完整版小波变换去噪基础知识整理
- 格式:doc
- 大小:31.42 KB
- 文档页数:3
小波去噪方法及步骤
本文主要介绍小波分解与重构法、非线性小波变换阈值法、平移不变量小波法以及小波变换模极大值法这4种常用的小波去噪方法。
将它们分别用于仿真算例的去噪处理,并对这几种方法的应用场合、去噪性能、计算速度和影响因素等方面进行比较。
选择了Matlab软件中的仿真信号Blocks作为原始信号,信号长度(即采样点数)N=2048,如图1a所示。
由于该信号中含有若干不连续点和奇异点,因此用以下几种方法对图1b中叠加了高斯白噪声的Blocks信号(信噪比为7)进行去噪处理,能够很清楚地比较出这几种方法的去噪性能。
图1 原始信号和含噪信号的时域波形
一、小波去噪方法
1、小波分解与重构法去噪
小波分解与重构的快速算法,即Mallet算法。
据这一算法,若fk为信号f (t)的离散采样数据,fk=c0,k,则信号f(t)的正交小波变换分解公式为:。
信号小波变换信号小波变换是一种在信号处理中广泛使用的技术,它能够将时域信号转换为频域信号,并提供更详细的频域信息。
本文将介绍信号小波变换的原理、应用以及优缺点。
一、信号小波变换的原理信号小波变换是一种基于小波分析的数学工具,它利用小波函数的特性对信号进行分解和重构。
小波函数是一组特殊的函数,具有时域局部性和频域多分辨性的特点。
通过将信号与小波函数进行内积运算,可以得到信号的小波系数,进而实现信号的分解和重构。
信号小波变换的过程可以分为两个步骤:分解和重构。
在分解过程中,信号逐级分解成不同频率和不同时间分辨率的小波系数;在重构过程中,通过逆小波变换将小波系数重构为原始信号。
1. 信号分析:信号小波变换可以将信号从时域转换到频域,提供更详细的频域信息。
通过分析小波系数的幅值和相位,可以获取信号的频率、相位和能量等信息,从而实现信号的分析和处理。
2. 信号压缩:信号小波变换可以将信号的能量集中在少数小波系数中,从而实现信号的压缩。
通过选择适当的阈值进行小波系数的截断,可以实现信号的压缩和恢复。
信号压缩在数据传输和存储中具有重要的应用价值。
3. 信号去噪:信号小波变换可以将信号分解为不同频率的小波系数,其中高频小波系数主要包含噪声成分。
通过对高频小波系数的阈值处理,可以实现噪声的抑制和信号的去噪。
信号去噪广泛应用于通信、图像处理等领域。
4. 信号辨识:信号小波变换可以提取信号的频率和相位信息,从而实现信号的辨识。
通过对小波系数进行特征提取和模式识别,可以实现信号的分类和辨识。
信号辨识在模式识别、故障诊断等领域具有重要的应用价值。
三、信号小波变换的优缺点1. 优点:a. 信号小波变换具有时频局部化的特点,能够提供更详细的时频信息,适用于非平稳信号的分析和处理。
b. 信号小波变换具有多分辨性的特点,可以同时提供不同时间分辨率和频率分辨率的信息,适用于多尺度信号的分析和处理。
c. 信号小波变换具有良好的压缩性能,能够将信号的能量集中在少数小波系数中,实现信号的压缩和恢复。
小波变换1、小波函数的类型及特点目前有大量的小波函数被提出,我们大致可以把它分为三类。
第一类是所谓地“经典小波”,在M ATLAB 中把它们称作“原始(Crude)小波”。
这是一批在小波发展历史上比较有名的小波;第二类是D aubecheis构造的正交小波,第三类是由Cohen,D aubechies构造的双正交小波。
1.1 经典小波1.1.1 Haar小波Haar小波来自于数学家Haar于1910年提出的Haar正交函数集,其定义是:ψt= 1 0≤t<1/2;−1 1/2≤t<1;0 其他;Haar小波有以下优点:(1)Haar小波在时域是紧支撑的,即其非零区间为(0,1);(2)Haar小波属于正交小波;(3)Haar波是对称的。
我们知道,离统的单位抽样响应若具有对称性,则该系统具有线性相位,这对于去除相位失真是非常有利的。
(4)Haar小波是目前唯一一个既具有对称性又是有限支撑的正交小波;Haar小波仅取+1和-1,因此计算简单。
但Haar小波是不连续小波,因此ψ(Ω)=0在Ω=0处只有一阶零点,这就使得Haar小波在实际信号处理应用中受到了限制。
但由于Haar小波有上述的多个优点,因此在教科书与论文中常被用作范例来讨论。
1.1.2 Morlet小波Morlet小波定义为:ψt=e−t2/2e jΩt其傅里叶变换为ψΩ=2πe−(Ω−Ω0)2/2它是一个具有高斯包络的单频率复正弦函数。
该小波不是紧支撑的,增大Ω的值可以使小波在频域和时域上都具有很好的集中。
Morlet小波不是正交的,也不是双正交的,可用于连续小波变换。
但该小波是对称的,是应用较为广泛的一种小波。
Morlet的时域波形和频域波形如下图:1.1.3 Mexican hat小波该小波的中文名字为“墨西哥草帽”小波,又称Marr小波。
它定义为:ψt=c1−t2e t2/21/4,其傅里叶变换为式中c=3ψΩ=2πcΩ2e−Ω2/2该小波是由一高斯函数的二阶导数所得到的,它沿着中心轴旋转一周所得到的三维图形犹如一顶草帽,故由此而得名。
小波包变换的基本原理和使用方法引言:小波包变换(Wavelet Packet Transform)是一种信号分析技术,它在小波变换的基础上进一步拓展,能够提供更丰富的频域和时域信息。
本文将介绍小波包变换的基本原理和使用方法,帮助读者更好地理解和应用这一技术。
一、小波包变换的基本原理小波包变换是一种多分辨率分析方法,它利用小波基函数对信号进行分解和重构。
与传统的傅里叶变换相比,小波包变换能够提供更精细的频域和时域信息,适用于非平稳信号的分析。
小波包变换的基本原理如下:1. 信号分解:首先将原始信号分解为不同频率的子信号,通过迭代地将信号分解为低频和高频部分,形成小波包树结构。
2. 小波基函数:在每一层分解中,选取合适的小波基函数进行信号分解。
小波基函数具有局部性和多分辨率特性,能够更好地捕捉信号的局部特征。
3. 分解系数:分解过程中,每个子信号都会生成一组分解系数,用于表示信号在不同频率上的能量分布。
分解系数可以通过滤波和下采样得到。
二、小波包变换的使用方法小波包变换在信号处理领域有广泛的应用,包括信号去噪、特征提取、模式识别等。
下面将介绍小波包变换的常见使用方法。
1. 信号去噪:小波包变换可以提供更丰富的频域和时域信息,因此在信号去噪领域有较好的效果。
通过对信号进行小波包分解,可以将噪声和信号分离,然后对噪声进行滤波处理,最后通过重构得到去噪后的信号。
2. 特征提取:小波包变换可以提取信号的局部特征,对于信号的频率变化和时域特征有较好的描述能力。
通过对信号进行小波包分解,可以得到不同频率下的分解系数,进而提取出信号的主要特征。
3. 模式识别:小波包变换在模式识别中也有广泛的应用。
通过对信号进行小波包分解,可以得到不同频率下的分解系数,进而提取出信号的特征向量。
利用这些特征向量,可以进行模式分类和识别。
4. 压缩编码:小波包变换可以将信号进行有效的压缩编码。
通过对信号进行小波包分解,可以将信号的主要信息集中在少量的分解系数中,从而实现信号的压缩。
小波变换的基本概念和原理小波变换是一种数学工具,用于分析信号的频谱特性和时域特征。
它在信号处理、图像处理、数据压缩等领域有着广泛的应用。
本文将介绍小波变换的基本概念和原理。
一、什么是小波变换?小波变换是一种将信号分解为不同频率的成分的数学工具。
它类似于傅里叶变换,但不同之处在于小波变换不仅能提供频域信息,还能提供时域信息。
小波变换使用一组称为小波基函数的函数族,通过对信号进行连续或离散的变换,将信号分解为不同尺度和频率的成分。
二、小波基函数小波基函数是小波变换的基础。
它是一个用于描述信号特征的函数,具有局部性和可调节的频率特性。
常用的小波基函数有Morlet小波、Haar小波、Daubechies 小波等。
这些小波基函数具有不同的性质和应用场景,选择适当的小波基函数可以更好地适应信号的特征。
三、小波分解小波分解是将信号分解为不同尺度和频率的过程。
通过对信号进行连续或离散的小波变换,可以得到小波系数和小波尺度。
小波系数表示信号在不同尺度和频率下的能量分布,而小波尺度表示不同尺度下的信号特征。
小波分解可以将信号的局部特征和全局特征分离开来,为信号分析提供更多的信息。
四、小波重构小波重构是将信号从小波域恢复到时域的过程。
通过对小波系数进行逆变换,可以得到原始信号的近似重构。
小波重构可以根据需要选择保留部分小波系数,从而实现信号的压缩和去噪。
五、小波变换的应用小波变换在信号处理、图像处理、数据压缩等领域有着广泛的应用。
在信号处理中,小波变换可以用于信号去噪、特征提取、模式识别等任务。
在图像处理中,小波变换可以用于图像压缩、边缘检测、纹理分析等任务。
在数据压缩中,小波变换可以将信号的冗余信息去除,实现高效的数据压缩和存储。
六、小波变换的优势和局限性小波变换相比于傅里叶变换具有一些优势。
首先,小波变换可以提供更多的时域信息,对于非平稳信号和瞬态信号具有更好的分析能力。
其次,小波变换可以实现信号的局部分析,对于局部特征的提取和分析更为有效。
小波变换在图像增强中的应用技巧图像增强是数字图像处理中的一个重要领域,它旨在改善图像的视觉效果,使得图像更加清晰、鲜明和易于理解。
小波变换作为一种有效的信号处理工具,已经被广泛应用于图像增强中。
本文将介绍小波变换在图像增强中的应用技巧,包括去噪、边缘增强和细节增强等方面。
一、小波变换在图像去噪中的应用图像中常常存在噪声,这些噪声会降低图像的质量和清晰度。
小波变换可以通过分析图像的频域特征,将噪声和信号分离开来,从而实现图像的去噪。
在图像去噪中,离散小波变换(DWT)是一种常用的方法。
DWT将图像分解为不同尺度的频域子带,其中低频子带包含了图像的主要信息,高频子带则包含了噪声。
通过对高频子带进行阈值处理,可以将噪声去除,然后再通过逆变换将图像恢复到空域中。
这种方法能够有效地去除图像中的噪声,同时保留图像的细节信息。
二、小波变换在图像边缘增强中的应用图像的边缘是图像中重要的特征之一,它能够提供图像中物体的形状和轮廓信息。
小波变换可以通过分析图像的局部特征,增强图像的边缘。
在图像边缘增强中,小波变换可以通过高频子带的信息来提取图像中的边缘。
通过对高频子带进行增强处理,可以使得边缘更加清晰和明显。
同时,小波变换还可以对边缘进行检测和定位,从而实现更精确的边缘增强。
三、小波变换在图像细节增强中的应用图像的细节信息对于图像的质量和清晰度至关重要。
小波变换可以通过分析图像的局部特征,增强图像的细节。
在图像细节增强中,小波变换可以通过低频子带的信息来提取图像中的细节。
通过对低频子带进行增强处理,可以使得图像的细节更加清晰和丰富。
同时,小波变换还可以对细节进行增强和增强,从而实现更好的细节增强效果。
总结小波变换作为一种强大的信号处理工具,在图像增强中发挥着重要的作用。
通过小波变换,可以实现图像的去噪、边缘增强和细节增强等效果。
在实际应用中,还可以根据具体的需求和图像特点,选择不同的小波基函数和变换参数,以达到更好的图像增强效果。
小波阈值变换-回复小波阈值变换是一种常见的信号处理技术,常用于信号去噪和图像压缩方面。
本文将详细介绍小波阈值变换的基本概念、原理以及实际应用。
第一段:小波阈值变换(Wavelet Thresholding),是指利用小波变换的特性对信号进行去噪处理的一种方法。
小波变换是一种多尺度分析方法,能够将信号在不同频率和时间分辨率下进行分解,而小波阈值变换则是在小波变换的基础上,通过适当设置阈值来将原始信号中的噪声成分滤除。
这种方法在许多领域中被广泛应用,包括语音信号处理、图像处理以及生物医学工程等。
第二段:小波变换基于信号的频率分布特性,通过分解信号为多个不同频率的小波基函数来实现。
在小波变换的过程中,原始信号被分解为近似系数(Approximation Coefficients)和细节系数(Detail Coefficients)两部分。
近似系数描述了信号的低频部分信息,而细节系数则描述了信号的高频细节部分。
小波阈值变换基于对细节系数的处理,通过设置适当的阈值来去除细节系数中的噪声成分。
一般情况下,具有较小值的细节系数被认为是噪声,而较大值的细节系数则代表信号的有效信息。
因此,通过适当设置阈值,我们可以将噪声部分滤除,从而实现信号的去噪处理。
第三段:小波阈值变换的核心原理是基于信号的统计特性。
在实际应用中,我们通常会使用软阈值或硬阈值的方法来对细节系数进行快速滤波。
软阈值方法通过将小于阈值的细节系数设置为0,并对大于阈值的细节系数进行相应的调整。
硬阈值方法则是将小于阈值的细节系数设置为0,而将大于阈值的细节系数保留不变。
根据具体的应用需求,我们可以选择合适的阈值类型和阈值数值,以达到最佳的信号去噪效果。
第四段:小波阈值变换在信号去噪和图像压缩方面具有广泛的应用。
在信号处理方面,小波阈值变换能够有效去除信号中的噪声,提高信号的质量和可靠性。
在图像处理方面,小波阈值变换可以帮助我们压缩图像数据,减小存储空间和传输带宽的占用。
小波去噪原理
Donoho提出的小波阀值去噪的基本思想是将信号通过小波变换(采用Mallat 算法)后,信号产生的小波系数含有信号的重要信息,将信号经小波分解后小波系数较大,噪声的小波系数较小,并且噪声的小波系数要小于信号的小波系数,通过选取一个合适的阀值,大于阀值的小波系数被认为是有信号产生的,应予以保留,小于阀值的则认为是噪声产生的,置为零从而达到去噪的目的。
从信号学的角度看,小波去噪是一个信号滤波的问题。
尽管在很大程度上小波去噪可以看成是低通滤波,但由于在去噪后,还能成功地保留信号特征,所以在这一点上又优于传统的低通滤波器。
由此可见,小波去噪实际上是特征提取和低通滤波的综合,其流程图如下所示:
一个含噪的模型可以表示如下:
其中,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。
假设,e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,我们对s(k)信号进行小波分解的时候,则噪声部分通常包含在HL、LH、HH中,如下图所示,只要对HL、LH、HH作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。
我们可以看到,小波去噪的原理是比较简单类,类似以往我们常见的低通滤波器的方法,但是由于小波去找保留了特征提取的部分,所以性能上是优于传统的去噪方法的。
1.与傅里叶变换比较:Fourier变换:全局性变换。
不具备局部分析能力,不能分析非平稳信号。
小波变换:时间和频域的局域变换,能有效从信号中提取信息,通过伸缩和平移等对函数或信号多尺度细化分析。
能充分突出问题某些方面的特征。
2.小波wavelet小区域,长度有限,均值为0的波形。
小指衰减性;波指波动性。
最终达到高频处时间细分(短的时间间隔),低频处频率细分(长的时间间隔)。
3.信号去噪与压缩在小波变换域上进行阈值处理:多层小波分解—阈值处理—多层小波重构4.多小波的概念其基本思想是将单小波中由单个尺度函数生成的多分辨分析空间,扩展为由多个尺度函数生成,以此来获得更大的自由度。
5. 小波的缩放因子与信号频率之间的关系可以这样来理解。
缩放因子小,表示小波比较窄,度量的是信号细节,表示频率w 比较高;相反,缩放因子大,表示小波比较宽,度量的是信号的粗糙程度,表示频率w 比较低。
6.在计算连续小波变换时,实际上也是用离散的数据进行计算的,只是所用的缩放因子和平移参数比较小而已。
不难想象,连续小波变换的计算量是惊人的。
为了解决计算量的问题,缩放因子和平移参数都选择2 ^j( j>0的整数)的倍数。
使用这样的缩放因子和平移参数的小波变换叫做双尺度小波变换(dyadic wavelet transform),它是离散小波变换(discrete wavelet transform,DWT)的一种形式7.小波消噪方法:将信号映射到小波域,根据噪声和噪声的小波系数在不同尺度上具有不同的性质和机理,对含噪信号的小波系数进行处理。
A.对实际信号进行小波分解,选择小波并确定分解层次为N,噪声通常在高频中。
B.对小波分解的高频系数进行门限阈值量化处理。
C.根据小波分解的第N层低频系数和经过量化后的1——N层高频系数进行小波重构。
恢复真实信号。
强制消噪处理:高频成分全变为零。
默认阈值消噪处理:利用ddencmp函数产生默认阈值,用wden 函数消噪处理。
小波变换完美通俗解读要讲小波变换,我们必须了解傅立叶变换。
要了解傅立叶变换,我们先要弄清楚什么是”变换“。
很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。
变换的是什么东西呢?是基,也就是basis。
如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。
那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。
小波变换自然也不例外的和basis有关了。
再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。
既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。
一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。
比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。
而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵(Tv_n=av_n,a是eigenvalue)。
总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。
好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。
当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。
接下来先看看,傅立叶变换是在干嘛。
傅立叶级数最早是Joseph Fourier这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于function space。
小波去噪[xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname')式中:输入参数x 为需要去噪的信号;1.tptr :阈值选择标准.1)无偏似然估计(rigrsure)原则。
它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。
对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。
2)固定阈值(sqtwolog)原则。
固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。
3)启发式阈值(heursure)原则。
它是rigrsure原则和sqtwolog 原则的折中。
如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。
4)极值阈值(minimaxi)原则。
它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。
2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h).3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整.4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。
输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd].常见的几种小波:haar,db,sym,coif,bior用MATLAB对一语音信号进行小波分解,分别用强阈值,软阈值,默认阈植进行消噪处理。
复制内容到剪贴板代码:%装载采集的信号leleccum.matload leleccum;%=============================%将信号中第2000到第3450个采样点赋给sindx=2000:3450;s=leleccum(indx);%=============================%画出原始信号subplot(2,2,1);plot(s);title('原始信号');%=============================%用db1小波对原始信号进行3层分解并提取系数[c,l]=wavedec(s,3,'db1');a3=appcoef(c,l,'db1',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);%=============================%对信号进行强制性消噪处理并图示结果dd3=zeros(1,length(d3));dd2=zeros(1,length(d2));dd1=zeros(1,length(d1));c1=[a3 dd3 dd2 dd1];s1=waverec(c1,l,'db1');subplot(2,2,2);plot(s1);grid;title('强制消噪后的信号');%=============================%用默认阈值对信号进行消噪处理并图示结果%用ddencmp函数获得信号的默认阈值[thr,sorh,keepapp]=ddencmp('den','wv',s);s2=wdencmp('gbl',c,l,'db1',3,thr,sorh,keepapp); subplot(2,2,3);plot(s2);grid;title('默认阈值消噪后的信号');%=============================%用给定的软阈值进行消噪处理sosoftd2=wthresh(d2,'s',1.823);softd3=wthresh(d3,'s',2.768);c2=[a3 softd3 softd2 softd1];s3=waverec(c2,l,'db1');subplot(2,2,4);plot(s3);grid;title('给定软阈值消噪后的信号');ftd1=wthresh(d1,'s',1.465);。
光谱小波去噪是指利用小波变换对光谱信号进行去噪处理,以提高信号的质量和可读性。
Matlab作为一种强大的科学计算软件,提供了丰富的工具和函数来进行光谱小波去噪处理。
本文将详细介绍光谱小波去噪的原理与方法,并结合Matlab的实际操作来演示该过程。
一、光谱小波去噪的原理光谱信号是通过测量目标物体的反射、散射或发射光的波长分布来描述物质的性质。
然而,由于各种噪声的干扰,光谱信号往往存在着不同程度的随机波动和干扰,影响了信号的准确性和可靠性。
光谱信号的去噪处理变得十分重要。
小波变换是一种时频分析的方法,能够将信号分解成不同尺度和频率的小波系数,从而更好地揭示信号的时频特性。
光谱小波去噪正是基于小波变换的理论,利用小波分析和重构信号,实现对光谱信号的有效去噪。
二、光谱小波去噪的方法1. 数据准备在进行光谱小波去噪之前,首先需要准备好光谱信号的数据。
通常情况下,光谱信号通过光谱仪或其他光谱测量设备获取,可以是吸收光谱、荧光光谱、拉曼光谱等不同类型的光谱数据。
在Matlab中,可以通过导入数据的方式将光谱信号加载到工作空间中,以便进行下一步的处理。
2. 小波变换利用Matlab提供的小波工具箱,可以很方便地对光谱信号进行小波变换。
小波变换将光谱信号分解成不同频率和尺度的小波系数,利用这些系数可以更好地理解和处理光谱信号中的信息。
在Matlab中,可以使用“wavedec”函数进行小波分解,得到各级小波系数和近似系数。
3. 去噪处理在得到小波系数之后,可以通过滤波的方式对小波系数进行去噪处理。
常用的去噪方法包括阈值去噪、软硬阈值去噪等。
阈值去噪是指按照一定的规则,将小于某个阈值的小波系数置零,从而实现去除噪声的目的。
而软硬阈值去噪则是在阈值去噪的基础上引入了软硬阈值的概念,更加灵活和精细地控制去噪效果。
4. 信号重构经过去噪处理的小波系数需要进行信号重构,以得到去噪后的光谱信号。
在Matlab中,可以利用“waverec”函数将去噪后的小波系数重构成信号,并进一步进行可视化展示和分析。
matlab小波降噪方式Matlab小波降噪方式小波降噪是一种常见的信号处理方法,可以有效地从噪声中恢复出原始信号。
在Matlab中,有多种小波降噪方式可以选择,本文将介绍其中几种常用的方法。
一、小波变换简介小波变换是一种时间-频率分析方法,可以将信号分解成不同尺度的小波函数。
通过小波变换,可以将信号的时域特征和频域特征结合起来,更好地描述信号的局部特性。
二、小波降噪原理小波降噪的基本原理是通过将信号在小波域进行分解,根据小波系数的幅值和相位信息,对信号进行去噪处理。
具体而言,小波降噪方法将信号分解成多个尺度的小波系数,然后根据小波系数的幅值和相位信息对信号进行处理,最后再将处理后的小波系数进行逆变换得到降噪后的信号。
三、小波降噪方法1. 阈值去噪法阈值去噪法是小波降噪中最常用的方法之一。
该方法通过设置阈值,将小波系数中幅值小于阈值的系数置零,从而实现去噪效果。
常用的阈值选择方法有固定阈值、基于软硬阈值的方法等。
2. 基于小波包变换的降噪法小波包变换是小波变换的一种扩展形式,可以对信号进行更细致的分解和重构。
基于小波包变换的降噪法可以在小波域中选择最佳小波包基函数,对信号进行更精细的降噪处理。
3. 基于模态分解的小波降噪法模态分解是一种将信号分解成若干个本征模态函数的方法,它可以有效地提取信号的局部特性。
基于模态分解的小波降噪法将信号进行模态分解,然后对每个本征模态函数进行小波降噪处理,最后将处理后的本征模态函数进行重构。
四、Matlab中的小波降噪函数在Matlab中,有多个工具箱和函数可以实现小波降噪。
其中,wavelet toolbox是Matlab中最常用的小波分析工具箱,提供了丰富的小波变换和小波降噪函数。
1. wdenoise函数wdenoise函数是Matlab中最基本的小波降噪函数,可以实现简单的阈值去噪。
该函数的基本语法为:y = wdenoise(x,'DenoisingMethod',method,'Wavelet',wavename) 2. wpdencmp函数wpdencmp函数是基于小波包变换的小波降噪函数,可以实现更精细的降噪处理。
实验七小波变换一、实验目的1、了解小波变换及其变换系数的分布。
2、了解小波变换在图像去噪处理中的应用。
二、小波变换及去噪应用1、小波分解及系数分布信号分析是为了获得时间和频率之间的相互关系。
傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。
与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。
对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。
常用的母小波有:Haar小波、dbN小波系、symN小波系等。
小波系数分布规律:●随着分层数的增加,小波系数的范围越来越大,说明越往后层次的小波系数越重要。
●除LL外,其他子带方差和能量明显减少,充分说明低频系数在图像编码中的重要性。
●对同一方向子带,按从高层到低层(从低频到高频)子带,有:HL3→HL2→HL1,LH3→LH2→LH1,HH3→HH2→HH1,大部分情况下其方差从大到小,有一定的变换规则。
2、小波在图像去噪中的应用工程应用中,有用信号通常表现为低频信号或是一些比较平稳的信号,而噪声信号通常表现为高频信号。
所以基于小波变换的去噪过程可以分为以下几步进行:(1) 小波分解。
选择一个小波并确定一个小波分解的层数N,然后对图像进行N 层小波分解。
(2) 小波分解高频系数的阈值量化。
对第1 层到第N 层的每一层高频系数,选择一个阈值进行阈值量化处理。
(3) 小波的重构。
根据小波分解的第N 层的低频系数和经过量化处理后的第1 层到第N 层的高频系数,进行的小波重构。
处理的方法一般有三种:(1) 强制去噪处理。
该方法把小波分解结构中的高频系数全部变为0,即把高频部分全部去除掉,然后再对信号进行重构处理。
这种方法比较简单,重构后的消噪信号也比较平滑,但容易丢失信号的有用成分。
(2) 默认阈值去噪处理。
该方法利用ddencmp 函数产生信号的默认阈值,然后利用wdencmp 函数进行消噪处理。
小波去噪原理小波去噪是一种在图像处理、信号处理、统计分析等领域中使用的有效方法。
它可以用来去除从数字信号、图像以及其他从连续数据中产生的噪声。
噪声可能是由于测量系统的偏移、传感器采样及测量噪声或者是由于信号中传输和处理设备产生的干扰。
有效的噪声消除可以提高信息的质量,以保证信号的准确性,小波去噪理论可以实现这一点。
小波去噪的原理是,通过小波变换将信号分解成多个子带,在各个子带上进行处理。
由于噪声通常在频率域中分布在更高的频率上,因此可以让有噪声成分的信号被分离出来,而有信息成分的信号可以被保留。
小波去噪被分为两类:偏微分小波去噪(DWT)和小波包去噪(WPV)。
偏微分小波去噪是基于偏微分小波变换(DWT)实现的。
与其他变换相比,DWT可以有效地分解信号,可以将信号以低频段的信号和高频段的噪声进行分离。
噪声通常聚集在高频段,而信息通常聚集在低频段,因此DWT可以通过进行高频截断,将噪声分离出来,只对低频段进行处理,有效地保留原始信号的有用信息。
小波包去噪则是一种基于小波包变换(WPV)实现的去噪方法,它可以将信号以相对更精细的形式进行分离,更加准确地检测出信号中的噪声。
WPV可以进一步将信号分解成更多的子带,声频段和噪声段的分离更加精细,从而可以更准确地检测和滤除噪声。
小波去噪在抗噪声、图像处理、信号处理等领域都有着重要的应用。
在无法准确控制信号和噪声概率时,小波去噪可以有效地进行去噪处理,从而提高信号的质量。
此外,小波去噪也可以用来处理图像信号,为图像处理技术提供一种高效的去噪算法。
综上所述,小波去噪是一种有效的信号处理和去噪技术,它可以有效地将信号和噪声分开,比其他传统的信号处理方法更加有效。
在这种方法的帮助下,信号的质量可以得到显著提升,可以改善信号的准确性,提高图像处理的效率以及对信号的检测的精度。
当前,小波去噪的应用越来越广泛,有着重要的意义。
小波变换的概念 1.这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为小波(Wavelet)
频“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)逐步进行多尺度细化,最终达到高频处时间细分,低()函数率的局部化分析,它通过伸缩平移运算对信号变换的频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier 科学方法上的重大突破。有人把小波变换称为“数学显微镜”。困难问题,成为继Fourier变换以来在 具体用哪种,为什么??2.小波有哪几种形式?常用的有哪几种:
或者小波族)的方法有几种定义小波(的滤波器——来和为长度为1小波完全通过缩放滤波器g ——一个低通有限脉冲响应(FIR)2N缩放滤波器: 定义。在双正交小波的情况,分解和重建的滤波器分别定义。SymletDaubechies和高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如 。小波
。来定义也称为父小波)(即母小波)和缩放函数 (缩放函数:小波由时域中的小波函数
小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷 多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。
。 小波g。例如对于有Meyer紧支撑的小波,可以视为有限长,并等价于缩放滤波器
。例如墨西哥帽小波。 小波函数:小波只有时域表示,作为小波函数3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点
从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性 变化后的熵很低; 2) 多分辨率特 性 边缘、 尖峰、 断点等;方法, 所以可以很好 地刻画信号的非 平稳特性 3) 去相关性 域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基 底, 也可以根据 信号 特性和 去噪 要求选 择多 带小 波、 小波包、 平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有 不同的效果。噪声常 常表现为图像上 孤立像素的 灰度突变, 具有高频特性和空间不相关性。图像经 小波分解后可得到低频部分和高频部分, 低频部分 体现了图像的轮廓, 高频部分体现为图像的细节和 混入的噪声, 因此, 对图像去噪, 只需要对其高频系 数进行量化处理即可。
5.小波变换的科学意义和应用价值 小波分析是目前数学中一个迅速发展的新领网域,它同时具有理论深刻 和应用十分广泛的双重意义。处理;量子力学、小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图象分类与识别;音乐与语言的人工合成;医学成理论物理;军事电子对抗与武器的智能化;计算机像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值、曲面构造、微分方程求解、控制论等。在信号分析方面的滤波分析、构造快速数值方法、曲线去噪声、压缩、传递等。在图象处理方面的图象压缩、分类、识别与诊断,去污等。在医学成像 核磁共振成像的时间,提高分辨率等。超、CT、方面的减少B小波分析用于信号与图象压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压 (1) 缩速度快,压缩后能保持信号与图象的特征不变,且在传递中可以抗干扰。基于小波分析的压缩,小波变换零树压缩,小波变模型方法方法很多,比较成功的有小波包最好基方法,小波域纹理 换向量压缩等。、信噪分时频分析 (2)小波在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、 离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。、曲线设计、湍流、远程宇宙计算机图形学(3)在工程技术等方面的应用。包括计算机视觉、 的研究与生物医学方面。 图像去噪的目的和原理6.现实中的数字图像在数字化和传输过程中常受到成像设备与外部环境噪声干扰等影响,称为含噪 。图像或噪声图像。减少数字图像中噪声的过程称为图像去噪图像降噪的主要目的是在能够有效地降低图像噪声的同时尽可能地保证图像细节信息不受损失,。图像去 噪有根据图像的特点、噪声统计特性和频率分布规律有多种方法,但它们的基本原理都是利用图像的噪声 和信号在频域的分布不同,即图像信号主要集中在低频部分而噪声信号主要分布在高频部分,采取不同的 去噪方法。传统的去噪方法,在去除噪声的同时也会损害到信号信息,模糊了图像。 7.传统去噪方法有哪些?原理,优缺点。 1)均值滤波器(采用邻域平均法的均值滤波器非常适用于去除通过扫描得到的图象中的颗粒噪声。领域平均法有力地抑制了噪声,同时也由于平均而引起了模糊现象,模糊程度与领域半径成正比。几何均值滤波器所达到的平滑度 可以与算术均值滤波器相比,但在滤波过程中会丢失更少的图象细节。 谐波均值滤波器对“盐”噪声效 果更好,但是不适用于“胡椒”噪声。它善于处理像高斯噪声那样的其他噪声。逆谐波均值滤波器更 适合于处理脉冲噪声,但它有个缺点,就是必须要知道噪声是暗噪声还是亮噪声,以便于选择合适的滤波器阶数符号,如果阶数的符号选择错了可能会引起灾难性的后果 (2)自适应维纳滤波器 它能根据图象的局部方差来调整滤波器的输出,局部方差越大,滤波器的平滑作用越强。它的最终目标是使恢复图像f^(x,y)与原始图像f(x,y)的均方误差e2=E[(f(x,y)-f^(x,y)2]最小。该方法的滤波效果比均值滤波器效果要好,对保留图像的边缘和其他高频部分很有用,不过计算量较大。维纳滤波器对具有白噪声的图象滤波效果最佳。 )中值滤波器3(.
它是一种常用的非线性平滑滤波器,其基本原理是把数字图像或数字序列中一点的值用该点的一个领域中各点值的中值代换其主要功能是让周围象素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点,所以中值滤波对于滤除图像的椒盐噪声非常有效。中值滤波器可以做到既去除噪声又能保护图像的边缘,从而获得较满意的复原效果,而且,在实际运算过程中不需要图象的统计特性,这也带来不少方便,但对一些细节多,特别是点、线、尖顶细节较多的图象不宜采用中值滤波的方法。 (4)形态学噪声滤除器 将开启和闭合结合起来可用来滤除噪声,首先对有噪声图象进行开启操作,可选择结构要素矩阵比噪声的尺寸大,因而开启的结果是将背景上的噪声去除。最后是对前一步得到的图象进行闭合操作,将图象上的噪声去掉。根据此方法的特点可以知道,此方法适用的图像类型是图象中的对象尺寸都比较大,且没有细小的细节,对这种类型的图像除噪的效果会比较好。 (5)小波变换 小波变换主要是利用其特有的多分辨率性、去相关性和选基灵活性特点,使得它在图像去噪方面大有可为,清晰了图像。经过小波变换后,在不同的分辨率下呈现出不同规律,设定阈值门限,调整小波系数,就可以达到小波去噪的目的。 这种方法保留了大部分包含信号的小波系数,因此可以较好地保持图象细节。小波分析进行图像去噪主要有3个步骤:(1)对图象信号进行小波分解。(2)对经过层次分解后的高频系数进行阈值量化。(3)利用二维小波重构图象信号。 8.小波变换去噪的基本思路 小波变换去噪的基本思路可以概括为:利用小波变换把含噪信号分解到多尺度中,小波变换多采用二进型,然后在每一尺度下把属于噪声的小波系数去除,保留并增强属于信号的小波系数,最后重构出小波消噪后的信号。其中关键是用什么准则来去除属于噪声的小波系数,增强属于信号的部分。 9.基于小波变换的图像去噪方法 1.基于小波的中值滤波去噪,; (中值滤波是一种常用的抑制噪声的非线性方法, 它可以克服线性滤波如最小均方滤波和均值滤波给图像边缘带来的模糊, 从而获得较为满意的复原效果; 它能较好地保护边界, 对于消除图像的椒盐噪声非常有效, 但有时会失掉图像中的细线和小 块的目标区域。其原理非常简单, 就是将一个包含有奇数个像素的窗口在 图像上依次移动,在每一个位置上对窗口内像素的灰度值由小到大进行排列, 然后将位于中间的灰度值作为窗口中心像素的输出值,小波变换的一个最大的优点是函数系很丰富,可以有多种选择,不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分,低频部分体现了图像的轮廓,高频部分体现为图像的细节和 混入的噪声, 因此, 对图像去噪,只需要对其高频系数进行量化处理即可。 具体消噪步骤: 1) 对图像进行小 波 变换分解, 小波系数记为w j , 其中j为小波变换的尺度, i 表示该小波系数的位置; 2) 根据中值滤波技术对小波分解中各高频分进行中值滤波;3) 重构图像, ) 2.维纳滤波和小波域滤波相结合的方法,; (维纳滤波: 当信号与噪声同时作用于系统时, 希望设计的滤波器能使其输出端以均方误差最小准则尽量复 维纳滤波是一种求解最最佳线性过滤器。 这种滤波器被称为,从而使输出噪声具有最大的抑制, 现输入信号.
佳线性滤波器的方法, 它是根据信号的自相关函数或功率谱知识及输出的观测值, 在均方误差最小的意义下, 解出最佳滤波器的单位抽样相应, 以此对信号作出最优估计。)( 维纳滤波与小波域滤波相结合的方法 维纳滤波和小波域滤波是2种比较有效的信号前沿技术该图像去噪方法的步骤是 1)对带有高斯白噪声的图像进行正交小波分解; 2)对于高通子带用公式来估计一般的协方差矩阵B ; ( 2)将子带分成不交叉的块X j , 用公式 ( 3)估计每一块的协方差矩阵C j,通过解方程计算系数;j ( 3)用协方差矩阵Cj对每一块Xj应用维纳滤波式; ( 4)保留低通小波系数不变; ( 5)利用去噪后的小波系数重构图像) 3.基于高阶统计量的小波阈值去噪 (小波域值去噪法:小波阈值收缩去噪法的主要理论依据是,小波变换具有很强的数据去相关性, 能够使信号的能量在小波域集中在少量的大的小波系数中, 而噪声却分布在整个小波域,对应大量的数值小的小波 系数。经小波分解后, 信号的小波系数的幅值要大于噪声, 然后就可以用阈值的方法把信号小波系数保留, 而使大部分噪声的小波系数减为0。小波域值收缩法去噪的具体处理过程是: 将含噪信号在各尺度上进行小波分解, 保留大尺度低分辨率下的全部小波系数; 对于各尺度高分辨率下的小波系数, 可以设定一个阈值, 幅值低于该阈值的小波系数全部置0高于该阈值的小波系数或者完,整保留,或者做相应的收缩处理; 最后将处理后获得的小波系数利用小波逆变换进行重构,恢复出有效的信号。j矩阵B刻画了子带的无噪声小波) (小波阈值去噪优点基于高阶统计量的小波阈值去噪方法由于高阶统计量对高斯噪声不敏感,能够排除协方差矩阵高斯白噪声和有色噪声的影响, 因而在平滑噪声的同时能更准确地反映原图像的细节信息;利用高阶统计量描述图像的纹理信息对图像进行平滑滤波,可以更好地保留图像细节。缺点小波阈值去噪虽效果较好,但由于将幅值较大的小波系数萎缩会导致图像的边缘模糊, 因此结合小波变换和高阶统计量的特点, 利用小波函数和信号相关函数的三重相关系数代替小波系数计算阈值, 再通过小波阈值收缩方法对图像进行去噪处理效果会更好一些。)