ln1e 1f =-=-,又()21e 1()x x f x x x -'=-,所以()11f '=,即切点为()1,e -,切线的斜率1k =,所以切线方程为()()e 11y x --=-,即1ey x =--【小问2详解】解:函数()f x 的定义域为(0,)+∞,当34e a ≥时,2ln e e ln ()000x x x a x f x a x x x <⇔-<⇔->,令2e ()x a g x x =,,()0x ∈+∞,所以3e ())(2x a x x g x'-=,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(0,2)上单调递减,在(2,)+∞上单调递增,当2x =时,22min3e 4e 1()(2)4e 4e a g x g ==≥⋅=,令ln ()x h x x =,,()0x ∈+∞,所以21ln ()x h x x -'=,当0e x <<时,()0h x '>,当e x >时,()0h x '<,即函数()h x 在(0,e)上单调递增,在(e,)+∞上单调递减,当e x =时,max 1()(e)e h x h ==,因此,0x ∀>,min max 1()()()()eg x g x h x h x ≥≥=≥,而()g x 的最大值与()h x 的最小值不同时取得,即上述不等式中不能同时取等号,于是得:0∀>,()()g x h x >成立,即2e ln 0x a x x x->成立,所以()0f x <.。
江苏省扬州中学2022-2023学年度第二学期期中试题高一政治2023.4试卷满分:100分,考试时间:75分钟注意事项:1.作答第I卷前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码。
2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效。
3.考试结束后,请将机读卡和答题卡交监考人员。
第I卷(选择题共72分)一、单项选择题:本大题共36小题,每小题2分,共72分。
在每题给出的四个选项中,只有一项是最符合题意的。
(请将所有选择题答案填到答题卡的指定位置中)1.“污染博弈”是指假如市场经济中存在着污染,但政府并没有管制的环境,企业为了追求利润最大化,宁愿以牺牲环境为代价,也绝不会主动增加环保设备投资。
这主要反映了市场调节的A.盲目性B.自发性C.滞后性D.利己性2.社会主义国家对社会生产和经济发展进行宏观调控的制度基础是A.生产资料公有制B.多种所有制经济共同发展C.以按劳分配为主体D.多种分配方式并存3.回顾40多年来的改革开放,最突出的一条经验就是始终坚持以人民为中心。
40多年来,我们党坚持以解决人民问题为导向,以满足人民需要为目的,团结带领人民进行了一场新的伟大革命。
坚持以人民为中心的发展思想A.要把实现人民幸福作为工作中心B.可从根本上解决我国城乡发展不平衡问题C.要消除人民收入差距,满足人民的一切需求D.要坚持发展为了人民、发展依靠人民的理念4.A县深化农村资源变资产、资金变股金、农民变股东改革,深化农村集体产权制度改革,探索新型农村集体经济发展路径。
可见,A县上述举措旨在A.实现农村资源要素有效利用B.不断发展壮大农村个体经济C.改变农村集体经济所有制性质D.为农村私营经济发展释放活力5.马克思认为,分配的结构完全决定于生产的结构,分配本身就是生产的产物。
上述观点说明①生产资料所有制决定分配方式①生产对于分配具有决定性影响①生产关系水平决定生产力水平①分配制度直接提高人们的积极性A.①①B.①①C.①①D.①①6.2022年11月4日,《个人养老金实施办法》发布。
江苏省扬州中学2018—2019学年第二学期期中卷 高 一 数 学 2019.4一、选择题(每小题5分,合计50分)1.若直线过点(3,-3)和点(0,-4),则该直线的方程为( ★ ) A .y =33x -4 B. y =33x +4 C . y =3x -6 D. y =33x +2 2. 不等式201xx -<+的解集为( ★ ) A. {}12>-<x x x 或 B. {}12<<-x x C. {}21>-<x x x 或 D. {}21<<-x x 3.如果A (3, 1)、B (-2, k )、C (8, 11)在同一直线上,那么k 的值是( ★ ) A. -6 B. -7 C. -8 D . -9 4.下列四个命题中错误的是( ★ )A .若直线a ,b 互相平行,则直线a ,b 确定一个平面B .若四点不共面,则这四点中任意三点都不共线C .若两条直线没有公共点,则这两条直线是异面直线D .两条异面直线不可能垂直于同一个平面5. 在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( ★ )A .无解B .一解C . 二解D .不能确定6.设m ,n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:①⎭⎪⎬⎪⎫α∥βα∥γ⇒β∥γ;②⎭⎪⎬⎪⎫α⊥β m ∥α⇒m ⊥β;③⎭⎪⎬⎪⎫m ⊥αm ∥β⇒α⊥β;④⎭⎪⎬⎪⎫m ∥n n ⊂α⇒m ∥α.其中正确的命题是( ★ ) A .①④ B .②③ C .①③D .②④7. 在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( ★ )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形8.如图,在正方体ABCD -A 1B 1C 1D 1中,E 是AD 的中点,则异面直线C 1E 与BC 所成的角的 余弦值是( ★ )A. 13B.1010C. 105D.223 9.已知b>a >0且a +b=1,则有 ( ★ ) A . a ab b a b >>>+>21222B . a ab b a b >>>+>22122 C . ab a b b a 22122>>>>+ D . a 2+b 2>b >a >12>2a b10.三棱柱111ABC A B C -的侧棱垂直于底面,且BC AB ⊥,21===AA BC AB ,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为( ★ )A .π48B .π32C .π12D .π8 二、填空题(每小题5分,合计30分). 11.不等式2680x x -+->的解集为___▲____.12.若圆锥的母线长是5,高是 4,则该圆锥的体积是__▲____.13.过点)1,2(-P ,在x 轴上和y 轴上的截距分别是b a ,且满足b a 3=的直线方程为___▲____.14. 若钝角三角形ABC 三边长分别是,1,2()a a a a N ++∈,则三角形ABC 的周长为__▲___.15.已知直线l :320mx y m -++=()m R ∈,则l 恒过定点___▲____.16. 在ABC ∆中,若sin 2cos cos C A B =,则22sin sin A B +的最小值为_ ▲ _. 三、解答题(10分+12分+12分+12分+12分+12分=70分)17.(5分+5分)在直三棱柱111C B A ABC -中, AB BC ⊥, D 为棱1CC 上任一点. (1)求证:直线11A B ∥平面ABD ; (2)求证:平面ABD ⊥平面11BCC B .18. (4分+8分)在锐角ABC △中,已知22sin A =. (1) 求cos()B C +的值; (2) 若2a =,2ABC S =△,求b 的值.19. (6分+6分)如图所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且AD=DB ,点C 为圆O 上一点,且BC=AC .点P 在圆O 所在平面上的正投影为点D ,PD=DB .(1)求证:PA ⊥CD ;(2)求二面角C ﹣PB ﹣A 的余弦值.20.(4分+8分)直线l 过点)1,2(-P 且斜率为k k (>)1,将直线l 绕P 点按逆时针方向旋转45°得直线m ,若直线l 和m 分别与y 轴交于Q ,R 两点.(1)用k 表示直线m 的斜率;(2)当k 为何值时,PQR ∆的面积最小?并求出面积最小时直线l 的方程.21.(4分+8分)如图,公园里有一湖泊,其边界由两条线段AB ,AC 和以BC 为直径的半圆弧BC ⌒组成,其中AC 为2百米,AC ⊥BC ,∠A 为π3.若在半圆弧BC ⌒,线段AC ,线段AB 上各建一个观赏亭D ,E ,F ,再修两条栈道DE ,DF ,使DE ∥AB ,DF ∥AC .记∠CBD =θ(π3≤θ<π2).(1)试用θ表示BD 的长;(2)试确定点E 的位置,使两条栈道长度之和最大.22. (6分+6分)已知函数21()21x x f x -=+,(1)若存在0,2πθ⎡⎤∈⎢⎥⎣⎦,使得不等式22(sin sin )(2sin )f f k θθθ-<-有解,求实数k 的 取值范围;(2)若函数()g x 满足[]()()222x xf xg x -⋅+=-,若对任意x ∈R 且0x ≠,不等式(2)()10g x m g x ⋅-≥恒成立,求实数m 的最大值.高一数学期中试卷答(第21题图)案2019.4一选择题:A C D CBCD A B C二、填空题:11. 12. 13. 或; 14. 915. 16.三、解答题:17. (1)证明:由直三棱柱,得………………………………2分………………………5分(2)因为三棱柱为直三棱柱,所以,又,而,,且,所以……………8分又,所以平面⊥平面…………………………………10分18. 解:(1)因为锐角△ABC中,,所以又A+B+C=p,所以. ……….4分(2),,即,……….6分将,,代入余弦定理:得:,……….11分即. ………..12分19. 解析:(1)连接OC,由AD=BD知,点D为AO的中点,又∵AB为圆的直径,∴AC⊥BC,∵AC=BC,∴∠CAB=60°,∴△ACO为等边三角形,∴CD⊥AO.……….2分∵点P在圆O所在平面上的正投影为点D,∴PD⊥平面ABC,又CD⊂平面ABC,∴PD⊥CD,PD∩AO=D,∴CD⊥平面PAB,PA⊂平面PAB,∴PA⊥CD.……….6分(2)过点D作DE⊥PB,垂足为E,连接CE,由(1)知CD⊥平面PAB,又PB⊂平面PAB,∴CD⊥PB,又DE∩CD=D,∴PB⊥平面CDE,又CE⊂平面CDE,∴CE⊥PB,∴∠DEC为二面角C﹣PB﹣A的平面角.……….9分设AB=4,则由(1)可知CD=,PD=BD=3,∴PB=3,则DE==,∴在Rt△CDE中,tan∠DEC==,∴cos∠DEC=,即二面角C﹣PB﹣A的余弦值为.……….12分20. 解:(1)设直线的倾斜角为,则直线的倾斜角为,………4分(2)直线的方程为,直线的方程为令,得,∴……….6分∵,∴ ≥ ………9分 由得舍去,∴当时,的面积最小,最小值为,此时直线的方程是.………12分21. 解:(1)连结DC .在△ABC 中,AC 为2百米,AC ⊥BC ,∠A 为3π,所以∠CBA =6π,AB =4,BC =2.因为BC 为直径,所以∠BDC =2π,所以BD =BC cos θ=2cos θ. ……….4分 (2)在△BDF 中,∠DBF =θ+6π,∠BFD =3π,BD =2cos θ,所以6π6π=2π-θπ=sin ∠BFD BD,所以DF =4cos θsin(6π+θ),且BF =4cos θ,所以DE =AF =4-4cos θ,……….6分所以DE +DF =4-4cos θ+4cos θsin(6π+θ)=sin2θ-cos2θ+3=2 sin(2θ-6π)+3. ………8分因为3π≤θ<2π,所以2π≤2θ-6π<65π,所以当2θ-6π=2π,即θ=3π时,DE +DF 有最大值5,此时E 与C 重合.………11分 答:当E 与C 重合时,两条栈道长度之和最大……….12分 22. 解:(1).对任意,有:.因为,所以,所以,因此在R上递增.………………………………………2分令,则且,所以,即在时有解.当时,,所以.…………………………6分(2)因为,所以(),………7分所以.不等式恒成立,即,,………………10分因为,由基本不等式可得:,当且仅当时,等号成立.所以,则实数m的最大值为.…………………………12分。