当前位置:文档之家› 201x-201X学年高中数学 第二章 数列 2.4 等比数列 第1课时 等比数列的概念和通项公式优

201x-201X学年高中数学 第二章 数列 2.4 等比数列 第1课时 等比数列的概念和通项公式优

201x-201X学年高中数学 第二章 数列 2.4 等比数列 第1课时 等比数列的概念和通项公式优
201x-201X学年高中数学 第二章 数列 2.4 等比数列 第1课时 等比数列的概念和通项公式优

第1课时 等比数列的概念和通项公式

[课时作业] [A 组 基础巩固]

1.已知等比数列{a n }中,a 1=32,公比q =-1

2,则a 6等于( )

A .1

B .-1

C .2

D.12

解析:由题知a 6=a 1q 5

=32×? ??

??-125=-1,故选B.

答案:B

2.已知数列a ,a (1-a ),a (1-a )2

,…是等比数列,则实数a 的取值范围是( ) A .a ≠1 B .a ≠0且a ≠1 C .a ≠0

D .a ≠0或a ≠1

解析:由a 1≠0,q ≠0,得a ≠0,1-a ≠0,所以a ≠0且a ≠1. 答案:B

3.在等比数列{a n }中,a 2 016=8a 2 013,则公比q 的值为( ) A .2 B .3 C .4 D .8

解析:q 3

=a 2 016

a 2 013

=8,∴q =2. 答案:A

4.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( ) A .64 B .81 C .128

D .243

解析:∵{a n }为等比数列,∴a 2+a 3

a 1+a 2

=q =2. 又a 1+a 2=3,

∴a 1=1.故a 7=1×26

=64. 答案:A

5.等比数列{a n }各项均为正数,且a 1,12a 3,a 2成等差数列,则a 3+a 4

a 4+a 5

=( )

A .-5+1

2

B.

1-5

2

C.

5-1

2

D .-

5+12或5-1

2

解析:a 1,12a 3,a 2成等差数列,所以a 3=a 1+a 2,从而q 2

=1+q ,∵q >0,∴q =5+12,

a 3+a 4a 4+a 5=1q =5-12

. 答案:C

6.首项为3的等比数列的第n 项是48,第2n -3项 是192,则n =________. 解析:设公比为q ,

则?????

3q n -1

=483q

2n -4

=192??????

q n -1

=16

q

2n -4

=64?q 2

=4,

得q =±2.由(±2)n -1

=16,得n =5.

答案:5

7.数列{a n }为等比数列,a n >0,若a 1·a 5=16,a 4=8,则a n =________.

解析:由a 1·a 5=16,a 4=8,得a 21q 4

=16,a 1q 3

=8,所以q 2

=4,又a n >0,故q =2,a 1=1,

a n =2n -1.

答案:2

n -1

8.若k,2k +2,3k +3是等比数列的前3项,则第四项为________.

解析:由题意,(2k +2)2

=k (3k +3),解得k =-4或k =-1,又k =-1时,2k +2=3k +3=0,不符合等比数列的定义,所以k =-4,前3项为-4,-6,-9,第四项为-27

2.

答案:-27

2

9.已知数列{a n }的前n 项和S n =2a n +1,求证:{a n }是等比数列,并求出通项公式. 证明:∵S n =2a n +1,∴S n +1=2a n +1+1. ∴S n +1-S n =a n +1

=(2a n +1+1)-(2a n +1)=2a n +1-2a n . ∴a n +1=2a n .① 又∵S 1=a 1=2a 1+1, ∴a 1=-1≠0. 由①式可知,a n ≠0,

∴由

a n +1a n

=2知{a n }是等比数列,a n =-2n -1

. 10.在各项均为负的等比数列{a n }中,2a n =3a n +1,且a 2·a 5=8

27.

(1)求数列{a n }的通项公式;

(2)-16

81是否为该数列的项?若是,为第几项?

解析:(1)∵2a n =3a n +1,∴

a n +1a n =23,数列{a n }是公比为23的等比数列,又a 2·a 5=8

27

,所以a 21? ????235=? ????233,由于各项均为负,故a 1=-3

2

,a n =-? ??

??23

n -2

. (2)设a n =-1681,则-1681=-? ??

??23n -2

? ????23n -2=? ??

??234,n =6,所以-1681是该数列的项,为第6项.

[B 组 能力提升]

1.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230

,那么

a 3·a 6·a 9·…·a 30等于( )

A .210

B .220

C .216

D .215

解析:由等比数列的定义,a 1·a 2·a 3=? ????a 3q 3

,故a 1·a 2·a 3·…·a 30=?

??

??a 3·a 6·a 9·…·a 30q 10

3

.

又q =2,故a 3·a 6·a 9·…·a 30=220

. 答案:B

2.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63

D .84

解析:设等比数列公比为q ,则a 1+a 1q 2

+a 1q 4

=21,又因为a 1=3,所以q 4

+q 2

-6=0,解得q 2

=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2

=42. 答案:B

3.设{a n }为公比q >1的等比数列,若a 2 014和a 2 015是方程4x 2

-8x +3=0的两根,则a 2 016+

a 2 017=________.

解析:4x 2

-8x +3=0的两根分别为12和32,q >1,从而a 2 014=12,a 2 015=32,∴q =a 2 015a 2 014=3.a 2 016

+a 2 017=(a 2 014+a 2 015)·q 2

=2×32

=18. 答案:18

4.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________. 解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3

与a 4a 5a 6=12=a 31q 12

可得q 9

=3,又a n -1a n a n

+1

=a 31q

3n -3

=324,因此q

3n -6

=81=34=q 36

,所以n =14.

答案:14

5.有四个实数,前三个数依次成等比数列,它们的积为-8;后三个数依次成等差数列,它们的积为-80,求这四个数.

解析:由题意,设这四个数为b q

,b ,bq ,a ,

则????

?

b 3

=-8.2bq =a +b ,b 2aq =-80

解得????

?

a =10,

b =-2,

q =-2,

或???

??

a =-8,

b =-2,q =52.

∴这四个数依次为1,-2,4,10或-4

5

,-2,-5,-8.

6.已知a 1=2,点(a n ,a n +1)在函数f (x )=x 2

+2x 的图象上,其中n =1,2,3,…. (1)证明数列{lg(1+a n )}是等比数列; (2)求{a n }的通项公式.

解析:(1)证明:由已知得a n +1=a 2

n +2a n , ∴a n +1+1=a 2

n +2a n +1=(a n +1)2

. ∵a 1=2,∴a n +1+1=(a n +1)2

>0.

∴lg(1+a n +1)=2lg(1+a n ),即lg 1+a n +1

lg 1+a n =2,

且lg(1+a 1)=lg 3.

∴{lg(1+a n )}是首项为lg 3,公比为2的等比数列. (2)由(1)知,lg(1+a n )=2n -1

·lg 3=lg 3

1

2n -,

∴1+a n =31

2n -,

∴a n =3

1

2n --1.

如有侵权请联系告知删除,感谢你们的配合!

如有侵权请联系告知删除,感谢你们的配合!

上海市2020届高三数学试题分类汇编:数列(含解析)

高三上期末考试数学试题分类汇编 数列 一、填空、选择题 1、(宝山区2019届高三)如果无穷等比数列{}n a 所有奇数项的和等于所有项和的3倍,则 公比q = 2、(崇明区2019届高三)已知数列{}n a 满足:①10a =;②对任意的n ∈*N ,都有1n n a a +>成立. 函数1()|sin ()|n n f x x a n =-,1[,]n n x a a +∈满足:对于任意的实数[0,1)m ∈,()n f x m = 总有两个不同的根,则{}n a 的通项公式是 3、(奉贤区2019届高三)各项均为正数的等比数列{}n a 的前n 项和为n S ,若1 l i m 3n n n n n S a S a →∞-<+,则q 的取值范围 是( ) A. (0,1) B. (2,)+∞ C. (0,1] (2,)+∞ D. (0,2) 4、(虹口区2019届高三)已知7个实数1、2-、4、a 、b 、c 、d 依次构成等比数列,若成这7 个数中任取2个,则它们的和为正数的概率为 5、(金山区2019届高三)无穷等比数列{}n a 各项和S 的值为2,公比0q <,则首项1a 的取值范围是 6、(浦东新区2019届高三)已知数列{}n a 为等差数列,其前n 项和为n S . 若936S =,则348a a a ++= 7、(普陀区2019届高三)某人的月工资由基础工资和绩效工资组成,2010年每月的基础工资为2100元,绩效工资为2000元,从2011年起每月基础工资比上一年增加210元,绩效工资为上一年的110%, 照此推算,此人2019年的年薪为 万元(结果精确到0.1) 8、(青浦区2019届高三)已知无穷等比数列{}n a 各项的和为4,则首项1a 的取值范围是 9、(松江区2019届高三)已知等差数列{}n a 的前10项和为30,则14710a a a a +++= 10、(徐汇区2019届高三)若数列{} n a 的通项公式为* 2()111n n a n N n n =∈+,则 l i m n n a →∞ =___________. 11、(杨浦区2019届高三)在无穷等比数列{}n a 中,121 lim()2 n n a a a →∞ ++???+= ,则1a 的取值范围 是 12、(长宁区2019届高三) 已知数列{}n a 的前n 项和为n S ,且11 2 n n n a a ++= ,若数列{}n S 收敛于

高中数学-等差等比数列经典例题以及详细答案

等差等比数列综合应用 【典型例题】 [例1] 一个等比数列共有三项,如果把第二项加上4所得三个数成等差数列,如果再把这个等差数列的第3项加上32所得三个数成等比数列,求原来的三个数。 解:等差数列为d a a d a +-,, ∴ ?????=++--=+?-2 2 )32)(()4()()(a d a d a a d a d a ∴ ?????=-+-+-=-) 2()(32)()1(168222222a d a d a a a d a ∴ 2 23232168a d a a =-++- 0432=-+d a 代入(1) 16)24(3 1 82+-?-=-d d 0643232=+-d d 0)8)(83(=--d d ① 8=d 10=a ② 38=d 9 26=a ∴ 此三数为2、16、18或92、910-、9 50 [例2] 等差数列}{n a 中,3931-=a ,76832-=+a a ,}{n b 是等比数列,)1,0(∈q ,21=b ,}{n b 所有项和为20,求: (1)求n n b a , (2)解不等式 2211601 b m a a m m -≤++++Λ 解:(1)∵ 768321-=+d a ∴ 6=d ∴ 3996-=n a n 2011=-q b 10 9 =q ∴ 1 )10 9( 2-?=n n b 不等式10 921601) (21 21??-≤++?+m a a m m m

)1(1816)399123936(2 1 +??-≤-+-? m m m m 0)1(181639692≤+??+-m m m 032122≤+-m m 0)8)(4(≤--m m }8,7,6,5,4{∈m [例3] }{n a 等差,}{n b 等比,011>=b a ,022>=b a ,21a a ≠,求证:)3(≥ ),1(+∞∈q 01>-q 01>-n q ∴ 0*> ∴ N n ∈ 3≥n 时,n n a b > [例4] (1)求n T ;(2)n n T T T S +++=Λ21,求n S 。 解:???=-=????=+++-=+++221 04811598 7654d a a a a a a a a Λ n T 中共12-n 个数,依次成等差数列 11~-n T T 共有数1222112-=+++--n n Λ项 ∴ n T 的第一个为2)12(211 21?-+-=--n n a ∴ 2)12()2(2 1 )232(2 111 ?-?+-?=---n n n n n T 122112222232-----+?-=n n n n 2222323+-?-?=n n

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

高中数学:第二章 数列 2.4 第2课时

第2课时等比数列的性质 学习目标 1.灵活应用等比数列的定义及通项公式. 2.熟悉等比数列的有关性质. 3.系统了解判断数列是否成等比数列的方法.

知识点一 由等比数列衍生的等比数列 思考 等比数列{a n }的前4项为1,2,4,8,下列判断正确的是 (1){3a n }是等比数列; (2){3+a n }是等比数列; (3)???? ?? 1a n 是等比数列; (4){a 2n }是等比数列. ★答案★ 由定义可判断出(1),(3),(4)正确. 梳理 (1)在等比数列{a n }中按序号从小到大取出若干项:123,,,,,,n k k k k a a a a ……若k 1,k 2,k 3,…,k n ,…成等差数列,那么123,,,,,n k k k k a a a a ……是等比数列. (2)如果{a n },{b n }均为等比数列,那么数列???? ??1a n ,{a n ·b n },???? ?? b n a n ,{|a n |}是等比数列. 知识点二 等比数列的性质 思考 在等比数列{a n }中,a 25=a 1a 9是否成立?a 25=a 3a 7是否成立?a 2n =a n -2a n +2(n >2, n ∈N *)是否成立? ★答案★ ∵a 5=a 1q 4,a 9=a 1q 8,∴a 1a 9=a 21q 8=(a 1q 4)2=a 25, ∴a 25=a 1a 9成立.同理a 25=a 3a 7成立,a 2n =a n -2· a n +2也成立. 梳理 一般地,在等比数列{a n }中,若m +n =s +t ,则有a m ·a n =a s ·a t (m ,n ,s ,t ∈N *). 若m +n =2k ,则a m ·a n =a 2k (m ,n ,k ∈N *).

高中数学复习――数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1 =0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

(完整版)高中数学必修五第二章数列测试题

高中数学必修5 第二章数列测试题 一、选择题(每题5分,共50分) 1、{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A 、667 B 、668 C 、669 D 、670 2、在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A 、33 B 、72 C 、84 D 、189 3、如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ) A 、a 1a 8>a 4a 5 B 、a 1a 8<a 4a 5 C 、a 1+a 8<a 4+a 5 D 、a 1a 8=a 4a 5 4、已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则|m -n |等于( ) A 、1 B 、43 C 、2 1 D 、83 5、等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A 、81 B 、120 C 、168 D 、192 6、若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ) A 、4 005 B 、4 006 C 、4 007 D 、4 008 7、已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A 、-4 B 、-6 C 、-8 D 、-10 8、设S n 是等差数列{a n }的前n 项和,若35a a =9 5,则59S S =( ). A 、1 B 、-1 C 、2 D 、2 1 9、已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A 、21 B 、-21 C 、-21或2 1 D 、41 10、在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A 、38 B 、20 C 、10 D 、9 二、填空题(每题6分,12题15分,16题10分,共49分) 11、设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0) +…+f (5)+f (6)的值为 .

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

高考数学复习专题 等比数列性质(含等差等比数列综合题)

第50炼 等比数列性质 一、基础知识 1、定义:数列{}n a 从第二项开始,后项与前一项的比值为同一个常数()0q q ≠,则称{}n a 为等比数列,这个常数q 称为数列的公比 注:非零常数列既可视为等差数列,也可视为1q =的等比数列,而常数列0,0,0,L 只是等差数列 2、等比数列通项公式:11n n a a q -=?,也可以为:n m n m a a q -=? 3、等比中项:若,,a b c 成等比数列,则b 称为,a c 的等比中项 (1)若b 为,a c 的等比中项,则有 2a b b a c b c =?= (2)若{}n a 为等比数列,则n N * ?∈,1n a +均为2,n n a a +的等比中项 (3)若{}n a 为等比数列,则有m n p q m n p q a a a a +=+?= 4、等比数列前n 项和公式:设数列{}n a 的前n 项和为n S 当1q =时,则{}n a 为常数列,所以1n S na = 当1q ≠时,则()111n n a q S q -= - 可变形为:()1111111 n n n a q a a S q q q q -= = ----,设11a k q =-,可得:n n S k q k =?- 5、由等比数列生成的新等比数列 (1)在等比数列{}n a 中,等间距的抽取一些项组成的新数列仍为等比数列 (2)已知等比数列{}{},n n a b ,则有 ① 数列{}n ka (k 为常数)为等比数列 ② 数列{}n a λ (λ为常数)为等比数列,特别的,当1λ=-时,即1n a ?? ???? 为等比数列 ③ 数列{}n n a b 为等比数列 ④ 数列{} n a 为等比数列

最新上海教材高中数学知识点总结(最全)

精品文档 目录 一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量 九、复数与推理证明 十、直线与圆 十一、曲线方程 十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计 一、集合与常用逻辑 1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图、数轴 4.四种命题 原命题:若p 则q 逆命题:若q 则p 否命题:若p ?则q ? 逆否命题:若q ?则p ? 原命题?逆否命题 否命题?逆命题 5.充分必要条件 p 是q 的充分条件:q P ? p 是q 的必要条件:q P ? p 是q 的充要条件:p ?q 6.复合命题的真值 ①q 真(假)?“q ?”假(真) ②p 、q 同真?“p ∧q ”真 ③p 、q 都假?“p ∨q ”假 7.全称命题、存在性命题的否定 ?∈M, p(x )否定为: ?∈M, )(X p ? ?∈M, p(x )否定为: ?∈M, )(X p ?

精品文档 二、不等式 1.一元二次不等式解法 若0>a ,02 =++c bx ax 有两实根βα,)(βα<,则 02<++c bx ax 解集),(βα 02>++c bx ax 解集),(),(+∞-∞βα 注:若0a 情况 2.其它不等式解法—转化 a x a a x <<-?a x a x >或a x - 0) () (>x g x f ?0)()(>x g x f ?>)()(x g x f a a )()(x g x f >(a >1) ?>)(log )(log x g x f a a f x f x g x ()()() >--x x x f x f f(x)减函数:? 注:①判断单调性必须考虑定义域 ②f(x)单调性判断 定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性 T 是()f x 周期?()()f x T f x +=恒成立(常数0≠T )

高中数学 等差数列与等比数列 课件

第1讲等差数列与等比数列 高考定位 1.等差、等比数列基本运算和性质的考查是高考热点,经常以选择题、填空题的形式出现;2.数列的通项也是高考热点,常在解答题中的第(1)问出现,难度中档以下. 真题感悟 1.(2019·全国Ⅰ卷)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则() A.a n=2n-5 B.a n=3n-10 C.S n=2n2-8n D.S n=1 2n 2-2n

2.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于 122.若第一个单音的频率为f ,则第八个单音 的频率为( ) A.32f B.3 22f C.1225f D.1227f 3.(2019·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4= ________. 4.(2019·全国Ⅱ卷)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式; (2)设b n =log 2a n ,求数列{b n }的前n 项和. 考 点 整 合 1.等差数列 (1)通项公式:a n =a 1+(n -1)d ; (2)求和公式:S n = n (a 1+a n )2=na 1+n (n -1)2 d ; (3)性质: ①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②a n =a m +(n -m )d ; ③S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列. 2.等比数列 (1)通项公式:a n =a 1q n -1(q ≠0); (2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1-q n )1-q =a 1-a n q 1-q ; (3)性质: ①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ; ②a n =a m ·q n -m ; ③S m ,S 2m -S m ,S 3m -S 2m ,…(S m ≠0)成等比数列.

高中数学必修五第二章《数列》知识点归纳

数列知识点总结 一、等差数列与等比数列 等差数列 等比数列 定义 1+n a -n a =d n n a a 1 +=q(q ≠0) 通项公式 n a =1a +(n-1)d n a =1a 1-n q (q ≠0) 递推公式 n a =1-n a +d, n a =m a +(n-m)d n a =1-n a q n a =m a m n q - 中项 A=2b a + 推广:A=2a k n k n a +-+(n,k ∈N + ;n>k>0) ab G =2。推广:G=k n k n a a +-±(n,k ∈N + ;n>k>0) 。任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中 项一定有两个 前n 项和 n S =2 n (1a +n a ) n S =n 1a + 2 ) 1(n -n d n S = q q a n --11() 1 n S =q q a a n --11 性质 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为 a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) (6)d= n m a n m --a (m ≠n) (7)d>0递增数列d<0递减数列d=0常数数列 (1)若m n p q +=+,则 m n p q a a a a =·· (2)232n n n n n S S S S S --,,……仍 为等比数列,公比为n q 二、求数列通项公式的方法 1、通项公式法:等差数列、等比数列 2、涉及前n项和S n 求通项公式,利用a n 与S n 的基本关系式来求。即 例1、在数列{n a }中,n S 表示其前n项和,且2 n n S =,求通项n a . 例2、在数列{n a }中,n S 表示其前n项和,且n n a 32S -=,求通项n a 3、已知递推公式,求通项公式。 (1)叠加法:递推关系式形如()n f a a n 1n =-+型 ???≥-===-) 2() 1(111n s s n a s a n n n

高中数学教案:极限与导数极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1, 21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

高中数学:第二章数列 2.1数列

2.1数列(第一课时) ——授课人:杭十四中袁礼峰教学目标: (一)知识目标:理解数列的基本概念;了解数列与函数之间的关系;理解数列的通项公式,并掌握用数列的通项公式求出数列的各项;掌握根据数列前几项写出它的一个通项公式. (二)能力目标:培养学生获取有效信息及归纳能力;培养学生应用知识的能力. (三)情感目标:利用问题的设计激发学生学习数学的兴趣,通过对数学问题的观察、探究和归纳,培养学生的探索和进取精神. 教学重点: 数列的通项公式. 教学难点: 求数列的通项公式. 教学方法: 发现式教学法. 教学主线: 通过大家感兴趣的问题引入数列概念,介绍数列基本概念深入理解数列,让数列和函数挂钩引出数列的图象表示,通过典型例题及练习诠释重点内容数列的通项公式的求取以及突破求通项公式的难点,每组例题及时小结,最后布置回家作业. 教学过程:课前板书2.1数列 1 2 3 4,课前分发纸张 1.数列引入:实例讲慢一点,注意抑扬顿挫,板书4个数列 实例一,请大家一起看我手上这支粉笔,假设它的长度是1,我现在把它当中折断,看我左手的粉笔,长度是多少?再把它当中折断,看我左手的粉笔,长度又是多少?再折,长 度呢?再折,长度?依此类推,每次折断剩下的粉笔长度依次构成一列数:1111 (1),,,,. 24816 L 接下来 实例二,请大家和我一起玩一个折纸游戏,请拿起手上的纸,对折一下,看手上纸的折痕是几条?再对折,共是几条折痕?再对折呢?依此类推,又得到一列数:(2)1,3,7,15,. L 师:再问大家一句,折8下呢?…折是折不下去的,这就是我们今天要研究的其中一个问题,相信大家课后就会有★答案★了. 好了,请大家看屏幕,图片上的运动员是谁?刘翔,大家都比较关心体育,不知大家对以下一组数据是否了解? 实例三,从1984年至今,我国体育健儿共参加了六届奥运会,获得的金牌数依次排成一列数:(3)15,5,16,16,28,32. 再看运动会上一幕 实例四,在前不久结束的杭十四中校运会上,体育老师为了保证40个班级广播操比赛各班之间能等距离站队,之前做了一个准备工作——在第一行导牌队员站立的横线上用粘胶纸标注站立点,从起点开始,每隔2米标注一个站立点,由近及远各标注点与起点的距离排成怎样的一列数(单位:m):(4)0,2,4,6,,78. L 2,4换一下行不行?不行,由近及远,那是有次序的 师:请大家仔细回味上述实例,想想看它们有什么共同特点? 生:它们均是一列数;它们是有一定次序的. 师:很好!象这样按一定次序排成的一列数我们就把它叫做数列.想一想?我们平时会经常听到一些分期付款问题啊,银行存款的利息问题等等,这都是与数列有关的问题,学习数列是很有必要的.下面我们对照已知的数列一起来了解一下数列的基本概念.

上海高二数学—数列单元测试卷

上海高二数学—数列单元测试卷 2013.10 班级 姓名 学号 一、填空题(每小题3分,共36分) 1.74 lim 35 n n n →∞+-= . 2.将0.2? 化为最简分数后,分子与分母之和为 . 3.已知等比数列{}n a 中,,81,341==a a 则该数列的通项=n a . 4.计算:22 342 lim (21)n n n n →∞+-+= . 5.已知数列{}n a 为等差数列,若169a a +=,47a =,则9a = . 6.等差数列{}n a 中,148121520a a a a a ++++=,则=15S . 7、在数列{}n a 和{}n b 中,21=a ,)(031*∈=-+N n a a n n ,n b 是n a 与1+n a 的等差中项,则=3b _________. 8.已知数列{}n a 的首项12a =,且121n n a a +=-,则通项公式n a = . 10.设()11112612 1n S n n = ++++ +,且13 4 n n S S +?=,则=n . 10.若221log (9)log ()13 x x +-=,则2 lim(1)n n x x x →∞ +++= . 11.若数列{}n a 是等差数列,则数列n a a a b n n +++= 21(*∈N n )也为等 差数列;类比上述性质,相应地,若数列{}n c 是等比数列,且0>n c ,则有 =n d 也是等比数列. 12.在数列{}n a 中,如果存在非零常数T ,使得m T m a a =+对于任意非零正整数m 均成立,那么就称数列{}n a 为周期数列,其中T 叫做数列{}n a 的周期.已知周期数列{}n x 满足 11n n n x x x +-=-(*2,n n N ≥∈)且11x =,2x a =(),0a R a ∈≠,当{}n x 的周期最小时, 该数列前2005项和是 .

高中数学必修5:等差数列与等比数列知识对比表

高中数学必修5:等差数列与等比数列知识比较一览表等差数列等比数列 定义一般地,如果一个数列{} n a从第2项起,每一项与它 的前一项的差等于同一个常数d,那么这个数列就叫 做等差数列.这个常数d叫公差. 等差数列的单调性: 数列{} n a为等差数列,则 当公差0 d>,则为递增等差数列, 当公差0 d<,则为递减等差数列, 当公差0 d=,则为常数列. 一般地,如果一个数列{} n a从第2项起,每一项 与它的前一项的比等于同一个常数q,那么这个数 列就叫等比数列.这个常数q叫公比. 等比数列的单调性: 数列{} n a为等比数列,则 当1 q>时,1 1 0{} 0{} {n n a a a a > < ,则为递增数列 ,则为递减数列; 当1 q< 0<时,1 1 0{} 0{} {n n a a a a > < ,则为递减数列 ,则为递增数列 当q=1时,该数列为常数列,也为等差数列; 当q<0时,该数列为摆动数列. 判定方法等差数列的判定方法 (1)定义法:若d a a n n = - -1 或 d a a n n = - +1 (常数* ∈N n)?{}n a是等差数列. (2)等差中项:数列{}n a是等差数列 )2 ( 2 1 1- ≥ + = ? + n a a a n n n2 1 2 + + + = ? n n n a a a (3)通项公式:b kn a n + =(b k,是常数) ?数列{}n a是等差数列 (4)前n项和公式:数列{}n a是等差数列 ?2 n S An Bn =+,(其中A、B是常数)。 等比数列的判定方法 (1)用定义:对任意n,都有 1 1 (0) n n n n n a a qa q q a a + + ==≠ 或为常数, ?{} n a为等比数列 (2)等比中项:2 11 n n n a a a +- =( 11 n n a a +- ≠0) ?{} n a为等比数列 (3)通项公式:()0 n n a A B A B =??≠ ?{} n a为等比数列 (4)前n项和公式: () '',,',' n n n n S A A B S A B A A B A B =-?=- 或为常数 ?{} n a为等比数列 证明方法等差数列的证明方法:只能依据定义: 定义法:若d a a n n = - -1 或d a a n n = - +1 (常数* ∈N n)?{}n a是等差数列. 等比数列的证明方法:只能依据定义: 若()()* 1 2, n n a q q n n N a - =≠≥∈ 0且或1 n n a qa + = ?{} n a为等比数列 递推关系① 121 n n a a a a + -=-(* n N ∈) ② 1 n n a a d + -=(* n N ∈) ③ 11 n n n n a a a a +- -=-(* 2, n n N ≥∈) ①12 1 n n a a a a +=( * n N ∈) ②1n n a q a +=(* 0, q n N ≠∈) ③1 1 n n n n a a a a + - =(* 2, n n N ≥∈) 通项公式① 11 (1) n a a n d dn a d =+-=+-=b kn+ 推广:()d m n a a m n - + =(m、* n N ∈) 特别的,当m=1时,便得到等差数列的通项公式. 此公式比等差数列的通项公式更具有一般性. m n a a d m n - - =, 1 1 - - = n a a d n,()d n a a n 1 1 - - = ② n a pn q =+(* ,, p q n N ∈ 为常数) 是关于n的一次函数,且斜率为公差d ③由 n S的定义, n a= ? ? ? ≥ - = - )2 ( )1 ( 1 1 n S S n S n n (* n N ∈) ①() 11 1 n n n n a a a q q A B A B q - ===??≠ 推广:m n m n q a a- ? =(m、* n N ∈) 特别的,当m=1时,便得到等比数列的通项公式., 此公式比等比数列的通项公式更具有一般性. n m n m a q a -=, 1 1 a a q n n= -,n n q a a- ? =1 1 ②n n q p a? =(* ,,0,0, p q q p n N ≠≠∈ 是常数) ③由 n S的定义, () () ? ? ? ? ? ≥ = = - 2 1 1 1 n S S n S a n n n (* n N ∈)

高中数学--极限

高中数学-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

高中数学第二章数列2222等差数列的性质学业分层测评苏教版

【课堂新坐标】2016-2017学年高中数学 第二章 数列 2.2.2.2 等 差数列的性质学业分层测评 苏教版必修5 (建议用时:45分钟) 学业达标] 一、填空题 1.在△ABC 中,三内角A ,B ,C 成等差数列,则角B 等于________. 【解析】∵A ,B ,C 成等差数列,∴B 是A ,C 的等差中项,则有A +C =2B ,又∵A +B +C =180°, ∴3B =180°,从而B =60°. 【答案】 60° 2.已知a = 1 3+2,b =1 3-2 ,则a ,b 的等差中项是________. 【解析】 因为a = 1 3+2=3-2, b = 13-2 =3+2,所以 a +b 2 = 3. 【答案】 3 3.在等差数列{a n }中,已知a 2+a 3+a 10+a 11=36,则a 5+a 8=________. 【解析】 由等差数列的性质,可得a 5+a 8=a 3+a 10=a 2+a 11, ∴36=2(a 5+a 8), 故a 5+a 8=18. 【答案】 18 4.设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________. 【导学号:91730029】 【解析】∵{a n },{b n }都是等差数列,∴{a n +b n }也是等差数列,其公差为21-72=14 2=7, ∴a 5+b 5=7+(5-1)×7=35. 【答案】 35 5.(2016·泰州高二检测)若等差数列的前三项依次是1x +1,56x ,1 x ,那么这个数列的第101项是________. 【解析】 由已知得2×56x =1x +1+1 x , 解得x =2,

2019年上海高考数学 拓展学习2 数列

2019年高中数学·拓展学习 数列 一、单调性: 1、已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2n n n S b n =?* ()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是 2、等差数列{}n a 的通项公式为28n a n =-,下列四个命题.1α:数列{}n a 是递增数列;2α:数列{}n na 是递增数列;3α:数列n a n ?????? 是递增数列;4α:数列{}2 n a 是递增数列.其中真命题的是 3、已知定义在R 上的函数)(x f ,对任意实数21,x x 都有1212()1()()f x x f x f x +=++,且(1)1f =. (1)设对任意正整数n ,有1 () n b f n = .若不等式12226 log (1)35 n n n b b b x +++++> +对任意不小于2的正整数n 都成立,求实数x 的取值范围.

二、新定义型: 1、(运算型)已知各项均为正数的数列{}n a 满足11(2)(1)0n n n n a a a a ++--=*()n N ∈,且110a a =,则首项1a 所有可能取值中最大值为 2、(方法型)设1210x x x ,,,为1210,, ,的一个排列,则满足对任意正整数m n ,,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为( ) (A )512 (B )256 (C )255 (D )64 3、(运算型)已知等比数列1a 、2a 、3a 、4a 满足)1,0(1∈a ,)2,1(2∈a ,)4,2(3∈a ,则4a 的取值范围是( ) A. (3,8) B. (2,16) C. (4,8) D. 4、(运算型)对于数列{}n a ,规定{}n a ?为数列{}n a 的一阶差分数列,其中11()n n n a a a n N *+?=-∈.对于正整数k ,规定{}k n a ?为{}n a 的k 阶差分数列,其中111k n k n k n a a a -+-?=?-?.若数列{}n a 的通项1 3 n n a -=,则 2122232n a a a a ?+?+?++?= 5、(运算型)以()m ,0间的整数()N m m ∈>,1为分子,以m 为分母组成分数集合1A ,其所有元素和为1a ;以() 2 ,0m 间的整数()N m m ∈>,1为分子,以2 m 为分母组成不属于集合1A 的分数集合2A ,其所有元素和为2a ;……,依次类推以( )n m ,0间的整数()N m m ∈>,1为分子,以n m 为分母组成不属于121,,,n A A A -???的分数集合n A ,其所有 元素和为n a ;则12n a a a ???+++=________. 6、(概念型)已知二次函数2() ()f x x ax a x R =-+∈同时满足: ① 不等式()0f x ≤的解集有且只有一个元素; ② 在定义域内存在120x x <<,使得不等式12()()f x f x >成立.设数列{}n a 的前n 项和为n S ,且()n S f n =.规定:各项均不为零的数列{}n b 中,所有满足10i i b b +?<的正整数i 的个数称为这个数列{}n b 的变号数.若令1n n a b a =-(*n N ∈),则数列{}n b 的变号数等于 7、(概念型)设)2(log 1+=+n a n n )(* ∈N n ,称k a a a a 321为整数的k 为“希望数”,则在)2013,1(内所有“希 望数”的个数为 8、(匹配型)设数列{}n a 是公差不为零的等差数列,6,231==a a ,若自然数,...,...,21k n n n 满足 ......321<<<<

相关主题
文本预览
相关文档 最新文档