2
分析:
如果生产第j种产品,xj>0. 约束条件xj<=Mjyj,yj=1; 如果不生产第j种产品, xj=0.约束条件 xj<=Mjyj,yj=1或0。当 yj=1不利于目标函数的最大 化,因此在最优解必然是 yj=0。
件, M 1 100 ,
50 , M
3
34
运 设工序B的每周工时约束条件为0.3x1+0.5x2≤150,式(1) 现有一新的加工方式,相应的每周工时约束条件为0.2x1+0.4x2≤120 ,式(2) 如果工序B只能选择一种,那么(1)和(2)变成相互排斥的约束条件.
产品3
a32
机床2
a33
机床3
运筹学教程
解 设xij表示产品i在机床j 上开始加工的时间(i=1,2,3;j=1,2,3,4) 1.同一件产品在不同机床上的加工顺序约束 同一件产品在下一台机床上的加工的开始时间不早于在上一台机床上加工 的结束时间,故应有
产品1:x11+a11≤x12 ; x13+a13≤x14
运筹学教程
4 求解: 7 C 6 6 6 0 0 0 0 0
当y1=1,y2=0;采用 新工艺,(2)式成立;
1 2
运筹学教程
p 个约束条件
a
j 1
p
ij
x j b i ( i 1, 2 ,..., p ) p 个 0 1变量
选择 q 个约束条件,引入
0 , 选择第 i 个约束条件 ( i 1, 2 ,..., p ) yi 1, 不选择第 i 个约束条件 ( i 1, 2 ,..., p )
约束条件组
n a ij x j b i My i j 1 st . ( i 1, 2 ,..., p ) p yi p q i 1