福建省厦门市湖滨中学2018-2019学年高二下学期期中考试英语试题附答案
- 格式:doc
- 大小:257.50 KB
- 文档页数:16
2018-2019学年福建省厦门市湖滨中学高一下学期期中数学试题一、单选题1.不等式21x <的解集是( ) A .{1}x x <B .{11}x x -<<C .{|1x x <-或1}x >D .{|1x x <-且1}x >【答案】B【解析】利用因式分解,结合一元二次不等式的解法求不等式. 【详解】∵21x <,∴()()21110x x x -=-+<,解得11x -<<,∴不等式的解集为{11}x x -<<.故选:B . 【点睛】本题主要考查一元二次不等式的解法,解集的定义,属于基础题.2.已知数列{}n a 满足11a =,12n n a a +=+,则数列{}n a 的前5项和5S =( ) A .9 B .16C .25D .36【答案】C【解析】由题意可得,数列{}n a 为以1为首项以2为公差的等差数列,根据等差数列的前n 项和公式计算即可. 【详解】∵11a =,12n n a a +=+,即12n n a a +-=,∴{}n a 数列为以1为首项,以2为公差的等差数列,∴55(51)512252S ⨯-=⨯+⨯=. 故选:C . 【点睛】本题考查了等差数列的定义和求和公式的应用,属于基础题.3.在ABC ∆中,若120B ︒=,AC =sin BCA=( )A .2B .1C D 【答案】A【解析】利用正弦定理列出关系式,将sin B ,AC 的值代入即可求出所求式子的值. 【详解】∵在ABC ∆中,若120B ︒=,AC =∴由正弦定理sin sin BC ACA B===2. 故选:A . 【点睛】本题考查了正弦定理,以及特殊角的三角函数值,属于基础题. 4.若0a b <<,则下列不等式不可能成立的是 ( ) A .11a b> B .22a b > C .0a b +< D .0ab <【答案】D【解析】由不等式的基本性质逐个分析即可. 【详解】由0a b <<,可得11a b>,22a b >,0a b +<,0ab >,即A,B,C 都成立,D 不可能成立.故选D. 【点睛】本题考查不等式的基本性质.由基本性质推理或特殊值验证求解. 5.在等比数列{}n a 中,73a =,则3539log log a a +=( ) A .1 B .2C .32log 2+D .3【答案】B【解析】分析:对所求式子利用对数的运算法则计算,再利用等比数列的性质化简即可. 详解:()2353935937373log log log log 2log 2log 32a a a a a a +=⋅====.故选:B.点睛:此题考查了等比数列的性质,以及对数的运算性质,熟练掌握等比数列的性质是解本题的关键. 6.若1a >,则11a a +-的最小值是( ) A .2B .aC .3D .4【答案】C【解析】利用基本不等式化简求解即可. 【详解】因为1a >,所以10a ->,则11111311a a a a +=-++≥=--, 当且仅当111a a -=-,即2a =时取等号. 故选:C . 【点睛】本题考查基本不等式的应用,函数的最值的求法,属于基础题.7.一个正方体的顶点都在球面上,若球的体积为,则该正方体的表面积为( ) A .24 B .36C .48D .64【答案】A【解析】由球的体积求出正方体的对角线,然后求出正方体的棱长,再求它的表面积. 【详解】设球的半径为R ,正方体棱长为a ,则343R π=,R ,2R a ,得a =2,所以S =6×22=24. 故选:A . 【点睛】本题考查棱柱、棱锥、棱台的体积,球的体积和表面积,考查空间想象能力,属于基础题.8.设ABC ∆的内角A ,B ,C 的对边长a ,b ,c 成等比数列,1cos()cos 2A CB --=,延长BC 至D ,若2BD =,则ACD ∆面积的最大值为( )A .2BCD 【答案】B【解析】由两角和、差的余弦和正弦定理可得:ABC ∆为正三角形,设AC x =,由基本不等式得:S △ACD =12(2)sin 23x x π-22(2)2x x x x +-⎫-⎪⎝⎭…=4(当且仅当x =2﹣x 即x =1时取等号)得解. 【详解】因为1cos()cos 2A CB --=,所以()1cos()cos 2A C A C -++=,所以1cos 4AcoaC =,①因为a ,b ,c 成等比数列,所以b 2=ac ,由正弦定理得:sin 2B =sin A sin C ,②①﹣②得:()21sin cos cos sin sin cos cos 4B AC A C A C B -=-=+=-, 化简得:4cos 2B +4cos B ﹣3=0,解得:cos B =12或cos B =32-(舍),又0<B <π,所以B =3π, ①+②:()21sin cos cos sin sin cos 4B AC A C A C +=+=-,∴cos (A ﹣C )=1,即A ﹣C =0,即A =C ,即三角形ABC 为正三角形,如图所示,设AC x =,则2CD x =-,由已知得0<x <2,则S △ACD =12(2)sin 23x x π-=2332(2)442x x x x +-⎛⎫- ⎪⎝⎭…=3(当且仅当x =2﹣x ,即x =1时取等号) 故选:B【点睛】本题主要考查正弦定理、余弦定理的应用,基本不等式求最值,根据三角函数的值求角,属于中档题.二、多选题9.对于ABC ∆,有如下判断,其中正确的判断是( ) A .若sin 2sin 2A B =,则ABC ∆为等腰三角形 B .若A B >,则sin sin A B >C .若8a =,10c =,60B ︒=,则符合条件的ABC ∆有两个D .若222sin sin sin A B C +<,则ABC ∆是钝角三角形 【答案】BD【解析】对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可. 【详解】 在ABC ∆中,对于A ,若sin 2sin 2A B =,则22A B =或22A B π+=, 当A =B 时,△ABC 为等腰三角形; 当2A B π+=时,△ABC 为直角三角形,故A 不正确,对于B ,若A B >,则a b >,由正弦定理得sin sin a b A B=,即sin sin A B >成立.故B 正确;对于C ,由余弦定理可得:b =22181028102+-⨯⨯⨯=84,只有一解,故C 错误;对于D ,若222sin sin sin A B C +<,由正弦定理得222a b c +<,∴222cos 02a b c C ab+-=<,∴C 为钝角,∴ABC ∆是钝角三角形,故D 正确;综上,正确的判断为选项B 和D . 故选:BD . 【点睛】本题只有考查了正弦定理,余弦定理,三角函数的二倍角公式在解三角形中的综合应用,考查了转化思想,属于中档题.10.如图,直三棱柱111ABC A B C -中,12AA =,1AB BC ==,90ABC ︒∠=,侧面11AAC C 中心为O ,点E 是侧棱1BB 上的一个动点,有下列判断,正确的是( )A .直三棱柱侧面积是422+B .直三棱柱体积是13C .三棱锥1E AAO -的体积为定值D .1AE EC +的最小值为22【答案】ACD【解析】由题意画出图形,计算直三棱柱的侧面积和体积即可判断A 与B ;由棱锥底面积与高为定值判断C ;设BE =x ,列出AE +EC 1关于x 的函数式,结合其几何意义求出最小值判断D . 【详解】在直三棱柱111ABC A B C -中,12AA =,1AB BC ==,90ABC ︒∠= 底面ABC 和111A B C 是等腰直角三角形,侧面全是矩形,所以其侧面积为1×2×2+22242211⨯=++,故A 正确;直三棱柱的体积为1111212ABC V S AA ∆==⨯⨯⨯=,故B 不正确; 由BB 1∥平面AA 1C 1C ,且点E 是侧棱1BB 上的一个动点,∴ 三棱锥1E AAO -的高为定值22, 114AA O S ∆=×2×2=22,∴1E AA OV -=13×22×22=16,故C 正确; 设BE =x []0,2∈,则B 1E =2﹣x ,在Rt ABC ∆和11Rt EB C ∆中,∴1AE EC +=2211(2)x x +++-.由其几何意义,即平面内动点(x ,1)与两定点(0,0),(2,0)距离和的最小值,由对称可知,当E 为1BB 的中点时,其最小值为222222+=,故D 正确. 故选:ACD .【点睛】本题考查命题的真假判断与应用,考查直三棱柱的侧面积和体积的求法,函数思想求最值问题,空间想象能力和思维能力,属于中档题.三、填空题11.设n S 为等比数列{}n a 的前n 项和,若2580a a -=,则42S S =___________. 【答案】5【解析】试题分析:由2580a a -=,得35252882a a a q q a =⇒==⇒=,所以334121(1)(1)S a q q q S a q +++=+ 33151q q q q+++==+.【考点】等比数列的通项公式及性质.12.如图,矩形O A B C ''''是水平放置的一个平面图形的直观图,其中4O A ''=,1O C ''=,则原图形周长是________.【答案】842+【解析】由斜二测画法的规则计算即可. 【详解】由斜二测画法的规则,得与'x 轴平行的线段其长度不变以及与横轴平行的性质不变,已知图形平行于y 轴的线段,在直观图中画成平行于'y 轴,且长度为原来一半.则原图形中4OA O A ''==,由1O C ''=,得原图形中OC 所对的边长为22112+=,则原图形的周长是:(2422842+=+故答案为:842+ 【点睛】本题考查的知识点是平面图形的直观图,掌握斜二测画法的规则是关键,属于基础题. 13.设ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,若()222tan 3a c bB ac +-=,2b =,则ABC ∆的外接圆半径为________.233【解析】等式变形后,利用余弦定理化简,再利用同角三角函数间的基本关系化简求出sin B 的值,从而求出B 的度数,由正弦定理得出结果. 【详解】在ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,Q ()222tan 3a c bB ac +-=,化简得:2222a c b ac +-•tan B =cos B •tan B =sin B =32,∵()0,B π∈,∴B =3π或B =23π.且2b =,由正弦定理得432sin 33b R B === ,233R ∴=. 故答案为:233【点睛】本题考查了余弦定理和正弦定理的应用,以及同角三角函数间的基本关系,属于基础题. 14.如图,港口A 北偏东30︒方向的C 处有一检查站,港口正东方向的B 处有一轮船,距离检查站7海里,该轮船从B 处沿正西方向航行3海里后到达D 处观测站,已知观测站与检查站距离5海里,则此时轮船离港口A 有________海里.【答案】5【解析】在△BDC 中,先由余弦定理可得cos ∠CDB ,进而可求∠CDB ,可得△ACD 是等边三角形,即可求得结论. 【详解】根据题意得:在△BDC 中,由余弦定理可得cos ∠CDB =222222*3572235BD CD BC BD CD +-+-=⨯⨯=﹣12, ∴∠CDB =120°,∴∠CDA =60°,且∠A =60°,∴△ACD 是等边三角形,∵CD =5海里,∴AD =5海里. 故答案为:5 【点睛】本题主要考查了正弦定理、余弦定理、两角差的正弦公式及三角形的内角和定理在实际中的应用,属于基础题.15.已知数列{}n a 中,32a =,71a =.若数列1n a 禳镲睚镲铪为等差数列,则5a =________.【答案】43【解析】利用等差数列的通项公式即可得出. 【详解】设等差数列1n a ⎧⎫⎨⎬⎩⎭的公差为d ,则71a =31a +4d ,即1=12+4d ,解得d =18,则51a =31a +2d =11228+⨯=34,解得543a =. 故答案为:43. 【点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题. 16.已知0,0a b >>,若不等式119ma b a b+≥+恒成立,求m 的最大值为____. 【答案】16【解析】由119m a b a b +≥+恒成立,可得()119m a b a b ⎛⎫≤++ ⎪⎝⎭恒成立,则m 的最大值就是()119a b a b ⎛⎫++⎪⎝⎭的最小值,用基本不等式可求. 【详解】 不等式119m a b a b +≥+恒成立,则()119910b a m a b a b a b ⎛⎫≤++=++ ⎪⎝⎭恒成立.因为9101016b a a b ++≥=,当且仅当3a b =时等号成立, 所以16m ≤,即m 的最大值为16. 【点睛】本题考查用基本不等式求最值,不等式的恒成立问题.若(),m f a b ≤恒成立,则()min ,m f a b ≤.四、解答题17.已知函数()2f x x ax b =-++.(1)若关于x 的不等式()0f x >的解集为()1,3-,求实数,a b 的值;(2)当4b =-时,对任意x ∈R ,()0f x ≤恒成立,求a 的取值范围. 【答案】(1)2,3a b ==;(2)[]4,4-.【解析】(1) 利用一元二次不等式解集区间的端点就是相应方程的根求解即可. (2)()0f x ≤对任意x ∈R 恒成立,由二次项系数小于0,则0∆≤.列不等式求解即可. 【详解】(1)因为()20f x x ax b =-++>的解集为()1,3-,所以关于x 的方程20x ax b -++=的两个根为1,3-. 所以13,13a b =-+-=-⨯,解得2,3a b ==.(2)由题意得()240f x x ax =-+-≤对任意x ∈R 恒成立,所以()()22414160a a ∆=-⨯-⨯-=-≤,解得44a -≤≤,即a 的取值范围是[]4,4-. 【点睛】本题考查一元二次不等式的解集和恒成立问题,结合一元二次不等式、二次函数、一元二次方程的关系进行求解是解题的关键. 18.如图,在四边形ABCD 中,23B π∠=,3AB =,334ABC S =△.(1)求ACB ∠的大小; (2)若BC CD ⊥,4ADC π∠=,求AD 的长.【答案】(1)6π;(2)362【解析】(1)在△ABC 中,利用三角形的面积得AB =BC ,由23B π∠=,进而利用三角形内角和得∠ACB ;(2)由(1)与已知可求∠ACD =3π,在△ABC 中,由余弦定理可得AC ,在△ACD 中,由正弦定理可得AD .【详解】(1)在△ABC 中,S △ABC =12AB •BC •sin ∠ABC,得12BC ⨯sin 23π=4,∴BC =,∴AB =BC ,又∵2π3B ∠=,∴∠ACB 2326πππ-==; (2)∵BC ⊥CD ,由(1)得∠ACD 263πππ=-=,在△ABC 中, 由余弦定理可得:AC 2=AB 2+BC 2﹣2AB •BC •cos 23π2+)2﹣12⎛⎫-⎪⎝⎭=9, ∴AC =3,∴在△ACD 中,由正弦定理可得:AD =sin sin AC ACD ADC ⋅∠∠=3sin3sin 4ππ⨯=2. 【点睛】本题主要考查了三角形的面积公式,三角形内角和定理,余弦定理,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题. 19.数列{}n a 是公比大于1的等比数列,21a =,372S =,*n N ∈. (1)求数列{}n a 的通项公式;(2)设6n n b a n =+-,数列{}n b 的前n 项和为n T ,若1122n n T a >+,求n 的最小值. 【答案】(1)22n n a -=;(2)4【解析】(1)由等比数列的通项公式和前n 项和公式计算即可;(2)由(1)得226n n n b -+-=,利用等比数列和等差数列的前n 项和公式计算得()()112122nn n n T +=-+,且1122n n T a >+恒成立,计算即可得. 【详解】(1)数列{}n a 是公比大于1的等比数列,设公比为1q >,由23172a S =⎧⎪⎨=⎪⎩,得()13111712a q a q q=⎧⎪-⎨=⎪-⎩ ,解得1122a q ⎧=⎪⎨⎪=⎩ 或1212a q =⎧⎪⎨=⎪⎩(舍),所以11211222n n n n a a q ---==⨯=,即22n n a -= ; (2)由(1)得2662n n n n b a n -=+-=+-,所以()()()()112561122112222n n n n n n n T --+++=+=-+-,Q 1122n n T a >+ ∴()()111111212222122n n n a n n ->++=+-+,化简得()()430n n +->,解得3n >或4n <-(舍)所以,n 的最小值为4. 【点睛】本题考查了等比数列、等差数列的前n 项和公式的应用,一元二次不等式的解法,属于基础题.20.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若()()sin 2sin cos A C A A B +=+,且34C π=. (1)求证:,,2a b a 成等比数列; (2)若ABC ∆的面积是2,求c 边的长. 【答案】(1)证明见解析;(2).【解析】试题分析:(1)第(1)问,一般利用正弦定理化简()()sin 2sin cos A C A A B +=+得到b = ,再证明,,2a b a 成等比数列.(2)第(2)问,先计算出2,a b ==,再利用余弦定理求出c 的长. 试题解析:(1)证明:∵ A B C π++=,()sin +)2sin cos A C A A B =+(, ∴sin 2sin cos B A C =-在ABC ∆中,由正弦定理得,2cos b a C =-, ∵34C π=,∴b =, 则2222b a a a ==⋅ ∴,,2a b a 成等比数列;(2)1sin 224S ab C ab ===,则ab =, 由(1)知,b = ,,联立两式解得2,a b == ,由余弦定理得,2222cos 4822202c a b ab C ⎛=+-=+-⨯⨯-= ⎝⎭,∴c =.21.已知△ABC 中,角A 、B 、C 成等差数列,且sin 2sin C A =. (1)求角A 、B 、C ;(2)设数列{}n a 满足2cos nn a nC =,前n 项为和n S ,若340n S =,求n 的值.【答案】(Ⅰ)π3B =.ππ26C A ==,.(Ⅱ)8n =或9n =. 【解析】【详解】(Ⅰ)由已知得2B A C =+,又πA B C ++=,所以π3B =. 又由sin 2sin C A =,得2c a =,所以2222π422cos33b a a a a a =+-⋅=,所以222c a b =+,所以ABC V 为直角三角形,ππππ2236C A ==-=,. (Ⅱ)n a =0π2cos 2cos{22.n nn n n nC n ==,为奇数,,为偶数 所以22+2242*2124(12)24020202143k k kk k S S k N L ,+--==++++++==∈-,由22243403k +-=,得2221024k +=,所以4k =,所以8n =或9n =.22.已知正数数列{}n a 的前n 项和为n S ,满足21(2)n n n a S S n -=+≥,11a =.(1)求数列{}n a 的通项公式,若12231111n n k a a a a a a +++⋯+<恒成立,求k 的范围; (2)设()()211n n n b a a a =---,若{}n b 是递增数列,求实数a 的取值范围.【答案】(1),1n a n k =≥;(2)()1,-+∞【解析】(1)由21(2)n n n a S S n -=+≥,得21n a -=S n ﹣1+S n ﹣2,(n ≥3).相减可得:221n n a a --=a n +a n ﹣1,(n ≥3),根据a n >0,可得a n ﹣a n ﹣1=1(n ≥3),当n =2时,22a =a 1+a 2+a 1,解得2a ,进而得出a n ,利用裂项相消法化简122311111111n n a a a a a a n +++⋯+=-<+恒成立,从而求出k 的范围;(2)由(1)得n b =(n ﹣1)2+a (n ﹣1),利用{}n b 是递增数列,可得b n +1﹣b n >0恒成立,即可实数a 的取值范围. 【详解】(1)由21(2)n n n a S S n -=+≥,得21n a -=S n -1+S n ﹣2,(n ≥3).相减可得:221n n a a --=a n +a n﹣1(n ≥3),∵a n >0,∴a n ﹣1>0,∴平方差公式化简得a n ﹣a n ﹣1=1,(n ≥3).当n =2时,22a =a 1+a 2+a 1,且11a =,∴22a =2+2a ,2a >0,∴2a =2或2a =-1.因此当n =2时,a n ﹣a n ﹣1=1成立.∴数列{a n }是以1为首项,以1为公差的等差数列,∴a n =1+n ﹣1=n .()1223111111112231n n n a a a a a a n +++⋯+=++⋯+⨯⨯+1111111 (1122311)n n n =-+-++-=-<++由题意得,k 1≥.(2)由(1)得,()()211n n n b a a a =---=(n ﹣1)2+a (n ﹣1),∵{}n b 是递增数列,∴b n +1﹣b n =n 2+an ﹣(n ﹣1)2﹣a (n ﹣1)=2n +a ﹣1>0, 即12a n >-恒成立,∵121n -≤-,∴a >﹣1,∴实数a 的取值范围是()1,-+∞. 【点睛】本题考查了数列递推关系、等差数列的通项公式单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.。
厦门市湖滨中学高二理科数学月考卷第一卷(客观题)一、选择题1.(5.0分)已知i为虚数单位,则()A.2iB. -2iC.2D.-22.(5.0分)()A.B.C.D.13.(5.0分)乘积展开后共有()A.9项B.10项C.24项D.32项4.(5.0分)先后抛掷红、蓝两枚骰子,事件A:红骰子出现3点,事件B:蓝骰子出现的点数为奇数,则()B.C.D.5.(5.0分)在回归分析中,下列结论错误的是()A.利用最小二乘法所求得的回归直线一定过样本点的中心B.可用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好C. 由测算,某地区女大学生的身高(单位:cm)预报体重(单位:kg)的回归方程是,则对于身高为172cm的女大学生,其体重一定是60.316kgD.可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适,带状区域的宽度越窄,说明模型的拟合精度越高6.(5.0分)在的二项展开式中,第三项的系数与第二项的系数的差为20,则展开式中含的项的系数为()A.8B.28C.56D.707.(5.0分)已知实数在区间上等可能随机取值,则函数在区间上有极小值的概率是()A.B.D.8.(5.0分)某电视台连续播放6个广告,分别是三个不同的商业广告和三个不同的公益广告,要求最后播放的不能是商业广告,且任意两个公益广告不能连续播放,则不同的播放方式有()A.36种B.108种C.144种D.720种9.(5.0分)某高二学生在参加历史、地理反向会考中,两门科目考试成绩互不影响.记为“该学生取得优秀的科目数”,其分布列如表所示,则的最大值是()A.B.C.D.110.(5.0分)已知函数的定义域为,x与部分对应值如下表,的导函数的图象如图所示.给出下列说法:①函数在上是增函数;②曲线在处的切线可能与y轴垂直;③如果当时,的最小值是-2,那么t的最大值为5;④,都有恒成立,则实数a的最小值是5.正确的个数是()A.0个B.1个C.2个D.3个第二卷(主观题)二、填空题11.(4.0分),则_ _ .12.(4.0分)如图,在复平面内,复数,对应的向量分别是,,则复数的共轭复数是_ _.13.(4.0分)已知,且,则 _ _ .14.(4.0分)从1,3,5, 7,9这五个数中,每次取出两个不同的数分别记为a,b,则斜率不同的直线共有_ _ 条.15.(4.0分)已知函数,方程有三个解,则实数m的取值范围是_ _.16.(4.0分)研究问题:“已知关于x的不等式的解集为,解关于x的不等式”,有如下解法:解:由,令,则所以不等式的解集为.参考上述的解法,已知关于x的不等式的解集为,则关于x的不等式的解集为_ _ .三、解答题17.(12.0分)已知函数,在处的切线斜率为-9,且的导函数为偶函数.(1)求的值;(2)求的极值.18.(12.0分)为了检测某种新研制出的禽流感疫苗对家禽的免疫效果,某研究中心随机抽取了50只鸡作为样本,进行家禽免疫效果试验,得到如下缺少部分数据2×2列联表.已知用分层抽样的方法,从对禽流感病毒没有免疫力20只鸡中抽8只,恰好抽到2只注射了该疫苗的鸡(1)从抽取到的这8只鸡随机抽取3只进行解剖研究,求至少抽到1只注射了该疫苗的鸡的概率;(2)完成下面2×2列联表,并帮助该研究和纵向判断:在犯错误的概率不超过0.5%的前提下,能否认为这种新研制出的禽流感疫苗对家禽具有免疫效果?19.(12.0分)厦门某鱼苗养殖户,由于受养殖技术水平和环境等因素的制约,会出现一些鱼苗的死亡,根据以往经验,鱼苗的死亡数p(万条)与月养殖数x(万条)之间满足关系:已知每成活1万条鱼苗可以盈利2万元,但每死亡1万条鱼苗讲亏损1万元.(1)试将该养殖户每月养殖鱼苗所获得的利润T(万元)表示为月养殖量x(万条的函数);(2)该养殖户鱼苗的月养殖量是多少时获得的利润最大,最大利润是多少?(利润=盈利-亏损)20.(12.0分)已知(i=1,2,3,…,n),我们知道有成立.(1)请证明;(2)同理我们也可以证明出由上述几个不等式,请你猜测与和有关的不等式,并用数学归纳法证明.21.(14.0分)某学校举办趣味运动会,甲、乙两名同学报名参加比赛,每人投篮2次,每次等可能选择投2分球或3分球.据赛前训练统计:甲同学投2分球命中率为,投3分球命中率为;乙同学投2分球命中率为,投3分球命中率为,且每次投篮命中与否相互之间没有影响.(1)若甲同学两次都选择投3分球,求其总得分的分布列和数学期望;(2)记“甲、乙两人总得分之和不小于10分”为事件A,记“甲同学总得分大于乙同学总得分”为事件B,求.22.(14.0分)已知函数,,其中.若函数和在它们图象与坐标轴交点处的切线互相平行.(1)求这两平行切线间的距离;(2)若对于任意(其中)恒成立,求m的取值范围;(3)当,把的值称为函数和在处的纵差.求证:函数和所有纵差都大于2.答案解析第一卷(客观题)一、选择题1.(5.0分)【解析】解:化简可得i(1+i2=i(1+2i+i 2) =i•2i=-2【答案】D2.(5.0分)【解析】【答案】B3.(5.0分)【解析】由二项式定理可得,(a1+a2)(b1+b2+b3)(c1+c2+c3+c4)的结果中每一项都必须是在(a1+a2)、(b1+b2+b3)、(c1+c2+c3+c4)三个式子中任取一项后相乘,得到的式子,而在(a1+a2)中有2种取法,在(b1+b2+b3)中有3种取法,在(c1+c2+c3+c4)中有4种取法,由乘法原理,可得共有2×3×4=24种情况,【答案】C4.(5.0分)【解析】由题意,∵A、B相互独立,所以P(AB)=P(A)P(B)=1,∴2.【答案】A5.(5.0分)【解析】利用最小二乘法所求得的回归直线一定过样本点的中心,故A正确;用相关指数0的值判断模型的拟合效果,1越大,模型的拟合效果越好,故B正确;可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适。
厦门市湖滨中学2018---2019学年第二学期期中考高一年级数学试卷本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟。
一.选择题(每题5分,共50分.其中9.10是多选题) 1.不等式21x <的解集是( )A .{|1}x x <B .{|11}x x -<<C .{|1x x <-或1x >}D .{|1x x <-且1}x > 2.已知数列}{n a 满足11=a ,)(2*1N n a a n n ∈+=+,则数列}{n a 的前5项和5S =( )A .9B .16C .25D .36 3.在ABC ∆中,若0120B =,3AC =则sin BCA=( ) 33 4.若0a b <<,则下列不等式不可能...成立的是( ) A.11a b> B. 22a b > C.+0a b <D. 0ab <5.在等比数列{}n a 中,73a =,则3539log log a a +=( )A .1B .2C .32log 2+D .3 6.若1,a >则11a a +-的最小值是( ) A.2 B.a C. 3 D.47.一个正方体的顶点都在球面上,若球的体积为43π,则该正方体的表面积为( ) A .24 B .36 C .48 D .64 8.设ABC ∆的内角A B C ,,的对边长a b c ,,成等比数列,()1cos cos 2A CB --=,延长BC 至D ,若2BD =,则ACD ∆面积的最大值为( ) 333(再提醒以下两题是多选题)9.对于ABC ∆,有如下判断,其中正确的判断是 ( ) A.若sin 2sin 2A B = ,则∆ABC 为等腰三角形. B.若A B >,则 sin sin A B >.C.若︒===60,10,8B c a ,则符合条件的ABC ∆有两个. D.若222sin sin sin A B C +<,则∆ABC 是钝角三角形. 10.如图,直三棱柱111ABC A B C -中,12AA =,1AB BC ==,90ABC ∠=︒,侧面11AA C C 中心为O ,点E 是侧棱1BB 上的一个动点.有下列判断,正确的是( )A.直三棱柱侧面积是422+;B.直三棱柱体积是13; C.三棱锥1E AAO -的体积为定值; D.1AE EC +的最小值为22. 二.填空题(每小题5分,共30分)11.设n S 是等比数列{}n a 的前n 项和,且满足258a a =,则42S S 的值为 12.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=4,O ′C ′=1,则原图形周长是 . 13.设△ABC的内角A.B.C所对的边分别为,,a b c ,若222()t a n 3a c b B a c +-=,2b=则△ABC 的外接圆半径的值为 . 14.如图,港口A 北偏东30°方向的C 处有一检查站,港口正东方向的B 处有一轮船,距离检查站7海里,该轮船从B 处沿正西方向航行3海里后到达D 处观测站,已知观测站与检查站距离5海里,则此时轮船离港口A 有 海里。
厦门湖滨中学高二文科数学3月试卷第一卷(客观题)一、选择题1.(5.0分)已知i是虚数单位,若复数,则复数|z|=()A.B.C.3D.52.(5.0分)用反证法证明命题:“若a, b,c为不全相等的实数,且a+b+c=0,则a,b,c至少有一个负数”,假设原命题不成立的内容是()A.a,b,c都大于0B.a,b,c都是非负数C.a,b,c至多两个负数D.a,b,c至多一个负数3.(5.0分)已知命题p:∀x∈R,x2+x+1≤0,则()A.p是真命题,¬p:∃,使得B.p是真命题,¬p:∀x∈R,使得x2+x+1>0C.p是假命题,¬p:∃,使得D.p是假命题,¬p:∀x∈R,使得4.(5.0分)函数的导函数为,若,则下列等式正确的是()A.B.C.D.5.(5.0分)2016法国欧洲杯比赛于6月中旬揭开战幕,随机询问100人是否喜欢足球,得到如下的列联表:参考公式,(其中)临界值表:参照临界值表,下列结论正确的是()A.有95%的把握认为“喜欢足球与性别相关”B.有95%的把握认为“喜欢足球与性别无关”C.在犯错误的概率不超过2.5%的前提下,认为“喜欢足球与性别无关”D.在犯错误的概率不超过2.5%的前提下,认为“喜欢足球与性别有关”6.(5.0分)下列选项中,与其他三个选项所蕴含的数学推理不同的是()A.独脚难行,孤掌难鸣B.前人栽树,后人乘凉C.物以类聚,人以群分D.飘风不终朝,骤雨不终日7.(5.0分)以下是解决数学问题的思维过程的流程图:在此流程图中,①、②两条流程线与“推理与证明”中的思维方法匹配正确的是( )A.①—综合法,②—分析法B.①—分析法,②—综合法C.①—综合法,②—反证法D.①—分析法,②—反证法8.(5.0分)有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁9.(5.0分)观察下列数的排列规律:回答第23个数是()A.B.C.D.10.(5.0分)函数的大致图象是()A. B.C. D.11.(5.0分)已知函数的图像如图所示(其中是定义域为R函数的导函数),则以下说法错误的是()A.B.当时, 函数取得极大值C.方程与均有三个实数根D.当时,函数取得极小值12.(5.0分)已知抛物线的焦点F和点为抛物线上一点,则的最小值是()A.16B.12C.9D.6第二卷(主观题)二、填空题13.(5.0分)在数列1,1,2,3,5,8,13,x,34,55……中的x的值是__________.14.(5.0分)焦点为且与双曲线有相同的渐近线的双曲线方程是__________.15.(5.0分)若函数,则__________.16.(5.0分)已知点P是椭圆D:上的一点,为椭圆的左、右焦点,若,且的面积为,则椭圆的离心率是__________.三、解答题17.(10.0分)已知,且,求复数.18.(12.0分)已知函数.(1)若函数在点处的切线方程为,求的值;(2)求函数的极值.19.(12.0分)网购已成为当今消费者喜欢的购物方式,某机构对A、B、C、D四家同类运动服装网店的关注人数x(千人)与其商品销售件数y(百件)进行统计对比,得到表格:由散点图得知,可以用回归直线方程y=bx+a来近似刻画它们之间的关系.(1)求y与x的回归直线方程;(2)在(1)的回归模型中,请用说明,销售件数的差异有多大程度是由关注人数引起的?(精确到0.01)参考公式::;;参考数据:.20.(12.0分)椭圆C:过点,且直线l过椭圆C的上顶点和左焦点,椭圆中心到直线l的距离等于焦距长的.(1)求椭圆C的方程;(2)若一条与坐标轴不平行且不过原点的直线交椭圆Г于不同的两点M、N,点P为线段MN的中点,求证:直线MN 与直线OP不垂直.21.(12.0分)抛物线的焦点为F,直线y=4与抛物线和y轴分别交于点P、Q,且.(1)求抛物线的方程;(2)过点F作互相垂直的两直线分别交抛物线于点A、B、C、D,求四边形ACBD面积的最小值.22.(12.0分)已知函数,的图象在点处的切线为.(1)求函数的解析式;(2)若对任意的恒成立,求实数的取值范围.答案解析第一卷(客观题)一、选择题1.(5.0分)【解析】由复数,所以.【答案】B2.(5.0分)【解析】解:“a,b,c中至少有一个负数”的否定为“a,b,c都是非负数”,由用反证法证明数学命题的方法可得,应假设“a,b,c都是非负数”,所以B选项是正确的.解析用反证法证明数学命题时,应先假设结论的否定成立.【答案】B3.(5.0分)【解析】【解答】解:命题是全称命题,∵判别式△=1﹣4=﹣3<0,∴∀x∈R,,故命题p是假命题,∵命题是全称命题则命题的否定是¬p:,使得,故选:C.【答案】C4.(5.0分)【解析】解:,,若,,,,所以D选项是正确的.解析根据基本导数公式求导,再根据各选项可知若,则,判断即可.【答案】D5.(5.0分)【解析】解:由题意, 由于, 有95%把握认为“喜欢足球与性别相关”. 所以A选项是正确的.解析根据条件求出观测值,同所给的临界值进行比较,根据,即可得到结论.【答案】A6.(5.0分)【解析】解:由题意,根据归纳推理是由特殊到一般的推理过程,可得A,C,D是归纳推理,B是演绎推理,所以B选项是正确的.解析利用归纳推理、演绎推理的定义,即可得出结论.【答案】B7.(5.0分)【解析】本题主要考查综合法和分析法的概念。
厦门市湖滨中学2018---2019学年第二学期期中考高二文科数学试卷一、选择题(共12小题,每小题5分,共60分)1.设为虚数单位,则复数 ( )A.B.C.D.2.“所有4的倍数都是2的倍数,某数是4的倍数,故该数是2的倍数”上述推理()A.小前提错误B.结论错误C.大前提错误D.正确3.给出以下四个说法:①残差点分布的带状区域的宽度越窄相关指数越小②在刻画回归模型的拟合效果时,相关指数的值越大,说明拟合的效果越好;③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均增加个单位;④对分类变量与,若它们的随机变量的观测值越小,则判断“与有关系”的把握程度越大.其中正确的说法是A.①④B.②④C.①③D.②③4.下面的散点图与相关系数一定不符合的是( )A.(1)(2)(3) B.(1)(2)(4) C.(1)(3)(4)D.(2)(3)(4)5.下列求导数运算正确的是()A.B.C.D.6.已知双曲线的焦距为10,点在的渐近线上,则的方程是A.B.C.D.7.顶点在原点,对称轴为轴的抛物线的焦点在直线上,则此抛物线的方程为A.B.C.D.8.设函数在定义域内可导,的图象如图所示,则导函数的图象可能是()A.B.C.D.9.若函数在区间上为单调增函数,则的取值范围是A.B.C.D.10.已知椭圆的长轴为,为椭圆的下顶点,设直线,的斜率分别为,,且,则该椭圆的离心率为( )A.B.C.D.11.已知抛物线的焦点为,过点的直线与抛物线交于,两点,则的面积的最小值为( ) A. B. C. D.12.已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是( ) A.B.C.D.二、填空题(共4小题,每小题5分,共20分)13.若命题,则_________________14.已知复数,则___________15.已知抛物线的准线为,与双曲线的渐近线分别交于,两点.若,则______16.已知函数,若,则的取值范围是______.三、解答题(共6题,共70分)17(10分).学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:(1)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?(2)请说明是否有97.5%以上的把握认为损毁餐椅数量与学习雷锋精神有关?参考公式:,.18(12分).已知函数,求:(1)函数的图象在点处的切线方程;(2)的单调递减区间.19(12分).已知抛物线的准线方程为.(1)求的值;(2)直线交抛物线于两点,求弦长.20(12分).设函数(1)求的单调区间;(2)求函数在区间上的最小值.21(12分).已知椭圆的离心率为,长轴长为.(1)求椭圆的方程;(2)直线交椭圆于两点为椭圆的右焦点,自点分别向直线作垂线,垂足分别为,记的面积为,求的最大值及此时直线的方程.22(12分).已知函数.(1)讨论函数的单调性;(2)设,若对任意的,恒成立,求整数的最大值.高二文科数学期中考试参考答案1.B【解析】【分析】利用复数的乘法运算即可【详解】.故选B.【点睛】本题考查复数的乘法运算,熟记运算律是关键,是基础题2.D【解析】【分析】由4是2的倍数直接判断即可.【详解】因为“所有4的倍数都是2的倍数”成立,若某数是4的倍数,不妨设该数为,则,即该数为2的倍数成立.故选:D.【点睛】本题主要考查了三段论推理,属于基础题。
2018-2019学年福建省厦门市湖滨中学高一下学期期中数学试题一、单选题1.不等式21x <的解集是( ) A .{1}x x <B .{11}x x -<<C .{|1x x <-或1}x >D .{|1x x <-且1}x >【答案】B【解析】利用因式分解,结合一元二次不等式的解法求不等式. 【详解】∵21x <,∴()()21110x x x -=-+<,解得11x -<<,∴不等式的解集为{11}x x -<<.故选:B . 【点睛】本题主要考查一元二次不等式的解法,解集的定义,属于基础题.2.已知数列{}n a 满足11a =,12n n a a +=+,则数列{}n a 的前5项和5S =( ) A .9 B .16C .25D .36【答案】C【解析】由题意可得,数列{}n a 为以1为首项以2为公差的等差数列,根据等差数列的前n 项和公式计算即可. 【详解】∵11a =,12n n a a +=+,即12n n a a +-=,∴{}n a 数列为以1为首项,以2为公差的等差数列,∴55(51)512252S ⨯-=⨯+⨯=. 故选:C . 【点睛】本题考查了等差数列的定义和求和公式的应用,属于基础题.3.在ABC ∆中,若120B ︒=,AC =sin BCA=( )A .2B .1C D 【答案】A【解析】利用正弦定理列出关系式,将sin B ,AC 的值代入即可求出所求式子的值. 【详解】∵在ABC ∆中,若120B ︒=,AC =∴由正弦定理sin sin BC ACA B===2. 故选:A . 【点睛】本题考查了正弦定理,以及特殊角的三角函数值,属于基础题. 4.若0a b <<,则下列不等式不可能成立的是 ( ) A .11a b> B .22a b > C .0a b +< D .0ab <【答案】D【解析】由不等式的基本性质逐个分析即可. 【详解】由0a b <<,可得11a b>,22a b >,0a b +<,0ab >,即A,B,C 都成立,D 不可能成立.故选D. 【点睛】本题考查不等式的基本性质.由基本性质推理或特殊值验证求解. 5.在等比数列{}n a 中,73a =,则3539log log a a +=( ) A .1 B .2C .32log 2+D .3【答案】B【解析】分析:对所求式子利用对数的运算法则计算,再利用等比数列的性质化简即可. 详解:()2353935937373log log log log 2log 2log 32a a a a a a +=⋅====.故选:B.点睛:此题考查了等比数列的性质,以及对数的运算性质,熟练掌握等比数列的性质是解本题的关键. 6.若1a >,则11a a +-的最小值是( ) A .2B .aC .3D .4【答案】C【解析】利用基本不等式化简求解即可. 【详解】因为1a >,所以10a ->,则11111311a a a a +=-++≥=--, 当且仅当111a a -=-,即2a =时取等号. 故选:C . 【点睛】本题考查基本不等式的应用,函数的最值的求法,属于基础题.7.一个正方体的顶点都在球面上,若球的体积为,则该正方体的表面积为( ) A .24 B .36C .48D .64【答案】A【解析】由球的体积求出正方体的对角线,然后求出正方体的棱长,再求它的表面积. 【详解】设球的半径为R ,正方体棱长为a ,则343R π=,R ,2R a ,得a =2,所以S =6×22=24. 故选:A . 【点睛】本题考查棱柱、棱锥、棱台的体积,球的体积和表面积,考查空间想象能力,属于基础题.8.设ABC ∆的内角A ,B ,C 的对边长a ,b ,c 成等比数列,1cos()cos 2A CB --=,延长BC 至D ,若2BD =,则ACD ∆面积的最大值为( )A .2BCD 【答案】B【解析】由两角和、差的余弦和正弦定理可得:ABC ∆为正三角形,设AC x =,由基本不等式得:S △ACD =12(2)sin 23x x π-22(2)2x x x x +-⎫-⎪⎝⎭…=4(当且仅当x =2﹣x 即x =1时取等号)得解. 【详解】因为1cos()cos 2A CB --=,所以()1cos()cos 2A C A C -++=,所以1cos 4AcoaC =,①因为a ,b ,c 成等比数列,所以b 2=ac ,由正弦定理得:sin 2B =sin A sin C ,②①﹣②得:()21sin cos cos sin sin cos cos 4B AC A C A C B -=-=+=-, 化简得:4cos 2B +4cos B ﹣3=0,解得:cos B =12或cos B =32-(舍),又0<B <π,所以B =3π, ①+②:()21sin cos cos sin sin cos 4B AC A C A C +=+=-,∴cos (A ﹣C )=1,即A ﹣C =0,即A =C ,即三角形ABC 为正三角形,如图所示,设AC x =,则2CD x =-,由已知得0<x <2,则S △ACD =12(2)sin 23x x π-=2332(2)442x x x x +-⎛⎫- ⎪⎝⎭…=3(当且仅当x =2﹣x ,即x =1时取等号) 故选:B【点睛】本题主要考查正弦定理、余弦定理的应用,基本不等式求最值,根据三角函数的值求角,属于中档题.二、多选题9.对于ABC ∆,有如下判断,其中正确的判断是( ) A .若sin 2sin 2A B =,则ABC ∆为等腰三角形 B .若A B >,则sin sin A B >C .若8a =,10c =,60B ︒=,则符合条件的ABC ∆有两个D .若222sin sin sin A B C +<,则ABC ∆是钝角三角形 【答案】BD【解析】对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可. 【详解】 在ABC ∆中,对于A ,若sin 2sin 2A B =,则22A B =或22A B π+=, 当A =B 时,△ABC 为等腰三角形; 当2A B π+=时,△ABC 为直角三角形,故A 不正确,对于B ,若A B >,则a b >,由正弦定理得sin sin a b A B=,即sin sin A B >成立.故B 正确;对于C ,由余弦定理可得:b =22181028102+-⨯⨯⨯=84,只有一解,故C 错误;对于D ,若222sin sin sin A B C +<,由正弦定理得222a b c +<,∴222cos 02a b c C ab+-=<,∴C 为钝角,∴ABC ∆是钝角三角形,故D 正确;综上,正确的判断为选项B 和D . 故选:BD . 【点睛】本题只有考查了正弦定理,余弦定理,三角函数的二倍角公式在解三角形中的综合应用,考查了转化思想,属于中档题.10.如图,直三棱柱111ABC A B C -中,12AA =,1AB BC ==,90ABC ︒∠=,侧面11AAC C 中心为O ,点E 是侧棱1BB 上的一个动点,有下列判断,正确的是( )A .直三棱柱侧面积是422+B .直三棱柱体积是13C .三棱锥1E AAO -的体积为定值D .1AE EC +的最小值为22【答案】ACD【解析】由题意画出图形,计算直三棱柱的侧面积和体积即可判断A 与B ;由棱锥底面积与高为定值判断C ;设BE =x ,列出AE +EC 1关于x 的函数式,结合其几何意义求出最小值判断D . 【详解】在直三棱柱111ABC A B C -中,12AA =,1AB BC ==,90ABC ︒∠= 底面ABC 和111A B C 是等腰直角三角形,侧面全是矩形,所以其侧面积为1×2×2+22242211⨯=++,故A 正确;直三棱柱的体积为1111212ABC V S AA ∆==⨯⨯⨯=,故B 不正确; 由BB 1∥平面AA 1C 1C ,且点E 是侧棱1BB 上的一个动点,∴ 三棱锥1E AAO -的高为定值22, 114AA O S ∆=×2×2=22,∴1E AA OV -=13×22×22=16,故C 正确; 设BE =x []0,2∈,则B 1E =2﹣x ,在Rt ABC ∆和11Rt EB C ∆中,∴1AE EC +=2211(2)x x +++-.由其几何意义,即平面内动点(x ,1)与两定点(0,0),(2,0)距离和的最小值,由对称可知,当E 为1BB 的中点时,其最小值为222222+=,故D 正确. 故选:ACD .【点睛】本题考查命题的真假判断与应用,考查直三棱柱的侧面积和体积的求法,函数思想求最值问题,空间想象能力和思维能力,属于中档题.三、填空题11.设n S 为等比数列{}n a 的前n 项和,若2580a a -=,则42S S =___________. 【答案】5【解析】试题分析:由2580a a -=,得35252882a a a q q a =⇒==⇒=,所以334121(1)(1)S a q q q S a q +++=+ 33151q q q q+++==+.【考点】等比数列的通项公式及性质.12.如图,矩形O A B C ''''是水平放置的一个平面图形的直观图,其中4O A ''=,1O C ''=,则原图形周长是________.【答案】842+【解析】由斜二测画法的规则计算即可. 【详解】由斜二测画法的规则,得与'x 轴平行的线段其长度不变以及与横轴平行的性质不变,已知图形平行于y 轴的线段,在直观图中画成平行于'y 轴,且长度为原来一半.则原图形中4OA O A ''==,由1O C ''=,得原图形中OC 所对的边长为22112+=,则原图形的周长是:(2422842+=+故答案为:842+ 【点睛】本题考查的知识点是平面图形的直观图,掌握斜二测画法的规则是关键,属于基础题. 13.设ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,若()222tan 3a c bB ac +-=,2b =,则ABC ∆的外接圆半径为________.233【解析】等式变形后,利用余弦定理化简,再利用同角三角函数间的基本关系化简求出sin B 的值,从而求出B 的度数,由正弦定理得出结果. 【详解】在ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,Q ()222tan 3a c bB ac +-=,化简得:2222a c b ac +-•tan B =cos B •tan B =sin B =32,∵()0,B π∈,∴B =3π或B =23π.且2b =,由正弦定理得432sin 33b R B === ,233R ∴=. 故答案为:233【点睛】本题考查了余弦定理和正弦定理的应用,以及同角三角函数间的基本关系,属于基础题. 14.如图,港口A 北偏东30︒方向的C 处有一检查站,港口正东方向的B 处有一轮船,距离检查站7海里,该轮船从B 处沿正西方向航行3海里后到达D 处观测站,已知观测站与检查站距离5海里,则此时轮船离港口A 有________海里.【答案】5【解析】在△BDC 中,先由余弦定理可得cos ∠CDB ,进而可求∠CDB ,可得△ACD 是等边三角形,即可求得结论. 【详解】根据题意得:在△BDC 中,由余弦定理可得cos ∠CDB =222222*3572235BD CD BC BD CD +-+-=⨯⨯=﹣12, ∴∠CDB =120°,∴∠CDA =60°,且∠A =60°,∴△ACD 是等边三角形,∵CD =5海里,∴AD =5海里. 故答案为:5 【点睛】本题主要考查了正弦定理、余弦定理、两角差的正弦公式及三角形的内角和定理在实际中的应用,属于基础题.15.已知数列{}n a 中,32a =,71a =.若数列1n a 禳镲睚镲铪为等差数列,则5a =________.【答案】43【解析】利用等差数列的通项公式即可得出. 【详解】设等差数列1n a ⎧⎫⎨⎬⎩⎭的公差为d ,则71a =31a +4d ,即1=12+4d ,解得d =18,则51a =31a +2d =11228+⨯=34,解得543a =. 故答案为:43. 【点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题. 16.已知0,0a b >>,若不等式119ma b a b+≥+恒成立,求m 的最大值为____. 【答案】16【解析】由119m a b a b +≥+恒成立,可得()119m a b a b ⎛⎫≤++ ⎪⎝⎭恒成立,则m 的最大值就是()119a b a b ⎛⎫++⎪⎝⎭的最小值,用基本不等式可求. 【详解】 不等式119m a b a b +≥+恒成立,则()119910b a m a b a b a b ⎛⎫≤++=++ ⎪⎝⎭恒成立.因为9101016b a a b ++≥=,当且仅当3a b =时等号成立, 所以16m ≤,即m 的最大值为16. 【点睛】本题考查用基本不等式求最值,不等式的恒成立问题.若(),m f a b ≤恒成立,则()min ,m f a b ≤.四、解答题17.已知函数()2f x x ax b =-++.(1)若关于x 的不等式()0f x >的解集为()1,3-,求实数,a b 的值;(2)当4b =-时,对任意x ∈R ,()0f x ≤恒成立,求a 的取值范围. 【答案】(1)2,3a b ==;(2)[]4,4-.【解析】(1) 利用一元二次不等式解集区间的端点就是相应方程的根求解即可. (2)()0f x ≤对任意x ∈R 恒成立,由二次项系数小于0,则0∆≤.列不等式求解即可. 【详解】(1)因为()20f x x ax b =-++>的解集为()1,3-,所以关于x 的方程20x ax b -++=的两个根为1,3-. 所以13,13a b =-+-=-⨯,解得2,3a b ==.(2)由题意得()240f x x ax =-+-≤对任意x ∈R 恒成立,所以()()22414160a a ∆=-⨯-⨯-=-≤,解得44a -≤≤,即a 的取值范围是[]4,4-. 【点睛】本题考查一元二次不等式的解集和恒成立问题,结合一元二次不等式、二次函数、一元二次方程的关系进行求解是解题的关键. 18.如图,在四边形ABCD 中,23B π∠=,3AB =,334ABC S =△.(1)求ACB ∠的大小; (2)若BC CD ⊥,4ADC π∠=,求AD 的长.【答案】(1)6π;(2)362【解析】(1)在△ABC 中,利用三角形的面积得AB =BC ,由23B π∠=,进而利用三角形内角和得∠ACB ;(2)由(1)与已知可求∠ACD =3π,在△ABC 中,由余弦定理可得AC ,在△ACD 中,由正弦定理可得AD .【详解】(1)在△ABC 中,S △ABC =12AB •BC •sin ∠ABC,得12BC ⨯sin 23π=4,∴BC =,∴AB =BC ,又∵2π3B ∠=,∴∠ACB 2326πππ-==; (2)∵BC ⊥CD ,由(1)得∠ACD 263πππ=-=,在△ABC 中, 由余弦定理可得:AC 2=AB 2+BC 2﹣2AB •BC •cos 23π2+)2﹣12⎛⎫-⎪⎝⎭=9, ∴AC =3,∴在△ACD 中,由正弦定理可得:AD =sin sin AC ACD ADC ⋅∠∠=3sin3sin 4ππ⨯=2. 【点睛】本题主要考查了三角形的面积公式,三角形内角和定理,余弦定理,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题. 19.数列{}n a 是公比大于1的等比数列,21a =,372S =,*n N ∈. (1)求数列{}n a 的通项公式;(2)设6n n b a n =+-,数列{}n b 的前n 项和为n T ,若1122n n T a >+,求n 的最小值. 【答案】(1)22n n a -=;(2)4【解析】(1)由等比数列的通项公式和前n 项和公式计算即可;(2)由(1)得226n n n b -+-=,利用等比数列和等差数列的前n 项和公式计算得()()112122nn n n T +=-+,且1122n n T a >+恒成立,计算即可得. 【详解】(1)数列{}n a 是公比大于1的等比数列,设公比为1q >,由23172a S =⎧⎪⎨=⎪⎩,得()13111712a q a q q=⎧⎪-⎨=⎪-⎩ ,解得1122a q ⎧=⎪⎨⎪=⎩ 或1212a q =⎧⎪⎨=⎪⎩(舍),所以11211222n n n n a a q ---==⨯=,即22n n a -= ; (2)由(1)得2662n n n n b a n -=+-=+-,所以()()()()112561122112222n n n n n n n T --+++=+=-+-,Q 1122n n T a >+ ∴()()111111212222122n n n a n n ->++=+-+,化简得()()430n n +->,解得3n >或4n <-(舍)所以,n 的最小值为4. 【点睛】本题考查了等比数列、等差数列的前n 项和公式的应用,一元二次不等式的解法,属于基础题.20.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若()()sin 2sin cos A C A A B +=+,且34C π=. (1)求证:,,2a b a 成等比数列; (2)若ABC ∆的面积是2,求c 边的长. 【答案】(1)证明见解析;(2).【解析】试题分析:(1)第(1)问,一般利用正弦定理化简()()sin 2sin cos A C A A B +=+得到b = ,再证明,,2a b a 成等比数列.(2)第(2)问,先计算出2,a b ==,再利用余弦定理求出c 的长. 试题解析:(1)证明:∵ A B C π++=,()sin +)2sin cos A C A A B =+(, ∴sin 2sin cos B A C =-在ABC ∆中,由正弦定理得,2cos b a C =-, ∵34C π=,∴b =, 则2222b a a a ==⋅ ∴,,2a b a 成等比数列;(2)1sin 224S ab C ab ===,则ab =, 由(1)知,b = ,,联立两式解得2,a b == ,由余弦定理得,2222cos 4822202c a b ab C ⎛=+-=+-⨯⨯-= ⎝⎭,∴c =.21.已知△ABC 中,角A 、B 、C 成等差数列,且sin 2sin C A =. (1)求角A 、B 、C ;(2)设数列{}n a 满足2cos nn a nC =,前n 项为和n S ,若340n S =,求n 的值.【答案】(Ⅰ)π3B =.ππ26C A ==,.(Ⅱ)8n =或9n =. 【解析】【详解】(Ⅰ)由已知得2B A C =+,又πA B C ++=,所以π3B =. 又由sin 2sin C A =,得2c a =,所以2222π422cos33b a a a a a =+-⋅=,所以222c a b =+,所以ABC V 为直角三角形,ππππ2236C A ==-=,. (Ⅱ)n a =0π2cos 2cos{22.n nn n n nC n ==,为奇数,,为偶数 所以22+2242*2124(12)24020202143k k kk k S S k N L ,+--==++++++==∈-,由22243403k +-=,得2221024k +=,所以4k =,所以8n =或9n =.22.已知正数数列{}n a 的前n 项和为n S ,满足21(2)n n n a S S n -=+≥,11a =.(1)求数列{}n a 的通项公式,若12231111n n k a a a a a a +++⋯+<恒成立,求k 的范围; (2)设()()211n n n b a a a =---,若{}n b 是递增数列,求实数a 的取值范围.【答案】(1),1n a n k =≥;(2)()1,-+∞【解析】(1)由21(2)n n n a S S n -=+≥,得21n a -=S n ﹣1+S n ﹣2,(n ≥3).相减可得:221n n a a --=a n +a n ﹣1,(n ≥3),根据a n >0,可得a n ﹣a n ﹣1=1(n ≥3),当n =2时,22a =a 1+a 2+a 1,解得2a ,进而得出a n ,利用裂项相消法化简122311111111n n a a a a a a n +++⋯+=-<+恒成立,从而求出k 的范围;(2)由(1)得n b =(n ﹣1)2+a (n ﹣1),利用{}n b 是递增数列,可得b n +1﹣b n >0恒成立,即可实数a 的取值范围. 【详解】(1)由21(2)n n n a S S n -=+≥,得21n a -=S n -1+S n ﹣2,(n ≥3).相减可得:221n n a a --=a n +a n﹣1(n ≥3),∵a n >0,∴a n ﹣1>0,∴平方差公式化简得a n ﹣a n ﹣1=1,(n ≥3).当n =2时,22a =a 1+a 2+a 1,且11a =,∴22a =2+2a ,2a >0,∴2a =2或2a =-1.因此当n =2时,a n ﹣a n ﹣1=1成立.∴数列{a n }是以1为首项,以1为公差的等差数列,∴a n =1+n ﹣1=n .()1223111111112231n n n a a a a a a n +++⋯+=++⋯+⨯⨯+1111111 (1122311)n n n =-+-++-=-<++由题意得,k 1≥.(2)由(1)得,()()211n n n b a a a =---=(n ﹣1)2+a (n ﹣1),∵{}n b 是递增数列,∴b n +1﹣b n =n 2+an ﹣(n ﹣1)2﹣a (n ﹣1)=2n +a ﹣1>0, 即12a n >-恒成立,∵121n -≤-,∴a >﹣1,∴实数a 的取值范围是()1,-+∞. 【点睛】本题考查了数列递推关系、等差数列的通项公式单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.。
厦门市湖滨中学2018--2019学年第二学期期中考高二地理试卷考试时间:2019年4月 10 日(本试卷分Ⅰ、Ⅱ两卷,满分100分;考试时间90分钟)Ⅰ卷(综合题,40分)一.选择题本卷共30小题,每小题2分,共60分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
在某一温度下,空气水汽含量与同温度下饱和空气水汽含量的比值称为空气的相对湿度。
图甲示意饱和状态空气的水汽含量与温度的关系,图乙示意某城市某日空气水汽含量随气温变化。
据此完成1~2题。
图11. 该地该日的天气状况是A.上午10时无降水过程B.下午3时无降水过程C.上午和下午都有降水过程D.凌晨4时有可能产生霜冻2. 图示时段内A.相对湿度逐渐减小B.盛行上升气流C.相对湿度随气温的升高而增加D.气温在正午12时达最大值读图3,回答第3题。
3.四个大洲中,A.甲地形复杂多样,中低产田多,农业生产技术落后B.乙平原广,高纬地区受寒流影响强,港口封冻期长C.丙纬度跨度大,地形中部高四周低,是水稻主产区D.丁为高原大陆,人口自然增长率低,城市化水平高图6 为某主题公园所在城市分布图。
读图回答4-5 题。
4. 下列时间点中至少有4 个城市该主题公园都在开放的是A. 北京时间8 点B. 北京时间11 点C. 北京时间14 点D. 北京时间17 点5. 图示5 个城市中A. 有4 个城市受季风的影响明显B. 有4 个城市受台风(飓风)影响C. 巴黎和洛杉矶冬季降水的成因相同D. 有3 个城市属于温带气候恩克斯堡岛(图3)是考察南极冰盖雪被、陆缘冰及海冰的理想之地。
2017年2月7日,五星红旗在恩克斯堡岛上徐徐升起,我国第五个南极科学考察站选址奠基仪式正式举行。
据此完成6-8小题。
6.2月7号,当恩克斯堡岛正午时,北京时间约为A. 2月7日9时B. 2月7日15时C. 2月7日17时D. 2月8日7时 7. 五星红旗在恩克斯堡岛上迎风飘扬。
推测红旗常年飘扬的主要方向是A. 东北方向B. 西南方向C. 东南方向D. 西北方向 8. 对于极地科学考察而言,恩克斯堡岛所在区域的优势在于A. 生物类型多样B. 对全球变暖敏感C. 大气质量优良D. 人类活动影响少 图5为某山地气象站一年中每天的日出、日落时间及逐时气温(℃)变化图。
2022-2023学年福建省厦门市湖滨中学高二下学期6月期末英语试题1. UN FAO World Food Day Poster Contest 2023We are aware at that you are searching for Food and Agriculture Organization of the United Nations (UN FAO) World Food Day Poster Contest 2023,then you are not alone.Calling out to all children and teens around the world! If you’re between ages 5 to 19, the UN FAO wants you to use your imagination and create a poster of your favourite food hero at work and submit it for their World Food Day Poster Contest.The world is full of food heroes, who despite various challenges, work hard to make sure that food makes its way from farms to our table. Let’s celebrate their great efforts this World Food Day. Young minds can be inspired to support these food heroes who provide the healthy diets we need, while protecting the planet.Requirements·Only one entry should be submitted per person. Multiple entries from one person will result in disqualification.·Poster entries may be drawn, painted or sketched using pens, pencils, crayons or using oil, or watercolour paint. Digitally created artwork is also permitted. No photographs are allowed.·All poster entries must be original and should not include photographic images of the Contestant or other personal information.·Submissions must be made through the online form provided – please do not send in physical posters. The deadline is November 6.Prizes:·Three winning poster designs will be selected as finalists by a jury in each category.·Winners will also receive a Certificate of Recognition and a surprise gift bag.·When winning posters are published, only the first initial, full family name and country of origin will be published. No other personal information about the Contestants will be published or shared.1. What is the Poster Contest intended for?A.Protecting the planet. B.Providing healthy diets.C.Honoring food heroes. D.Developing farms.2. Which of the following will result in disqualification?A.Only drawn entries. B.A copied entry.C.Two entries from a kid. D.A physical poster.3. What will a poster winner get?A.A school certificate. B.An amazing present bag.C.A creative artwork. D.A watercolour painting.2. Early in the pandemic, refrigerators began popping up in unlikely places outdoors. Volunteers plugged them in on street corners in cities. Anyone could take food for free.The fridges were necessary to address food insecurity, activists said. Many people lost their jobs during the pandemic and could not afford to buy food. The problem continues due to rising food prices.Tajahnaé Stocker started the Community Fridge Project, in Wichita, Kansas. She raised $1.500 to buy, decorate, and stock a fridge with food. It was a step toward solving the hunger crisis. “Charity alone cannot solve every problem,” she says. The fridge is “just trying to fill in the gap of a grocery store.”Volunteers have stocked hundreds of fridges around the U.S. They’re on street corners,outside cafés, and at churches and housing developments. Kristin Guerin runs a community fridge network in Miami, Florida, called Buddy System MIA. The group fills its fridges up to five times a day. Usually, the fridges are empty within an hour. “The need is still really high,” Guerin says.Often, community fridges contain homemade meals or donations from restaurants and supermarkets. The group 901 Community Fridges operates in Memphis, Tennessee. It stocks fridges with leftover meals from other food-assistance gr oups, so meals don’t go to waste.The movement has begun to expand beyond food. Donations of diapers and other baby items are accepted by 901 Community Fridges. The group plans to provide additional services, like laundry and help for recent immigrants. “Anything that might be needed in the community,” organizer L.J Abraham says. In Miami, the fridges are papered with flyers advertising summer camp and other programs. “The fridges have become small community centers”, Guerin says. “They have become a stap le, and they will be for a while.”1. Why were fridges outdoors needed during the pandemic?A.To solve the hunger problem. B.To tackle the pandemic.C.To decorate the street corners. D.To support a community project.2. What does the underlined part in Paragraph 3 mean?A.Take advantage of a grocery store. B.Do what a grocery store doesn’t do.C.Take the place of a grocery store. D.Satisfy the needs of a grocery store.3. What might Kristin Guerin most need according to Paragraph 4 and 5?A.Food resources. B.More volunteers. C.New fridges. D.Fridge networks.4. What can we learn from the last paragraph?A.The group shifts its original plan.B.The organizer targets at other programs.C.People can turn to the service for everything.D.The service expands due to different needs.3. Researchers say two-way communication is possible with people who are asleep and dreaming. Specifically, with people who are lucid dreaming –that is, dreaming while being aware they’re dreaming.In separate experiments, scientists in the U.S, France, Germany and the Netherlands asked people simple questions while they slept. Sleepers would respond by moving their eyes or moving their faces in a certain way to indicate their answers. For example, a typical question would be to ask what is 8 minus 6. A 19-year-old American man was able to respond by moving his eyes left-right, left-right – two times –to signal “2”.“Since the 1980s, we’ve known that lucid dreamers can communicate out of dreams by using these signa ls,” says Karen Konkoly, a Ph.D. student at Northwestern University who published the study in Current Biology. “But we were wondering, can we ask people questions that they could actually hear in their dreams?” They were studying rapid-eye-movement sleep when people dream most vividly. Konkoly tells Scott Simon on Weekend Edition, “When people become lucid in the dream, they just look left-right, left-right, really dramatically. So we know that they’re communicating out.”To study Lucid dreaming, researchers recruited people who had experienced with it. Before the participants went to sleep, they were also trained on how to communicate their answers. Special sensors measured people’s eye movements or experts judged their facial movements. Not all the participants responded the same way, though.The researchers write that their findings present “new opportunities for gaining real-time information about dreaming, and for modifying the course of a dream” Konkoly says there’s the possibility of one day doing a s ort of “dream therapy” for people experiencing lucid nightmares. And if more reliable communication methods can be worked out, it could help people with creative activities and ideas. “People often use lucid dreaming or dreaming for a kind of artistic, cre ative inspiration,” With the help of an awake person, Konkoly says it could be possible to “combine those logical advantages of wake with the creative advantages of dreams and maybe have some more applications.”1. How do people in their lucid dream react to simple questions?A.By opening their mouths. B.By using hands.C.By shaking their heads. D.By moving their eyes.2. What was Karen Konkoly’s finding about lucid dreamers according to Paragraph 3?A.They can detect sound better. B.They are able to communicate.C.They dream most vividly. D.They have a good sense of direction.3. What does Paragraph 4 mainly talk about?A.The participants’ behaviors.B.The preparation of the research.C.The experiment of lucid dreams. D.The process of a lucid dream.4. What can lucid dreaming bring about if the research goes on successfully?A.Creative activities. B.Lucid nightmares.C.Magic inspiration. D.Logical thinking.4. Beth Shapiro will lead the scientific efforts to resurrect (复活) the dodo at Colossal Biosciences, founded by tech entrepreneur Ben Lamm. Scientists hope to recover the dodo if they gather enough DNA to create a clone to implant in the eggs of closely related modern pigeon.Dodo, an odd-looking flightless bird lived on the island of Mauritius in the Indian Ocean until the late 17th century. The arrival of sailors brought with them invasive species like rats and practices like hunting. They doomed the dodo, which showed no fear of humans, to extinction in the space of just a few decades.Now, a team of scientists wants to bring back the dodo. They hope the project will open up new techniques for bird conservation.“It’s our responsibility to bring stories and to bring excitement to people in the way that motivates them to think about the extin ction crisis that’s going on right now,” said Beth Shapiro.Shapiro said that she had already completed a key first step in the project based on genetic material taken out from dodo remains in Denmark. The next step was to compare the genetic informationw ith the dodo’s closest bird relatives in the pigeon family.The following work that’s needed to resurrect the animal – programming cells from a living relative of the dodo with the lost bird’s DNA – will be significantly more difficult. Shapiro said she hopes to adapt an existing technique that has already been used to create a chicken fathered by a duck. However, Shapiro said that perfecting these synthetic(合成的)biology tools will have wider implications for bird conservation. The techniques could allow scientists to move specific genetic traits between bird species to help protect them as habitats shrink and the climate warms. Shapiro thought the technology which works in chickens would be amazing to get this to work in lots of different birds across the bird tree of life because that will be hugely impactful for bird conservation.Whether or not Colossal and its team of scientists are ultimately successful in their quest to bring back the dodo and the technological breakthroughs they may generate, they have investors excited. Colossal also announced Tuesday that it has raised an additional US$150 million, bringing the total amount of funding raised since the company launched in 2021 to US$225 million.1. What does the underlined word “doomed” in Paragraph 2 probably mean?A.Destroyed. B.Rescued. C.Hunted. D.Fed.2. Which is the most challenging in resurrecting the dodo?A.Taking out genetic material from dodo remains.B.Comparing genetic information with the dodo’s relatives.C.Programming its living relative’s cells with dodo’s DNA.D.Adapting an existing technique to create a chicken.3. What can we learn from the passage?A.Scientists can change a duck into a chicken.B.Synthetic biology tools will shrink bird habitats.C.Protection of birds will benefit from the technology.D.The project will bring back the dodo soon.4. Why are the numbers mentioned in the last paragraph?A.To show the project is promising.B.To evidence the technology is predictable.C.To imply the funding is insufficient.D.To prove the breakthrough is admirable.5. Traditional American summer camps offer young people a chance to play many sports. These camps may be in the mountains. 1 Some camps teach activities like painting or music. Or they teach computer programming or foreign languages. Children at all kinds of camps meet new friends.Some children go to camp during the day and return home at night. 2 Children stay at an overnight camp for between one and eight weeks. Parents need to pay. Children from poor families might not have a chance to attend summer camps. The Fresh Air Fund is a well-known organization.3 Each summer it sends ten thousand poor children to stay with families in the country or to five camps in New York State.4 Many American women now work outside the home. Working parents need a place where their children can be cared for during the summer when they are not in school.Young people who like the arts can learn about painting, music, acting or writing. Camps that offer programs in science and environmental studies are popular, too. There are also camps for older children who like wilderness adventure. 5 Or, they go rock-climbing or horse-riding.6. Miriam Schreiber was living in Poland when World War II broke out. Her life was ________ ruined within minutes when Miriam and her family ran to ________ from the Nazis and then was transported to a slave labor camp in Siberia for 6 years. “The ________ was horrible,” says Miriam, who watched as her brothers and sisters ________ to death. Later she and her remaining ________ members went to a refugee camp in Germany where she met Saul and ________. The couple left Germany for Israel and ________ settled down in America in 1960.Over the years, Miriam learned 7 languages. The now-89-year-old says, “I ________ myself and I never stopped learning.” She added, “But I have always ________: a high school diploma. “From the first time I met Miriam, she told me how ________ she was to have never had a ________ education,” says Erica, a social worker who asked the New England Jewi sh Academy whether the school could ________ Miriam an honorary diploma at its 2020 graduation ________. Richard Nabel, the principal said, “It’s for the graduating class to decide.”When the high school seniors heard Miriam’s story, they decided to ________ her. The class instantly said Yes. Everyone watched her with ________ when Miriam appeared at the ceremony with her cap and gown.1.A.partly B.completely C.probably D.quickly2.A.hide B.turn C.recover D.hear3.A.fighting B.running C.suffering D.killing4.A.sentenced B.tired C.beaten D.starved5.A.family B.team C.club D.tour6.A.stayed B.married C.parted D.survived7.A.temporarily B.suddenly C.finally D.immediately 8.A.trained B.respected C.trusted D.educated9.A.longed for B.waited for C.turned down D.relied on10.A.confused B.disappointed C.anxious D.embarrassed11.A.remarkable B.proper C.formal D.necessary12.A.present B.return C.spare D.send13.A.show B.ceremony C.examination D.assessment14.A.meet B.welcome C.greet D.honor15.A.courage B.passion C.pride D.confidence7. 阅读下面短文,在空白处填入1个适当的单词或括号内单词的正确形式。
福建省厦门市湖滨中学2017-2018学年八年级英语下学期期中试题(试卷满分:150分考试时间:120分钟)I. 听力(共三节,20小题; 每小题1.5分,满分30分)第一节听句子听下面五个句子,从每小题所给的三幅图中选出与句子内容相符的选项。
(每个句子读两遍)1. A. B. C.2. A. B. C.3. A. B. C.4. A. B. C.5. A B. C.第二节听对话听下面七段对话,从每小题所给的A、B、C三个选项中选出正确答案。
(每段对话读两遍)听第1段对话,回答第6小题。
6. What's the matter with Sandy?A. She has a sore back.B. She has a sore throat.C. She has a sore neck.听第2段对话,回答第7小题。
7. What does Jack want to be?A. A zoo keeper.B. An animal doctor.C. A teacher.听第3段对话,回答第8小题。
8. What would Dave like to do?A. To do the dishes.B. To clean his room.C. To take out the rubbish.听第4段对话,回答第9小题。
9. When will Cindy's brother come back?A. At 5:00 p.m.B. At 6:00 p. m.C. At 7:00 p.m.听第5段对话,回答第10~11小题。
10. Where are they talking?A. On the telephone.B. At school.C. At Alan's house.11. What does Betty ask Alan to repair?A. Her watch.B. Her computer.C. Her bike.听第6段对话,回答第12~13小题。
2018-2019学年福建省厦门市湖滨中学高一上学期期中考试英语试题第Ⅰ卷(共100分)I.听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. When will the woman sleep?A. After turning off the lightsB. Before turning off the lightC. After taking a walk2. The woman will go downtown ______.A. by carB. by taxiC. by bus3. What is the weather like today?A. RainyB. SunnyC. Snowy4. When will the woman return the book according to the man?A. SaturdayB. Next FridayC. Next Tuesday5. What is the woman's attitude?A. She thinks spoken English is useful.B. She is good at spoken English.C. She isn't interested in spoken English.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
厦门市湖滨中学2018---2019学年第二学期期中考 高二英语试卷
本试卷分第I卷 和第II卷 两部分,满分150分,时间120分钟 第I卷
第一部分 听力(共两节,满分30分) 第一节(共5小题;每小题1.5分,满分7.5分) 听下面5段对话。每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。听完每段对话后,你都有10秒的时间来回答有关小题和阅读下一小题。每段对话仅读一遍。 1. What did the woman dislike when she was young? A. Vegetables. B. Chocolate. C. Cookies. 2. What is Jack’s position? A. A cleaner. B. A manager. C. A salesperson. 3. Where are the speakers? A. In a library. B. In a classroom. C. In a bookstore. 4. What do the speakers think of Linda’s brother? A. He is quiet B. He is friendly. C. He is unpleasant. 5. What will the speakers probably do next? A. Feed the cat. B. Wait for the cat. C. Call the cat. 第二节(共15小题;每小题1.5分,满分22.5分) 听下面5段对话或独白。每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。每段对话或独白读两遍。 听第6段材料,回答第6、7题。 6. What happened to the woman? A. She was badly injured. B. She couldn’t find her dogs. C. She lost her way in the forest. 7. Who found the woman? A. Her best friend. B. A hiker. C. Her husband. 听第7段材料,回答第8、10题。 8. What does the man want to know more about? A. Recent events. B. History. C. Movies. 9. Where are the fires happening? A. In Paris. B. In New York. C. In Los Angeles. 10. What report will come last on TV? A. The sports news. B. The local news. C. The weather report 听第8段材料,回答第11至13题。 11. What does the woman need help with? A. Clearing the sidewalk. B. Hanging Christmas lights. C. Digging her car out of the snow. 12. Who will visit the man this weekend? A. His grandkids. B. His friends. C. His students. 13. Where will the woman go for the holiday? A. A ski mountain. B. A relative’s apartment. C. A farm. 听第9段材料,回答第14至17题。 14. Who is the woman probably asking for advice? A. Her neighbor. B. Her tutor. C. Her classmate. 15. How does the man describe Western dining traditions? A. Strict. B. Casual. C. Complex. 16. When should the woman arrive according to the man? A. Around 4:30. B. Around 5:00. C. Around 5:30. 17. What does the man suggest the woman bring to dinner? A. Food. B. Wine. C. CDs. 听第10段材料,回答第18至20题。 18. Where did Johnny often stay? A. On a bridge. B. At the gas station. C. On the side of the road. 19. What did Kate McClure do to Johnny in return? A. She gave him $20. B. She bought him food. C. She created a website to help him. 20. What is the purpose of the talk? A. To encourage people to be helpful. B. To remind drivers to take enough gas. C. To tell people to spend money in a wise way. 第二部分 阅读理解(共两节,满分40分) 第一节 (共15小题;每小题2分,满分30分) 阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项。 A Here are some fascinating, entertaining and promising things that are bound to be bright spots in 2019 Five eclipses Up to seven eclipses of the Sun and Moon can take place in one year, though the last time that happened was 1982. The mix of five events occurring in 2019 is especially interesting,because no two will be alike! According to Xinhua, China will see two solar eclipses and one lunar eclipse in 2019。 3D- printed everything Expect 2019 to be the year 3D printing, for 3D bioprinting in the medical field, advanced 3D metal printing which will revolutionize manufacturing and even more accessible 3D printing at home. A public domain year Starting from ]an.1, hundreds of thousands of works of art, film, literature and music from 1923 will enter the public domain. Works from authors like H. G. Wells, music from composers like Bela Bartok, and some Charlie Chaplin films will be easier to (legally) access, sell, buy and enjoy. The Periodic Table Science lovers, it's your time to shine. Dmitri Mendeleev's world-changing system, the Periodic Table, turns 150 in 2019, and the United Nations has designated it the Year of the Periodic Table of Chemical Elements. Why not reacquaint yourself with this critical chemical advancement? Women’s World Cup The FIFA Women’s World Cup will take place in June and July of 2019 all around France, whose men’s team won the 2018 World Cup. If soccer isn’t your jam, but World Cups are, you can expect the Rugby World Cup held in Japan in September, or the Cricket World Cup held in London in May.
The world not ending When it comes to astronomical objects, you may recall years ago that an asteroid was predicted to come close to Earth in 2019, hitting us and making us all into fiery pieces of space dust. But NASA has completely rejected this and said the asteroid will fly by with a margin of about 2.6 million miles. 21. How many eclipses can be observed in China in 2019? A. One. B. Two. C. Three. D. Five. 22. What event will take place in the autumn of 2019? A. The Cricket World Cup B. The Rugby World Cup C The FIFA Men's World Cup D. The FIFA Women's World Cup 23. What can we know from the passage? A. The Periodic Table was invented 150 years ago. B. NASA said the asteroid will probably hit the Barth. C. The 2019 World Cups will all be launched in Europe. D. Charlie Chaplin films can be obtained free of charge. B We often think that our affairs, great or small, must be tended continuously and in detail, or our world will break apart, and we will lose our places in the universe. That is . not true, or if it is true, then our situations were so temporary that they would have collapsed (崩溃} anyway. . Once a year or so get away for a day. On the eve of my day of absence, I inform housemates, my family and close friends that I will not be reachable for twenty-four hours; then I disconnect the telephone. I sit for at least an hour in a very hot bathtub; then I lay out my clothes in preparation for my morning escape, and knowing that nothing will disturb