当前位置:文档之家› 生物量测定方法

生物量测定方法

生物量测定方法
生物量测定方法

生物量测定方法

1树木生物量测定方法

1.1树木生物量的组成

一木树的生物量可以分为地下及地上两部分,地下部分是指树根系的生物量(WR);地上部分主要包括树干生物量(WS)、枝生物量(WB)和叶生物量(WL)。在生物量的测定中,除称量各部分生物量的干重量外,有时还要计算它们占全树总生物量干重的百分数,此百分数称为分配比。树干占地上部分的分配比最大(一般为65~70%),而枝叶部分的分配比约各占15%左右。

与材积测定相比,生物量测定的对象更为复杂,测定的部分也多,因而使得生物量的测定工作即复杂又困难。但是树木生物量与树木胸径、树高等测树因子之间也有着密切的关系,这些关系也为树木生物量测定提供了依据。在树木生物量测定中,树冠量的大小与形状对枝、叶量的多少有着显着的影响,因此,在实际工作中,要研究反映冠形和冠量的因子,常用的因子有冠长率、树冠圆满度、树冠投影比等因子,这些因子的意义如下:

⑴冠长率是冠长与树高之比

⑵树冠圆满度是冠幅与冠长之比。用以表明树冠的圆满程度,此值愈大愈圆满,反之而树冠狭长。

⑶树冠投影比是冠幅与胸径之比。用以表明树木营养面积的相对大小,此值愈大则树木占有的相对空间愈大。

上述这些因子在枝叶生物量测定、估计及分析比较中起着较大的辅助作用。而且,这些因子与胸径、树高等测树因子之间有着密切的相关关系,这为利用测树因子直接估测树木生物量提供了依据。

1.2树木生物量鲜重和干重的测定

树体在自然状态下含水时的重量称为鲜重,它是砍伐后立即称量的重量。干燥后去

掉结晶水的重量称为干重。在外业中只能测得树木的鲜重,然后采用各种方法将鲜重换算为干重,最常用的换算方法是计算树木的干重比(),即,

而(11-8)

式中可用取样测定获得。

(1)树干干重的测定方法

①木材密度法

所谓木材密度是指单位体积的质量,即物质的质量与体积之比值(单位:g/cm3或kg/m3),习惯上以单位体积木材的重量表示木材密度。严格的说,质量与重量有着本质不同,质量指物体所含物质的多少,为物体惯性的尺度,系一恒量,单位为克;重量为地球对物体的引力,等于物体质量与重力加速度的乘积,单位为克。仅纬度45海平面处物体的质量与重量数值相等,若物体所处空间或地理位置变化,则重量也随着变化,但变化极少,在应用上一般可以忽略,而将质量和重量的数值视为相等。因此单位体积的质量和重量也视为相等(成俊卿,1985,木材学)。根据含水状况不同,木材密度通常分为四种:

a.基本密度=绝干材质量/生材(或饱和水)体积

b.生材密度= 生材质量/生材(或饱和水)体积

c.气干密度= 气干材质量/气干材体积

d.绝干密度= 绝干材重/绝干材体积

以上四种木材密度以基本密度和气干密度两种最为常用。基本密度常常用于树干干重的计算,气干密度常泛指气干木材任意含水率时的计算,因所处地区木材平衡含水率或气干程度不同,并有一个范围,如通常含水率在8-20%时试验的木材密度,均称为气干密度。在我国常将木材气干密度作为材性比较和生产应用的基本依据。木材密度测定方法通常有:直接量测法、水银测容器法、排水法、快速测定方和饱和含水率法,具体测定方法详见木材学(成俊卿,1985,木材学)。在木材密度已知的条件下,计算树干及大枝干重的方法一般称为木材密度法,常采用两种基本模式:

木材干重=木材体积×基本密度(I)

木材干重=木材体积×绝干密度×绝干收缩率(II)

(II)式中绝干收缩率不易确定,因此,多采用(I)式。

在测定基本密度时,常常会碰到一对矛盾:若先测定物体绝干重量时,该物体的体积由于烘干后发生收缩,体积变小,浸泡后很难恢复原体积,使得体积测定系统偏小;若先测定物体饱和水体积时,一方面测定绝干重量的时间大大延长,另一方面由于木材和树皮经长时间浸泡后,其部分木材冷水浸提物如:单宁、碳水化合物、无机物等被浸泡出物体外,使得物体绝干重减轻,造成基本密度系统偏低。为了解决这一矛盾,可采用如下处理方法:

首先将样品一分为二,分别称重记作,然后将第一块样品进行烘干,将第二块样品进行浸泡,这样做能保证样品绝干重量和浸泡体积不产生系统偏差。设其对应绝干重和饱和水的体积分别为。

V

其中:是实际烘干的重量;是实际浸泡体积;M样品总干重;V样品总体积。

②全称重法

所谓全称重法就是将树木伐倒,摘除全部枝叶称其树干鲜重,采样烘干得到样品干重与鲜重之比(PW),从而计算样木树干的干重。这种方法是测定树木干重最基本的方法,它的工作量极大,但获得的数据可靠。本方法干重比可用很多方法进行估计,视不同情况而定。另外,还可将树木的鲜重根据相应的含水率,换算出树木的绝干重。根据国内一些研究表明(张治强1981),树干以鲜重为基础的气干含水率Pf为

(11-9)

式中Wad为气干重,而气干含水率Pf随着树干部位的不同而变化。以气干重为基础的绝干含水率Pad为

(11-10)

式中Wod为绝干重,而绝干含水率Pad不随树干部位的不同而变化。在实际测定中,可先测得样品的气干重(Wad),再通过以气干重为基础的绝干含水率(Pad)换算成以鲜重为基础的绝干含水率(Pf),即

(11-11)

据此,可以计算出所有样品的绝干含水率,并计算出平均绝干含水率后利用(11-7)式计算各部分的干重。

(2).枝、叶重量测定方法

测定林木枝、叶生物量有两种主要方法。一种标准枝法;另一种方法是全称重法。

①标准枝法

所谓标准枝法是指在树木上选择具有平均枝基径与平均枝长的枝条,测其枝、叶重用于推算整株树枝、叶的重量。根据标准枝的抽取方式,该法又可分为:平均标准枝法和分级标准枝法。

a.平均标准枝法

(i)树木伐倒后,测定所有枝的基径和枝长,求二者的算术平均值即和。

(ii)以和为标准,选择标准枝,标准枝的个数根据调查精度确定,同时要求标准枝上的叶量是中等水平。

(iii)分别称其枝、叶鲜重,并取样品。

(iv)按下式计算全树的枝重和叶重。

(11-12)

式中:--全树的枝数;

---- --标准枝数;

-----标准枝的枝鲜重或叶鲜重;

b.分层标准枝法

在树冠上部与下部的枝粗长度、叶量变动较大时,可将树冠分为上、中、下三层,在每一层抽取标准枝,根据每层标准枝算出各层枝、叶的鲜重重量,然后将各层枝、叶

重量相加,得到树木枝、叶鲜重。由于将树冠分为上、中、下三层分别抽取标准枝,因此该方法能够较好地反映出树冠上、中、下枝和叶的重量,对树冠枝和叶的重量估计较平均标准枝法准确。另外,在测算过程中,可以通过烘干的方法,测得枝、叶生物量的干重。

②全称重法

具体方法与树干重量的全称重法相同。

(3) 树根重量测定方法

树根重量的测定方法可分为两类:一类是测定一株或几株树木的根重量以推算单位面积的重量;另一类是测定已知面积内的根生物量用面积换算为林分的生物量。前一种方法要求在根的伸展范围内,能明确区分出哪些根是应测定的;后一种方法则测定已知面积内全部根量,而不论它属于那一株树。下面简单介绍两种方法:

①第一类方法

以所选样木树干基部为中心向四周辐射,将该样木所有根系挖出,并量测挖掘面积,称量挖出根系的鲜重,随后取样带回烘干,计算含水率,推算单位面积的生物量。

②第二类方法

a.样方的设置

第一步:样方的水平区划以伐桩为中心,作边长等于平均株距(S)的正方形的样方内依次作半径为及的同心圆,小圆的编号为“1”,大圆编号为“2”,样方的其它部分编号为“3”。

第二步:样方的垂直区划由地表向下划分层次,各层的厚度可以不相等,上层较薄(10—15cm),下面的层可较厚(30—50cm)。各层的编号由上而下分别为I、II…V…。

b.根的分级

按直径的粗细将根分为五级,每级的距离和名称见表11-4,中根(大于0.5cm)以上全部称重,细根(小于0.2cm)及小根(0.2-0.5cm)其重量虽不大但数量极多,很容易遗漏,可于样方内建一定大小的土柱,在土柱内仔细称量这两类根的重量。

表11-4 根的分级

级别

细根

小根

中根

大根

粗根

直径(cm)

<0.2

0.2-0.5

0.5-2.0

2.0-5.0

>5.0

c.根重量的测定

从每个区划中仔细地挖出根,清除泥土,按标准分级,小根及细根所带泥土较多,应放于土壤筛中筛去泥土,将清理后的根带回室内,用水冲洗阴干至初始状称鲜重,采样,烘干求得干重。

2林分生物量测定方法

2.1皆伐实测法

为较准确地测定林分生物量,或者为检验其他测定方法的精度,往往采用小面积皆伐实测法,即在林分内选择适当面积的林地,将该林地内所有乔、灌、草等皆伐,测定所有植物的生物量(Wi),它们生物量之和(∑Wi)即为皆伐林地生物量,并接下式计算全林分生长量(W):

(11-13)

式中:A——全林分面积

S——皆伐林地面积

该方法对林分中的灌木、草本等植物生物量的测定更为适合。

2.2标准木法

(1).平均标准木法

即以每木调查结果计算出全部立木的平均胸高直径为选择标准木的依据,把最接近于这个平均值的几株立木作为标准木,伐倒称重。然后,用标准木的平均值()乘单位面积上的立木株数(N),或用标准木生物量(Wi)的总和()乘单位面积上胸高总断面积(G)与标准木胸高断面积(g)总和()之比,求出单位面积上的林分生物量(W),即:

(11-14)

或(11-15)

(2).分层标准木法

依据胸径级或树高级将林分或标准地林木分成几个层,然后在各层内选测平均标准木,并伐倒称重,得到各层的平均生物量测定值(),乘以单位面积各层的立木株数(Ni),即得到各层生物量(Wi),各层生物量之和,即为单位面积林分生物量总值(W),即

(11-16)

(11-17)

2.3回归估计法

林木生物量回归估计法是以模拟林分内每株树木各分量(干、枝、叶、皮、根等)干物质重量为基础的一种估计方法。它是通过样本观测值建立树木各分量干重与树木其它测树因子之间的一个或一组数学表达式,该数学表达式也称林木生物量模型。表达式一定要尽量反映和表征树木各分量干重与其它测树因子之间内在关系,从而达到用树木易测因子的调查结果,来估计不易测因子的目的。

林木生物量模型的方程很多,概括起来有三种基本类型:线性模型,非线性模型,多

项式模型。线性模型和非线性模型根据自变量的多少,又可分为一元或多元模型。非线性模型应用最为广泛,其中相对生长模型最具有代表性,是所有模型中应用最为普遍的一类模型。 (1).相对生长模型(非线性模型)

相对生长模型是指用指数或对数关系反映林木维量之间按比例协调增长(Harmonious growth)的模型。作为比例变化协调增长的这些指数或对数关系被称为相对生长。

(11-18)

式中:E为随机误差

(11-18)式两边取对数为

(11-19)

假设:和的生长率成比例,即其中b称为相对生长系数,两边积分结果为: (为积分常数)

则Y=aXb (11-20)

在(11-18)式中b为相对生长系数,当b>1时,与表示为正的相对生长关系,的生长快于生长;当b<1时,则表示为负的相对生长关系,的生长慢于生长;当b=1时,为等速生长。

Kittredgt(1944)首次将相对生长模型引入到树木上,并成功地估计了叶的重量。随后许多研究者纷纷应用该模型估计林木其它器官的重量,直到Ruard(1987)等人对该模型提出了不同见解。他们认为林木各维量之间相对生长率随林木大小的变化有可能不是一个常数,提出和的生长率与大小呈线性关系,即

两边积分得

lnY+K1=blnX+CX+K2

即(11-21)

令时

则有 Y=aXbeCX (11-22)

在林分生物量估测中,经常采用林木胸径(D)、树高(H)等测树因子建立林木生物

量回归估计方程,如

W=aD b (11-23)

或 ln(W)=ln(a)+bln(D) (11-24)

W=a(D2H)b (11-25)

或 ln(W)=ln(a)+bln(D2H) (11-26)

式中W——林木生物量

D——林木胸径

H——林木树高

a、b——回归常数

(2).多项式模型

W=a+bD+cD2 (11-27)

式中符号意义同前

在实践工作中,为了简便和提高估计精度,经常分别林木组成的分量与测树因子的关系,建立各分量的回归估计模型。各分量生物量之和即为林木生长量的估计值。建立树干生物量估计模型时,常选用的林木胸径(D)、树高(H)及(D2H)为自变量。建立树冠生物量估计模型时,常选用林木胸径、树高、冠幅、冠长率、冠下径(即树冠基径)等因子为自变量。建立树根生物量估计模型时,常选用林木胸径及根径等因子为自变量。

回归估计法是林分生物量测定中经常采用的方法之一,此外,可根据测定的目的及学科专业的特点,往往还采用光合作用测定法及CO2测定法。另外,对于大面积森林的生物量测定,可采用以遥感技术为基础的估计方法

土壤微生物生物量的测定方法

土壤微生物生物量的测定方法1土壤微生物碳的测定方法(熏蒸提取----仪器分析法) 基本原理 新鲜土样经氯仿熏蒸后(24h),土壤微生物死亡细胞发生裂解,释放出微生 物生物量碳,用一定体积的LK 2SO 4 溶液提取土壤,借用有机碳自动分析仪测定微 生物生物量碳含量。根据熏蒸土壤与未熏蒸土壤测定有机碳的差值及转换系数(K EC),从而计算土壤微生物生物量碳。 实验仪器 自动总有机碳(TOC)分析仪(Shimadzu Model TOC—500,JANPAN)、真空干燥器、烧杯、三角瓶、聚乙烯熟料管、离心管、滤纸、漏斗等。 实验试剂 1)无乙醇氯仿(CHCL 3 ); 2)L硫酸钾溶液:称取87g K 2SO 4 溶于1L蒸馏水中 3)工作曲线的配制:用L硫酸钾溶液配制10ugC/L、30ugC/L、50ugC/L、 70ugC/L、100ugC/L系列标准碳溶液。(其实一般情况下, 仪器会自带的标曲,一般不用自己做的) 操作步骤 土壤的前处理(过筛和水分调节略) 熏蒸 称取新鲜(相当于干土,这个可以根据自己土样的情况而定)3份分别放入25ml小烧杯中。将烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约2/3)的15ml烧杯2或3只,烧杯内放入少量防暴沸玻璃珠,同时放入一盛有NaOH溶液的小烧杯,以吸收熏蒸过程中释放出来的CO 2 ,干燥器底部加入少量水以保持容器湿度。盖上真空干燥器盖子,用真空泵抽真空,使氯仿沸腾5分钟。关闭真空干燥器阀门,于25℃黑暗条件下培养24小时。 抽真空处理 熏蒸结束后,打开真空干燥器阀门(应听到空气进入的声音,否则熏蒸不完

全,重做),取出盛有氯仿(可重复利用)和稀NaOH溶液的小烧杯,清洁干燥器,反复抽真空(5或6次,每次3min,每次抽真空后最好完全打开干燥器盖子),直到土壤无氯仿味道为止。同时,另称等量的3份土壤,置于另一干燥器中为不熏蒸对照处理。(注意:熏蒸后不可久放,应该快速浸提)※ 浸提过滤 从干燥器中取出熏蒸和未熏蒸土样,将土样完全转移到80ml聚乙烯离心管中,加入40ml L硫酸钾溶液(土水比为1:4,考虑到土样的原因,此部分熏蒸和不熏蒸土均为4g,即,4g土:16ml的硫酸钾溶液,当然这个加入量要根据TOC仪器的进入量决定)300r/min振荡30min,用中速定量滤纸过滤。同时作3个无土壤基质空白。土壤提取液最好立即分析,或—20℃冷冻保存(但使用前需解冻摇匀)(注意这部分很重要,有研究结果表明:提取液如果不立即分析,请保存在—20℃,否则将影响浸提液的效果,其次,过滤时不要用普通的定性或定量滤纸,以免长久杂质会堵塞仪器的管路,建议使用那种一次性塑料注射器,配一个的滤头,一个才1元)。 TOC仪器测定 吸取上述土壤提取液10ul(这个要根据仪器自己的性能决定,但是一般情况下,在测定土壤滤液时候,要对其进行稀释,如果不稀释,一方面超过原来仪器的标曲,另一方面可能堵塞仪器。)注入自动总有机碳(TOC)分析仪上,测定提取液有机碳含量。由于总有机碳分析仪型号较多,不同的型号则操作程序存在较大差异,这里以本实验室使用的有机碳分析仪(Shimadzu Model TOC---500,JAPAN)为例。 计算 SMBC=(E C CHCL3—E C CK)*TOC仪器的稀释倍数*原来的水土比/ 2 土壤微生物生物量氮(茚三酮比色法) 土壤微生物生物氮一般占土壤全氮的2%—7%,是土壤中有机—无机态氮转化的一个重要环节,关于土壤微生物氮的测定常见的熏蒸浸提法有两种,一是全氮测定法,另一个是茚三酮比色法,如下 基本原理(茚三酮比色法)

常见的微生物检测方法

常见的微生物检测 方法

摘要:微生物的检测,无论在理论研究还是在生产实践中都具有重要的意义,本文分生长量测定法,微生物计数法,生理指标法和商业化快速微生物检测简要介绍了利用微生物重量,体积,大小,生理代谢物等指标的二十余种常见的检测方法,简要介绍了这些方法的原理,应用范围和优缺点。 概述: 一个微生物细胞在合适的外界条件下,不断的吸收营养物质,并按自己的代谢方式进行新陈代谢。如果同化作用的速度超过了异化作用,则其原生质的总量(重量,体积,大小)就不断增加,于是出现了个体的生长现象。如果这是一种平衡生长,即各细胞组分是按恰当的比例增长时,则达到一定程度后就会发生繁殖,从而引起个体数目的增加,这时,原有的个体已经发展成一个群体。随着群体中各个个体的进一步生长,就引起了这一群体的生长,这可从其体积、重量、密度或浓度作指标来衡量。微生物的生长不同于其它生物的生长,微生物的个体生长在科研上有一定困难,一般情况下也没有实际意义。微生物是以量取胜的,因此,微生物的生长一般指群体的扩增。微生物的生长繁殖是其在内外各种环境因素相互作用下的综合反映。因此生长繁殖情况就可作为研究各种生理生化和遗传等问题的重要指标,同

时,微生物在生产实践上的各种应用或是对致病,霉腐微生物的防治都和她们的生长抑制紧密相关。因此有必要介绍一下微生物生长情况的检测方法。既然生长意味着原生质含量的增加,因此测定的方法也都直接或间接的以次为根据,而测定繁殖则都要建立在计数这一基础上。微生物生长的衡量,能够从其重量,体积,密度,浓度,做指标来进行衡量。 生长量测定法 体积测量法:又称测菌丝浓度法。 经过测定一定体积培养液中所含菌丝的量来反映微生物的生长状况。方法是,取一定量的待测培养液(如10毫升)放在有刻度的离心管中,设定一定的离心时间(如5分钟)和转速(如5000 rpm),离心后,倒出上清夜,测出上清夜体积为v,则菌丝浓度为(10-v)/10。菌丝浓度测定法是大规模工业发酵生产上微生物生长的一个重要监测指标。这种方法比较粗放,简便,快速,但需要设定一致的处理条件,否则偏差很大,由于离心沉淀物中夹杂有一些固体营养物,结果会有一定偏差。 称干重法:

土壤微生物量碳测定方法

土壤微生物量碳测定方法及应用 土壤微生物量碳(Soil microbial biomass)不仅对土壤有机质和养分的循环起着主要作用,同时是一个重要活性养分库,直接调控着土壤养分(如氮、磷和硫等)的保持和释放及其植物有效性。近40年来,土壤微生物生物量的研究已成为土壤学研究热点之一。由于土壤微生物的碳含量通常是恒定的,因此采用土壤微生物碳(Microbial biomass carbon, Bc)来表示土壤微生物生物量的大小。测定土壤微生物碳的主要方法为熏蒸培养法(Fumigation-incubation, FI)和熏蒸提取法(Fumigation-extraction, FE)。 熏蒸提取法(FE法) 由于熏蒸培养法测定土壤微生物量碳不仅需要较长的时间而且不适合于强酸性土壤、加 入新鲜有机底物的土壤以及水田土壤。Voroney (1983)发现熏蒸土壤用0.5mol·L-1K 2SO 4 提取 液提取的碳量与生物微生物量有很好的相关性。Vance等(1987)建立了熏蒸提取法测定土壤 微生物碳的基本方法:该方法用0.5mol·L-1K 2SO 4 提取剂(水土比1:4)直接提取熏蒸和不熏 蒸土壤,提取液中有机碳含量用重铬酸钾氧化法测定;以熏蒸与不熏蒸土壤提取的有机碳增 加量除以转换系数K EC (取值0.38)来计算土壤微生物碳。 Wu等(1990)通过采用熏蒸培养法和熏蒸提取法比较研究,建立了熏蒸提取——碳自动一起法测定土壤微生物碳。该方法大幅度提高提取液中有机碳的测定速度和测定结果的准确度。 林启美等(1999)对熏蒸提取-重铬酸钾氧化法中提取液的水土比以及氧化剂进行了改进,以提高该方法的测定结果的重复性和准确性。 对于熏蒸提取法测定土壤微生物生物碳的转换系数K EC 的取值,有很多研究进行了大量的 研究。测定K EC 值的实验方法有:直接法(加入培养微生物、用14C底物标记土壤微生物)和间接法(与熏蒸培养法、显微镜观测法、ATP法及底物诱导呼吸法比较)。提取液中有机碳的 测定方法不同(如氧化法和仪器法),那么转换系数K EC 取值也不同,如采用氧化法和一起法 K EC 值分别为0.38(Vance等,1987)和0.45(Wu等,1990)。不同类型土壤(表层)的K EC 值有较大不同,其值变化为0.20-0.50(Sparling等,1988,1990;Bremer等,1990)。Dictor 等(1998)研究表明同一土壤剖面中不同浓度土层土壤的转换系数K EC 有较大的差异,从表层 0-20cm土壤的K EC 为0.41,逐步降低到180-220cm土壤的K EC 为0.31。 一、基本原理 熏蒸提取法测定微生物碳的基本原理是:氯仿熏蒸土壤时由于微生物的细胞膜被氯仿破 坏而杀死,微生物中部分组分成分特别是细胞质在酶的作用下自溶和转化为K 2SO 4 溶液可提取 成分(Joergensen,1996)。采用重铬酸钾氧化法或碳-自动分析仪器法测定提取液中的碳含量,以熏蒸与不熏蒸土壤中提取碳增量除以转换系数K EC 来估计土壤微生物碳。 二、试剂配制 (1)硫酸钾提取剂(0.5mol·L-1):取871.25g分析纯硫酸钾溶解于蒸馏水中,定溶至10L。 由于硫酸钾较难溶解,配制时可用20L塑料桶密闭后置于苗床上(60-100rev·min-1)12小时即可完全溶解。 (2) 0.2 mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:称取130℃烘2-3小时的K 2 Cr 2 O 7 (分析纯)9.806g 于1L大烧杯中,加去离子水使其溶解,定溶至1L。K 2Cr 2 O 7 较难溶解,可加热加快其溶 解。 (3) 0.1000 mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:取经130℃烘2-3小时的分析纯重铬酸钾4.903g, 用蒸馏水溶解并定溶至1L。

微生物细胞大小地测定方法

微生物细胞大小测定 一、实验目的 了解目镜测微尺和镜台测微尺的构造和使用原理,掌握微生物细胞大小的测定方法。 二、实验原理 微生物细胞的大小是微生物重要的形态特征之一,由于菌体很小,只能在显微镜下来测量。 用于测量微生物细胞大小的工具有目镜测微尺和镜台测微尺。 目镜测微尺(图-1 )是一块圆形玻片,在玻片中央把5mm长度刻成50 等分,或把10 mm长度刻成 100 等分。测量时,将其放在接目镜中的隔板上( 此处正好与物镜放大的中间像重叠) 来测量经显微镜放大后的细胞物象。由于不同目镜、物镜组合的放大倍数不相同,目镜测微尺每格实际 表示的长度也不一样,因此目镜测微尺测量微生物大小时须先用置于镜台上的镜台测微尺校正, 以求出在一定放大倍数下,目镜测微尺每小方格所代表的相对长度。 镜台测微尺(图20-2 )是中央部分刻有精确等分线的载玻片,一般将lmm 等分为 100 格,每格长 l0 μ m(即 0.0lmm ),是专门用来校正目镜测微尺的。校正时,将镜台测微尺放在载物台上, 图 1 目镜测微尺图2镜台测微尺 由于镜台测微尺与细胞标本是处于同一位置,都要经过物镜和目镜的两次放大成象进入视野, 镜台测微尺随着显微镜总放大倍数的放大而放大,因此从镜台测微尺上得到的读数就是细胞的真 实大小,所以用镜台测微尺的已知长度在一定放大倍数下校正目镜测微尺,即可求出目镜测微尺 每格所代表的长度,然后移去镜台测微尺,换上待测标本片,用校正好的目镜测微尺在同样放大 倍数下测量微生物大小。 即 三、实验器材 1.活材料:酿酒酵母( Saccharomyces cerevisiae) 、枯草杆菌(Baccillus subtilis) 染色标本片。 2.器材:显微镜、目镜测微尺、镜台测微尺、擦镜纸。 四、实验方法 1.目镜测微尺的校正把目镜的上透镜旋下,将目镜测微尺的刻度朝下轻轻地装入目镜的隔板 上,把镜台测微尺置于载物台上,刻度朝上。先用低倍镜观察,对准焦距,视野中看清镜台测微 尺的刻度后,转动目镜,使目镜测微尺与镜台测微尺的刻度平行,移动推动器,使两尺重叠,再 使两尺的“ 0”刻度完全重合,定位后,仔细寻找两尺第二个完全重合的刻度,计数两重合刻度 之间目镜测微尺的格数和镜台测微尺的格数。因为镜台测微尺的刻度每格长l0 μ m,所以由下列公式可以算出目镜测微尺每格所代表的长度。

凯氏定氮法:土壤微生物量氮测定

土壤微生物量氮的测定方法 1.试剂配制: (1)混合催化剂:按照硫酸钾:五水硫酸铜:硒粉=100:10:1,称取硫酸钾100g、 五水硫酸铜10g、硒粉1g。均匀混合后研细,贮于瓶中。 (2)密度为1.84浓硫酸。 (3)40%氢氧化钠:称400g氢氧化钠于烧杯中,加蒸馏水600ml,搅拌使之全部溶 解定容至1L。 (4)2%硼酸溶液:称20g硼酸溶于1000ml水中,再加入20ml混合指示剂。(按体 积比100:2加入混合指示剂) (5)混合指示剂:称取溴甲酚绿0.5g和甲基红0.1克,溶解在100ml95%的乙醇中, 用稀氢氧化钠或盐酸调节使之呈淡紫色,此溶液pH应为4.5。 (6)0.01mol的盐酸标准溶液:取比重1.19的浓盐酸0.84ml,用蒸馏水稀释至 1000ml,用基准物质标定之。 (7)0.5M K2SO4溶液:称取K2SO4 87.165g溶解于蒸馏水中,搅拌溶解,(可加 热)定容至1L。 (8)去乙醇氯仿的配制:在通风柜中,量取100毫升氯仿至500毫升的分液漏斗 中,加入200毫升的蒸馏水,加塞,上下振荡10下,打开塞子放气,而后加塞再振荡10下,反复3次,将分液漏斗置于铁架台上,静止溶液分层,打开分液漏斗下端的阀,将下层溶液(氯仿)放入200毫升的烧杯中,将剩余的溶液倒入水槽,用自来水冲洗。再将烧杯中的氯仿倒入分液漏斗中,反复3次。将精制后的氯仿倒入棕色瓶中,加入无水分析纯的CaCl2 10g,置于暗处保存。 2.试验步骤:。 (1)制样:称取新鲜土壤(30.0g)于放置烧杯中,加约等于田间持水量60%水在25℃下培养7~15d。取15.0g土于烧杯,置于真空干燥器中,同时内放一装有用100ml精制氯仿的小烧杯,密封真空干燥器,密封好的真空干燥器连到真空泵上,抽真空至氯仿沸腾5分钟,静置5分钟,再抽滤5分钟,同样操作三次。干燥器放入25℃培养箱中24小时后,抽真空15-30分钟以除尽土壤吸附的氯仿。按照土:0.5M K2SO4=1:4(烘干土算,一般就是湿土:0.5M K2SO4=1:2),加入0.5M K2SO4溶液(空白直接称取15.0g土,加同样比例0.5M K2SO4溶液)震荡30分钟,过滤。 (2)测定:滤液要是不及时测定,需立即在-15℃以下保存,此滤液可用于微生物碳氮的测定。微生物碳测定只吸取2ml,采用重铬酸钾-硫酸亚铁滴定法测定。微生物氮吸取滤液10ml于消化管中,加入2g催化剂,在再加5ml浓硫酸,管口放一弯颈小漏斗,将消化管置于通风橱内远红外消煮炉的加热孔中。打开消煮炉上的所有加热开关进行消化,加热至微沸,关闭高档开关,继续加热。消煮至

生物量测定方法

生物量测定方法1树木生物量测定方法 1.1树木生物量的组成 一木树的生物量可以分为地下及地上两部分,地下部分是指树根系的生物量(WR);地上部分主要包括树干生物量(WS)、枝生物量(WB)和叶生物量(WL)。在生物量的测定中,除称量各部分生物量的干重量外,有时还要计算它们占全树总生物量干重的百分数,此百分数称为分配比。树干占地上部分的分配比最大(一般为65~70%),而枝叶部分的分配比约各占15%左右。 与材积测定相比,生物量测定的对象更为复杂,测定的部分也多,因而使得生物量的测定工作即复杂又困难。但是树木生物量与树木胸径、树高等测树因子之间也有着密切的关系,这些关系也为树木生物量测定提供了依据。在树木生物量测定中,树冠量的大小与形状对枝、叶量的多少有着显著的影响,因此,在实际工作中,要研究反映冠形和冠量的因子,常用的因子有冠长率、树冠圆满度、树冠投影比等因子,这些因子的意义如下: ⑴冠长率是冠长与树高之比 ⑵树冠圆满度是冠幅与冠长之比。用以表明树冠的圆满程度,此值愈大愈圆满,反之而树冠狭长。 ⑶树冠投影比是冠幅与胸径之比。用以表明树木营养面积的相对大小,此值愈大则树木占有的相对空间愈大。 上述这些因子在枝叶生物量测定、估计及分析比较中起着较大的辅助作用。而且,这些因子与胸径、树高等测树因子之间有着密切的相关关系,这为利用测树因子直接估测树木生物量提供了依据。 1.2树木生物量鲜重和干重的测定 树体在自然状态下含水时的重量称为鲜重,它是砍伐后立即称量的重量。干燥后去掉结晶水的重量称为干重。在外业中只能测得树木的鲜重,然后采用各种方法将鲜重换算为干重,最常用的换算方法是计算树木的干重比(),即, 而(11-8) 式中可用取样测定获得。 (1)树干干重的测定方法 ①木材密度法

土壤微生物测定方法 (2)

土壤微生物测定 土壤微生物活性表示土壤中整个微生物群落或其中的一些特殊种群状态,可以反映自然或农田生态系统的微小变化。土壤微生物活性的表征量有:微生物量、C/N、土壤呼吸强度与纤维呼吸强度、微生物区系、磷酸酶活性、酶活性等。 测定指标: 1、土壤微生物量(Mierobia lBiomass,MB) 能代表参与调控土壤能量与养分循环以及有机物质转化相对应微生物的数量,一般指土壤中体积小于5Χ103um3的生物总量。它与土壤有机质含量密切相关。 目前,熏蒸法就是使用最广泛的一种测定土壤微生物量的方法阎,它就是将待测土壤经药剂熏蒸后,土壤中微生物被杀死,被杀死的微生物体被新加人原土样的微生物分解(矿化)而放出CO2,根据释放出的CO2:的量与微生物体矿化率常数Kc可计算出该土样微生物中的碳量。因此碳量的大小就反映了微生物量的大小。 此外,还有平板计(通过显微镜直接计数)、成份分析法、底物诱导呼吸法、熏蒸培养法(测定油污染土壤中的微生物量—碳。受土壤水分状况影响较大,不适用强酸性土壤及刚施用过大量有机肥的土壤等)、熏蒸提取法等,均可用来测定土壤微生物量。 熏蒸提取-容量分析法 操作步骤: (1)土壤前处理与熏蒸 (2)提取 将熏蒸土壤无损地转移到200mL聚乙烯塑料瓶中,加入100mL0、5mol·L-1K2SO4(图水比为1:4;w:v),振荡30min(300rev·min-1),用中速定量滤纸过滤于125mL 塑料瓶中。熏蒸开始的同时,另称取等量的3份土壤于200mL聚乙烯塑料瓶中,直接加入100mlL0、5mol·L-1K2SO4提取;另作3个无土壤空白。提取液应立即分析。 (3)测定 吸取10mL上述土壤提取液于150mL消化管(24mmх295mm)中,准确加入10mL0、018 mol·L-1K2Cr2O7—12mol·L-1H2SO4溶液,加入2~3玻璃珠或瓷片,混匀后置于175±1℃磷酸浴中煮沸10min(放入消化管前,磷酸浴温度应调至179℃,放入后温度恰好为175℃)。冷却后无损地转移至150mL三角瓶中,用去离子水洗涤消化管3~5次使溶液体积约为80mL,加入一滴邻菲罗啉指示剂,用0、05mol·L-1硫酸亚铁标准溶液滴定,溶液颜色由橙黄色变为蓝色,再变为红棕色,即为滴定终点。 (4)结果计算

生物量碳氮测定方法(熏蒸提取法)

一、土壤微生物生物量碳测定方法(熏蒸提取-碳自动仪器法) 1、试剂配制 去乙醇氯仿制备:普通氯仿试剂一般含有少量乙醇作为稳定剂,使用前需除去。将氯仿试剂按1 : 2(v : v)的比例与去离子水或蒸馏水一起放入分液漏斗中,充分摇动1min,慢慢放出底层氯仿于烧杯中,如此洗涤3次。得到的无乙醇氯仿加入无水氯化钙,以除去氯仿中的水分。纯化后的氯仿置于暗色试剂瓶中,在低温(4℃)、黑暗状态下保存(Williamss等,1995)。注意氯仿具有致癌作用,必须在通风橱中进行操作。 硫酸钾提取剂[c(K2SO4)= 0.5mol L-1]:87.12分析纯硫酸钾,溶于1L去离子水。 六偏磷酸钠溶液[ρ( NaPO3)6 = 5g 100ml-1,pH2.0]:50.0g分析纯六偏磷酸钠缓慢加入盛有800ml 去离子水的烧杯中(注意:六偏磷酸钠溶解速度很慢,且易粘于烧杯底部结块,加热易使烧杯破裂),缓慢加热(或置于超声波水浴器中)至完全溶化,用分析纯浓磷酸调节至pH2.0,冷却后定容至1L。 过硫酸钾溶液[ρ(K2S2O8)= 2g 100ml-1]:20.0g分析纯过硫酸钾溶于去离子水,定容至1L,避光存放,使用期最多为7d。 磷酸溶液[ρ(H3PO4)= 21 g 100ml-1]:37ml 85%分析纯浓磷酸(H3PO4,ρ= 1.70g ml-1)与188ml 去离子水混合。 邻苯二甲酸氢钾标准溶液[ρ(C6H4CO2HCO2K)= 1000mg C L-1]:2.1254g分析纯邻苯二甲酸氢钾(称量前105℃烘2~3h),溶于去离子水,定容至1L。 2、仪器设备 土壤筛(孔经2mm)、真空干燥器(直径22cm)、水泵抽真空装置(图6–1)或无油真空泵、pH–自动滴定仪、塑料桶(带螺旋盖可密封,体积50L)、可密封螺纹广口塑料瓶(容积1.1L)、高温真空绝缘酯(MIST–3)、烧杯(25、50、80ml)。碳–自动分析仪(Phoenix 8000)、容量瓶(100ml)、样品瓶(40ml)。 1–真空干燥器,2–装土壤烧杯,3–装氯仿烧杯4–磨口三通活塞5–真空表 6–缓冲瓶7–抽真空管8–增压泵9–控制开关10–进水口11–出水口 (图6–1 土壤熏蒸抽真空装置) 3、操作步骤 (1)土样前处理 新鲜土样应立即进行前处理或保存于4℃冰箱中。测定前先仔细除去土样中可见的植物残体(如根、茎和叶)及土壤动物(如蚯蚓等),过筛(孔径< 2mm)并混匀。如土样过湿,应在室内适当风干至土样含水量约为田间持水量(Water-holding capacity,WHC)的40%(以手感湿润疏松但不

土壤微生物数量测定方法整理

土壤微生物的分离鉴定及数量测定 (一)培养基的制备 Ⅰ测定微生物总量培养基: 1. 细菌培养基(牛肉膏蛋白胨琼脂培养基) 牛肉膏Beefextract 5.0g 蛋白胨Peptone 10.0g NaCI 5.0g 蒸馏水H20 1000m1 琼脂15~20g PH 7.2~7.4 制备步骤: ⑴在100 mL小烧杯中称取牛肉膏5.0g,蛋白胨10.0g,加50 mL蒸馏水,置电炉搅拌加热至牛肉膏,蛋白胨完全溶解. ⑵向小铝锅中加入500 mL蒸馏水,将溶解的牛肉膏,蛋白胨倒入铝锅中并用自来水洗2~3次.加入 5.0gNaC1,在电炉上边加热边搅拌. ⑶加入洗净的琼脂条,继续搅拌,加热至琼脂完全熔化,补足水量至1000 mL. ⑷用NaOH或HC1调至pH7.0. 用酸度计或用玻棒沾少许液体用精密pH试纸测定其pH值,并用10%NaOH 调至所需pH值,必要时用滤纸或脱脂棉过滤。一般比要求的pH高出0.2,因为高压蒸汽灭菌后,pH常降低。 ⑸根据不同需要,可将配好的培养基分装入配有棉塞的试管或三角瓶内。注意分装时避免培养基挂在瓶口或管口上引起杂菌污染。如液体培养基,应装试管高度的1/4左右;固体培养基装试管高度的1/5左右;装入三角瓶的量以三角瓶容量的一半为限。,塞好棉塞,装入小铁丝筐,然后用旧报纸将棉塞部分包好. 标签表明培养基的名称、配制日期等。 ⑹高压蒸汽灭菌,用0.1Mpa(15lb/in2)121℃灭菌(15-20)30min. 2. 放线菌培养基(改良高氏1号琼脂培养基) 可溶性淀粉20g KNO3 1g K2HPO40.5g MgSO4? 7H2O 0.5g NaCl 0.5g原0.05g FeSO4? 7H2O 0.01g pH 7.2-7.4 制备步骤: (1)计算根据配方计算各种药品所需要的量,然后再分别称量。 (2)称量准确称量各种成分。 (3)溶化配制时,先用少量冷水将淀粉调成糊状,倒入少许沸水中,在火上加热,边搅拌边依次逐一溶化其他成分,溶化后,补足水分到1000ml,调PH(可不调)。 (4)分装、包扎、灭菌。

生物量测定方法

生物量测定方法 1树木生物量测定方法 1.1树木生物量的组成 一木树的生物量可以分为地下及地上两部分,地下部分是指树根系的生物量(WR);地上部分主要包括树干生物量(WS)、枝生物量(WB)和叶生物量(WL)。在生物量的测定中,除称量各部分生物量的干重量外,有时还要计算它们占全树总生物量干重的百分数,此百分数称为分配比。树干占地上部分的分配比最大(一般为65~70%),而枝叶部分的分配比约各占15%左右。 与材积测定相比,生物量测定的对象更为复杂,测定的部分也多,因而使得生物量的测定工作即复杂又困难。但是树木生物量与树木胸径、树高等测树因子之间也有着密切的关系,这些关系也为树木生物量测定提供了依据。在树木生物量测定中,树冠量的大小与形状对枝、叶量的多少有着显著的影响,因此,在实际工作中,要研究反映冠形和冠量的因子,常用的因子有冠长率、树冠圆满度、树冠投影比等因子,这些因子的意义如下: ⑴冠长率是冠长与树高之比 ⑵树冠圆满度是冠幅与冠长之比。用以表明树冠的圆满程度,此值愈大愈圆满,反之而树冠狭长。 ⑶树冠投影比是冠幅与胸径之比。用以表明树木营养面积的相对大小,此值愈大则树木占有的相对空间愈大。 上述这些因子在枝叶生物量测定、估计及分析比较中起着较大的辅助作用。而且,这些因子与胸径、树高等测树因子之间有着密切的相关关系,这为利用测树因子直接估测树木生物量提供了依据。 1.2树木生物量鲜重和干重的测定 树体在自然状态下含水时的重量称为鲜重,它是砍伐后立即称量的重量。干燥后去掉结晶水的重量称为干重。在外业中只能测得树木的鲜重,然后采用各种方法将鲜重换算为干重,最常用的换算方法是计算树木的干重比(),即, 而(11-8) 式中可用取样测定获得。 (1)树干干重的测定方法 ①木材密度法

土壤微生物量测定方法

土壤微生物量测定方法 一、土壤微生物生物量碳(氯仿熏蒸-K2SO4提取-碳分析仪器法) 1、试剂 (1)去乙醇氯仿制备:在通风橱中,将分析纯氯仿与蒸馏水按1 ? 2(v : v)加入分液漏斗中,充分摇动1 min,慢慢放出底层氯仿于烧杯中,如此洗涤3次。得到的无乙醇氯仿中加入无水氯化钙,以除去氯仿中的水分。纯化后的氯仿置于试剂瓶中,在低温(4℃)、黑暗状态下保存。 (2)氢氧化钠溶液[c(NaOH)= 1 mol L-1]:通常分析纯固体氢氧化钠中含有碳酸钠,与酸作用时生成二氧化碳,从而影响滴定终点判断和测定的准确度。配制时应先除去碳酸钠,根据碳酸钠不溶于浓碱,可先将氢氧化钠配成50%(w : v)的浓氧溶液,密闭放置3~4 d。待碳酸钠沉降后,取56 ml 50%氢氧化钠上清液(约19 mol L-1),用新煮沸冷却的除去二氧化碳的蒸馏水释稀到1 L,即为浓度1 mol L-1 NaOH溶液,用橡皮塞密闭保存。 (3)硫酸钾提取剂[c(K2SO4)= mol L-1]:取1742.5 g分析纯硫酸钾,用研钵磨成粉末状,倒于25 L塑料桶中,加蒸馏水至20 L,盖紧螺旋盖置于摇床(150 r min-1)上溶解24 h 即可。 (4)六偏磷酸钠溶液[ρ(Na)= 5 g 100 ml-1,pH ]:称取50.0 g分析纯六偏磷酸钠溶于800 ml高纯度去离子水中,用分析纯浓磷酸调节至pH ,用高纯度去离子水定容至1 L。要注意的是六偏磷酸钠溶解速度很慢应提前配制;由于其易粘于烧杯底部,若加热常因受热不均使烧杯破裂。 ) (5)过硫酸钾溶液[ρ(K2S2O8)= 2 g 100 ml-1]:称取20.0 g分析纯过硫酸钾,溶于高纯度去离子水中,定容至1 L。值得注意过硫酸钾溶液易被氧化,应避光存放且最多使用7 d。 (6)磷酸溶液[ρ(H3PO4)= 21 g 100 ml-1]:量取37 ml 分析纯浓磷酸(85%),慢慢加入到188 ml高纯度去离子水中即可。 (7)邻苯二甲酸氢钾标准溶液[ρ()= 1000 mg C L-1]):取2.1254 g经105℃烘2~3 h的分析纯邻苯二甲酸氢钾,溶于高纯度去离子水,定容至1 L。 2、仪器设备 碳–自动分析仪(Phoenix 8000)、容量瓶(100 ml)、振荡器(300 r min-1)、可调加液器(50 ml)、可调移液器(5 ml)、烧杯(盛滤液用)(50~100 ml)、聚乙烯提取瓶(100,150 ml),聚乙烯塑料桶(20 L,带螺旋盖),三角瓶(150 ml)、其它常规仪器。 3、操作步骤 ; (1)土样前处理 新鲜土壤应立即处理或保存于4℃冰箱中,测定前先仔细除去土样中可见植物残体(如根、茎和叶)及土壤动物(如蚯蚓等),过筛(孔径< 2 mm),彻底混匀。如果土壤过湿,应在室内适当风干,以手感湿润疏松但不结块为宜(约为饱和持水量的40%)。如果土壤过于干燥,用蒸馏水调节至饱和持水量的40%。将土壤置于密封的大塑料桶内在25℃条件下预培养7~15 d,桶内有适量水以保持相对湿度为100%,并在桶内放一小杯1 mol L-1 NaOH 溶液以吸收土壤呼吸产生的CO2。经过预培养的土壤应立即分析。如需保留,应放置于4℃

土壤微生物数量测定

土壤微生物数量测定 (一)培养基的制备: Ⅰ测定微生物总量培养基: 1. 细菌培养基(牛肉膏蛋白胨琼脂培养基) 牛肉膏Beefextract 5.0g 蛋白胨Peptone 10.0g NaCI 5.0g 蒸馏水H20 1000m1 PH 7.2~7.4 2.放线菌培养基(高氏1号琼脂培养基) 可溶性淀粉20g KNO 3 1g K 2HPO 4 0.5g MgSO 4? 7H 2 O 0.5g NaCl 0.05g FeSO4? 7H2O 0.01g pH 7.2-7.4 注:配制时,先用少量冷水,将淀粉调成糊状,倒入少于所需水量的沸水中,在火上加热,边搅拌边依次逐一溶化其他成分,溶化后,补足水分到1000ml,调pH。 另:倒平板之前,在溶化的培养基中加重铬酸钾溶液,每300mL培养基加3%重铬酸钾1mL(l00ppm)。 3.真菌培养基(马丁(Martin)-孟加拉红琼脂培养基) 葡萄糖 10.0g MgSO 4.7H 2 O O.5g 蛋白胨 5.0g 孟加拉红33.4mg (或者每升加1%溶液3.3mL) K 2HPO 4 1g 蒸馏水H20 1000m1 PH 自然(4~5) 注:⑴灭菌前加卡那霉素20μg/ml,或者倒平板之前加链霉素。 ⑵倒平板之前加乳酸,每100mL培养基加0.lmL。 以上培养基皆加琼脂15g/L。 Ⅱ测定功能菌所用培养基: 1.亚硝酸细菌培养基(改良的斯蒂芬逊(Stephenson)培养基A) (NH4)2SO4 2.0g NaH2PO40.25g MnSO4·4H2O 0.01g MgSO4·7H2O 0.03g K2HPO40.75g CaCO3 5.0g 蒸馏水1000ml PH 7.2 注:CaCO3最后加,不需要溶解,直接调PH,培养基中有这个成分是为了缓冲pH。因为硝化细菌的生长会产生酸化效应,使得氢离子过剩,到了一定程度硝化作用将无法继续,所以要碱性物质平衡酸碱。下同。

土壤微生物生物量的测定(滴定法)(精)

1. 土壤微生物生物量的测定 (滴定法 一、实验目的和内容 土壤微生物生物量是指土壤中体积小于5~10μm 3活的微生物总量, 是土壤有机质中最活跃的和最易变化的部分。耕地表层土壤中,土壤微生物量碳(Bc 一般占土壤有机碳总量的 3%左右,其变化可直接或间接地反映土壤耕作制度和微生物肥力的变化,并可以反映土壤污染的程度。近 30年来,国外许多学者对土壤微生物生物量的测定方法进行了比较系统的研究,但由于土壤微生物的多样性和复杂性,还没有发现一种简单、快速、准确、适应性广的方法。目前广泛应用的方法包括:氯仿熏蒸培养法(FI 、氯仿熏蒸浸提法(FE 、基质诱导呼吸法(SIR 、精氨酸诱导氨化法和三磷酸腺苷(A TP 法。 氯仿熏蒸浸提法(FE 的原理是:土壤经氯仿熏蒸处理,微生物被杀死,细胞破裂后, 细胞内容物释放到土壤中,导致土壤中的可提取碳、氨基酸、氮、磷和硫等大幅度增加。通过测定浸提液中全碳的含量可以计算土壤微生物生物量碳。 二、实验材料和用具 仪器:培养箱;真空干燥器;真空泵;往复式振荡机(速率 200次每 min ; 1L 广口玻璃瓶;定量滤纸;紫外分光光度计; LNK-872型消煮炉(江苏省宜兴市科教仪器研究所试剂: 1. 无乙醇氯仿:市售的氯仿都含有乙醇(作为稳定剂 ,使用前必须除去乙醇。方法为:量取 500ml 氯仿于 1000ml 分液漏斗中,加入 50ml 硫酸溶液[ρ(H2SO 4=5%], 充分摇匀, 弃除下层硫酸溶液, 如此进行 3次。再加入 50ml 去离子水, 同上摇匀, 弃去上部的水分,如此进行 5次。将下层的氯仿转移存放在棕色瓶中,并加入约 20g 无水 K 2CO 3,在冰箱的冷藏室中保存备用。 2. 硫酸钾溶液 [c(K2SO4=0.5mol·L -1]称取硫酸钾(K 2SO 4,化学纯 87.10g ,先溶于

生物测定方法

生长量测定法 体积测量法:又称测菌丝浓度法。 通过测定一定体积培养液中所含菌丝的量来反映微生物的生长状况。方法是,取一定量的待测培养液(如10毫升)放在有刻度的离心管中,设定一定的离心时间(如5分钟)和转速(如5000 rpm),离心后,倒出上清夜,测出上清夜体积为v,则菌丝浓度为(10-v)/10。菌丝浓度测定法是大规模工业发酵生产上微生物生长的一个重要监测指标。这种方法比较粗放,简便,快速,但需要设定一致的处理条件,否则偏差很大,由于离心沉淀物中夹杂有一些固体营养物,结果会有一定偏差。 称干重法: 可用离心或过滤法测定。一般干重为湿重的10-20%。在离心法中,将一定体积待测培养液倒入离心管中,设定一定的离心时间和转速,进行离心,并用清水离心洗涤1-5次,进行干燥。干燥可用烘箱在105℃或100℃下烘干,或采用红外线烘干,也可在80℃或40℃下真空干燥,干燥后称重。如用过滤法,丝状真菌可用滤纸过滤,细菌可用醋酸纤维膜等滤膜过滤,过滤后用少量水洗涤,在40℃下进行真空干燥。称干重发法较为烦琐,通常获取的微生物产品为菌体时,常采用这种方法,如活性干酵母(activity dry yeast, ADY),一些以微生物菌体为活性物质的饲

料和肥料。 比浊法: 微生物的生长引起培养物混浊度的增高。通过紫外分光光度计测定一定波长下的吸光值,判断微生物的生长状况。对某一培养物内的菌体生长作定时跟踪时,可采用一种特制的有侧臂的三角烧瓶。将侧臂插入光电比色计的比色座孔中,即可随时测定其生长情况,而不必取菌液。该法主要用于发酵工业菌体生长监测。如我所使用UNICO公司的紫外-可见分光光度计,在波长600nm 处用比色管定时测定发酵液的吸光光度值OD600,以此监控E.Coli的生长及诱导时间。 菌丝长度测量法: 对于丝状真菌和一些放线菌,可以在培养基上测定一定时间内菌丝生长的长度,或是利用一只一端开口并带有刻度的细玻璃管,到入合适的培养基,卧放,在开口的一端接种微生物,一段时间后记录其菌丝生长长度,借此衡量丝状微生物的生长。 微生物计数法 血球计数板法:

生物测定法

生物测定法 一.卵泡刺激素(FSH)生物检定法——幼大鼠卵巢增重法 1.实验材料及用具 1.1天平精度0.01mg 供试品称量用 精度0.1 mg 卵巢称重用 精度0. 1g 大鼠称重用 1.2实验用具注射器(1ml,精度0.01ml),吸管、移液管、烧杯、有塞玻璃瓶、玻璃棒、量筒、滤纸。 1.3手术用器械手术板、手术剪、直镊、眼科剪、眼科直镊、眼科弯镊。 1.4试剂氯化钠、牛血清白蛋白、氢氧化钠、绒促性素(HCG)。 2.溶液配制 2.1生理盐水称取氯化钠适量,加水配成0.9%的溶液。 2.2氢氧化钠溶液称取氢氧化钠适量,加水配成1mol/L氢氧化钠溶液。 2.3牛血清白蛋白生理盐水称取牛血清白蛋白适量,加入到生理盐水中,配成1mg/ml的牛血清白蛋白溶液,并用1mol/L氢氧化钠溶液调节值至7.2±0.2。 2.4溶媒称取已知效价的HCG(粉末原料或粉针均可)加入到牛血请白蛋白生理盐水种,混匀,配成20u/ml的溶液。 2.5标准品溶液 2.5.1取尿促性素标准品,放置至室温。割开安瓿(注意勿使内容物损失)立即用溶媒将内容物洗出按FSH的标示效价配成10u/ml或20u/ml标准品溶液,亦可直接配成相当于高剂量d s3浓度的溶液。 2.6标准品溶液的稀释 2.6.1根均动物品系、来源、季节按中国药典附录卵泡刺激素生物鉴定法的要求,选择标准品高、中、低3组剂量。一般高剂量为2~4u/ml,剂距r不得大于1:0.5。 2.6.2分别精密量取10u/ml或20u/ml标准品溶液适量,各精密加入一定量溶媒,配制成高、中、低三组标准品稀释液。 2.6.3稀释液至4~8℃保存,供3日内使用。 2.7供试品溶液 2.7.1按供试品FSH的标示效价或估计效价,同标准品溶液的配制。 2.7.1.1粉末放置至室温,迅速精密称取适量。将称得的毫克数,乘以标示单位数或估计效价,得总单位数。用溶媒配成10u/ml 或20u/ml的供试品溶液,亦可直接配成相当于高剂量d T3浓度的溶液。

土壤微生物生物量的测定方 法(氯仿熏蒸)

土壤微生物生物量的测定方法 1土壤微生物碳的测定方法(熏蒸提取----仪器分析法)1.1 基本原理 新鲜土样经氯仿熏蒸后(24h),土壤微生物死亡细胞发生裂解,释放出微生物生物量碳,用一定体积的0.5mol/LK2SO4溶液提取土壤,借用有机碳自动分析仪测定微生物生物量碳含量。根据熏蒸土壤与未熏蒸土壤测定有机碳的差值及转换系数(K EC),从而计算土壤微生物生物量碳。 1.2 实验仪器 自动总有机碳(TOC)分析仪(Shimadzu Model TOC—500,JANPAN)、真空干燥器、烧杯、三角瓶、聚乙烯熟料管、离心管、滤纸、漏斗等。 1.3 实验试剂 1)无乙醇氯仿(CHCL3); 2)0.5mol/L硫酸钾溶液:称取87g K2SO4溶于1L蒸馏水中 3)工作曲线的配制:用0.5mol/L硫酸钾溶液配制10ugC/L、30ugC/L、50ugC/L、 70ugC/L、100ugC/L系列标准碳溶液。(其实一般情况下,仪器会自带的标曲,一般不用自己做的) 1.4 操作步骤 1.4.1 土壤的前处理(过筛和水分调节略) 1.4.2 熏蒸 称取新鲜(相当于干土10.0g,这个可以根据自己土样的情况而定)3份分别放入25ml小烧杯中。将烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约2/3)的15ml烧杯2或3只,烧杯内放入少量防暴沸玻璃珠,同时放入一盛有NaOH溶液的小烧杯,以吸收熏蒸过程中释放出来的CO2,干燥器底部加入少量水以保持容器湿度。盖上真空干燥器盖子,

用真空泵抽真空,使氯仿沸腾5分钟。关闭真空干燥器阀门,于25℃黑暗条件下培养24小时。 1.4.2 抽真空处理 熏蒸结束后,打开真空干燥器阀门(应听到空气进入的声音,否则熏蒸不完全,重做),取出盛有氯仿(可重复利用)和稀NaOH溶液的小烧杯,清洁干燥器,反复抽真空(5或6次,每次3min,每次抽真空后最好完全打开干燥器盖子),直到土壤无氯仿味道为止。同时,另称等量的3份土壤,置于另一干燥器中为不熏蒸对照处理。(注意:熏蒸后不 可久放,应该快速浸提)※ 1.4.4 浸提过滤 从干燥器中取出熏蒸和未熏蒸土样,将土样完全转移到80ml聚乙烯离心管中,加入40ml 0.5mol/L硫酸钾溶液(土水比为1:4,考虑到土样的原因,此部分熏蒸和不熏蒸土均为4g,即,4g土:16ml的硫酸钾溶液,当然这个加入量要根据TOC仪器的进入量决定)300r/min振荡 30min,用中速定量滤纸过滤。同时作3个无土壤基质空白。土壤提取液最好立即分析,或—20℃冷冻保存(但使用前需解冻摇匀)(注意这部分很重要,有研究结果表明:提取液如果不立即分析,请保存在—20℃,否则将影响浸提液的效果,其次,过滤时不要用普通的定性或定量滤纸,以免长久杂质会堵塞仪器的管路,建议使用那种一次性塑料注射器,配一个0.2um的滤头,一个才1元)。 1.4.5 TOC仪器测定 吸取上述土壤提取液10ul(这个要根据仪器自己的性能决定,但是一般情况下,在测定土壤滤液时候,要对其进行稀释,如果不稀释,一方面超过原来仪器的标曲,另一方面可能堵塞仪器。)注入自动总有机碳(TOC)分析仪上,测定提取液有机碳含量。由于总有机碳分析仪型号较多,不同的型号则操作程序存在较大差异,这里以本实验室使用的有机碳分析仪(Shimadzu Model TOC---500,JAPAN)为例。 1.5 计算

土壤微生物分析方法

土壤微生物分析方法 周丽霞 1. 土壤微生物生物量碳(氯仿熏蒸提取法) Jenkinson and Powlson(1976)比较了γ-射线、高压灭菌、干热灭菌、氯仿熏蒸灭菌的效果,发现氯仿熏蒸灭菌处理可杀死99%以上的土壤微生物,并且未改变土壤的理化性质,且容易从土壤中除去。因此,现在多利用氯仿熏蒸法进行土壤微生物生物量的测定。 (1)原理:土壤经氯仿熏蒸处理后土壤中的微生物被杀死,造成细胞破裂,使细胞内容物释放到土壤中,导致土壤中可提取的碳增加。用盐溶液提取出由死后的微生物体内渗透出来的有机碳,通过测定浸提液中的碳含量,可以计算土壤微生物量碳。 (2)操作步骤: ①预处理:一般不需要。如果担心土壤状况可能会影响分析结果(如土壤太 干,土壤中微生物生长不好等),可以将采集到的土壤调节其含水量达到最大持水量的60%,在25℃预培养1周。 ②氯仿熏蒸处理(在通风橱内进行): 在低温下保存的土壤要先从冰箱中取出,待放置到室温时再进行分析。 称取20 g过2mm筛的新鲜土样置于50 ml 小烧杯中,放入真空干燥器内,并在真空干燥器内放置一装有去乙醇氯仿的小烧杯,烧杯内可放置几片防爆沸的干净小瓷片。同时放入一小烧杯稀氢氧化钠溶液以吸收熏蒸期间释放出来的

CO2,还应放一装水的小烧杯(或在干燥器底部放一层湿滤纸)以保持湿度。用少量凡士林密封干燥器,在真空泵与干燥器之间可以加一缓冲瓶以防止氯仿爆沸或由于抽真空使干燥器内外压力变化而造成干燥器破裂等现象发生,然后用真空泵抽气至干燥器内氯仿沸腾。关闭真空干燥器阀门,在25℃下暗处放置24小时。 熏蒸完成后,打开干燥器阀门(此时应听到空气进入的声音,否则可能熏蒸不彻底,要重新熏蒸),取出装水的小烧杯(或湿润的滤纸)、装有碱液和氯仿的烧杯(氯仿可倒回瓶中重复使用),用真空泵反复抽真空,并打开干燥器以除去土壤中残存的氯仿(止闻不到土壤中的氯仿气味)。 另称取等量土壤样品放入另一干燥器中,但不熏蒸,作为对照土壤。 ③K2SO4浸提: 熏蒸结束后,将土壤转移到100 ml振荡瓶中,加入60ml (或土水比1:4)0.5 M K2SO4溶液,中速振荡60分钟以使土壤完全振荡开,静置后用中速定量滤纸过滤。对照样品除不经氯仿熏蒸处理外,其他操作同熏蒸处理。 ④测定分析:一般采用K2Cr2O7容量法或碳分析仪(TOC)测定法。 K2Cr2O7容量法: 吸取10ml上述土壤浸提液于150ml消化管中,准确加入10ml 0.018 mol L-1 K2Cr2O7-12 mol L-1 H2SO4溶液,再加入2~3片干净小瓷片(防爆沸),混匀后在175℃煮沸10分钟,冷却后转移至150ml三角瓶中,用去离子水洗涤3~4次消化管使溶液体积约为70~80ml,加入1滴邻啡罗啉指示剂,用0.05 mol L-1 FeSO4标准溶液滴定,溶液颜色由橙黄色变为蓝绿色,再变为棕红色即为滴定终点。

相关主题
文本预览
相关文档 最新文档