Cas9 TALEN CRISPR条件性敲除小鼠的原理
- 格式:docx
- 大小:22.50 KB
- 文档页数:1
crispr cas9原理简介CRISPR-Cas9基因编辑技术,是一种通过靶向剪切基因组中特定DNA序列的方法。
该技术最初源自一种天然的细菌免疫系统,可用于编辑生物体的基因组。
CRISPR(簇状规律间隔短回文重复序列,Clustered Regularly Interspaced Short Palindromic Repeats)是细菌和古细菌基因组中的一种特殊DNA序列,以重复、间隔和短回文特点而命名。
CRISPR序列常常与Cas(CRISPR-associated protein)基因一起出现,这些Cas基因编码一类能够识别并修剪DNA的酶。
CRISPR-Cas系统中最常用的是Cas9酶,它是通过向CRISPR-Cas9复合物中引入特定的RNA分子来实现DNA靶向。
这种RNA分子称为单导RNA(sgRNA),它是一种具有20个核苷酸的短链RNA,结合了用于指引Cas9定位到特定目标序列的脱氧核苷酸。
sgRNA与Cas9酶形成复合物后,可以通过碱基互补配对与基因组DNA中的目标序列结合。
当sgRNA与Cas9复合物与目标DNA序列配对时,Cas9酶便会被激活并剪切其靶向序列。
这一过程引发DNA修复机制,使得目标序列得以重组或删除。
如果提供了外源DNA修复模板,修复机制还可以将该模板中的DNA片段插入到被剪切的部分,实现想要的基因修饰。
CRISPR-Cas9技术的优势在于其简单性和高效性。
相较于传统的基因编辑技术,CRISPR-Cas9可以更加准确地指定目标序列,并在短时间内完成基因组的编辑。
它已被广泛应用于基础科学研究、生物医学研究以及农业领域,为基因治疗和作物改良等领域带来了突破性的进展。
植物功能基因组研究中的基因敲除技术植物基因敲除技术是近年来植物功能基因组研究中的一项重要技术。
通过该技术可以精准地删去植物基因组中的某个基因,从而研究该基因在植物生长、发育和代谢等方面的功能。
下面我们将详细介绍植物基因敲除技术的原理和应用。
一、植物基因敲除技术的原理植物基因敲除技术是通过基因编辑技术实现的。
目前主要有CRISPR/Cas9和TALEN两种技术用于植物基因编辑。
这两种技术都是利用人工合成的核酸序列,精准地识别和切割目标基因的DNA 序列,从而实现基因敲除。
先来介绍一下CRISPR/Cas9技术。
CRISPR是一种天然存在于细菌中的免疫系统。
通过CRISPR系统,细菌可以识别并摧毁侵入其体内的病毒DNA。
科学家们发现,CRISPR系统中有一种酶叫做Cas9,可以切割DNA序列。
利用人工合成的RNA序列,可以将Cas9定位到需要切割的基因上,并切割掉该基因。
这样就实现了精准的基因敲除。
TALEN技术原理类似于CRISPR/Cas9,也是通过人工合成的核酸序列,精准地识别和切割目标基因的DNA序列。
TALEN技术主要是利用一种叫做TALEN(转录激活样核酸酶)的酶来实现基因敲除。
二、植物基因敲除技术的应用植物基因敲除技术已经成为植物功能基因组研究中的一项重要技术。
它可以用于研究植物生长、发育和代谢等方面的功能。
以下是该技术的一些具体应用:1.研究基因功能植物基因敲除技术可以用于研究基因在植物生长、发育和代谢等方面的功能。
通过敲除某个基因,可以观察其对植物生长、发育和代谢等方面的影响。
这种方法可以帮助科学家们更好地了解植物基因的功能。
2.筛选基因植物基因敲除技术可以用于筛选植物基因。
在研究植物新陈代谢方面,需要筛选大量的植物基因,以了解这些基因在植物代谢中的作用。
植物基因敲除技术可以快速地筛选出与目标代谢过程相关的基因,从而加速研究进程。
3.改良植物品种植物基因敲除技术可以用于改良植物品种。
CRISPR/Cas9 是细菌和古细菌在长期演化过程中形成的一种适应性免疫防御,可用来对抗入侵的病毒及外源DNA。
CRISPR/Cas9 系统通过将入侵噬菌体和质粒DNA 的片段整合到CRISPR 中,并利用相应的CRISPR RNAs(crRNAs)来指导同源序列的降解,从而提供免疫性。
原理此系统的工作原理是crRNA(CRISPR—derived RNA )通过碱基配对与tracrRNA (trans-activating RNA )结合形成tracrRNA/crRNA 复合物,此复合物引导核酸酶Cas9 蛋白在与crRNA 配对的序列靶位点剪切双链DNA。
而通过人工设计这两种RNA,可以改造形成具有引导作用的sgRNA (singleguide RNA ),足以引导Cas9 对DNA 的定点切割。
作为一种RNA 导向的dsDNA 结合蛋白,Cas9 效应物核酸酶是已知的第一个统一因子(unifying factor),能够共定位RNA、DNA 和蛋白,从而拥有巨大的改造潜力。
将蛋白与无核酸酶的Cas9(Cas9 nuclease-null)融合,并表达适当的sgRNA ,可靶定任何dsDNA 序列,而sgRNA 的末端可连接到目标DNA,不影响Cas9 的结合。
因此,Cas9 能在任何dsDNA 序列处带来任何融合蛋白及RNA,这为生物体的研究和改造带来巨大潜力.应用基因敲除动物模型一直以来是在活体动物上开展基因功能研究、寻找合适药物作用靶标的重要工具.但是传统的基因敲除方法需要通过复杂的打靶载体构建、ES细胞筛选、嵌合体小鼠选育等一系列步骤,不仅流程繁琐、对技术的要求很高,而且费用大,耗时较长,成功率受到多方面因素的限制。
即使对于技术比较成熟的实验室,利用传统技术构建基因敲除大、小鼠一般也需要一年以上。
2013 年1 月份,美国两个实验室在《Science》杂志发表了基于CRISPR—Cas9 技术在细胞系中进行基因敲除的新方法,该技术与以往的技术不同,是利用靶点特异性的RNA 将Cas9 核酸酶带到基因组上的具体靶点,从而对特定基因位点进行切割导致突变。
基于CRISPRCas9技术的基因敲入敲除策略一、本文概述随着生物科技的飞速发展,基因编辑技术已成为现代生物医学研究的重要工具。
其中,CRISPR-Cas9技术以其高效、精确的特性,在基因敲入敲除策略中展现出了巨大的潜力。
本文旨在全面介绍基于CRISPR-Cas9技术的基因敲入敲除策略,包括其原理、应用、优缺点以及未来的发展趋势。
通过对这一技术的深入剖析,我们期望为科研人员提供一个清晰、全面的视角,以更好地理解和应用CRISPR-Cas9技术,推动生物医学领域的研究进展。
二、CRISPR-Cas9技术的基本原理CRISPR-Cas9(Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein 9)技术是一种强大的基因编辑工具,它源自细菌的自然防御机制,即CRISPR系统。
这一系统允许细菌存储并记忆过去遭遇过的病毒DNA片段,以便在未来遇到相同病毒时,能够识别并切割这些病毒DNA,从而抵抗病毒感染。
CRISPR-Cas9系统通过这一机制被改造为一种精确的基因编辑工具,用于在真核细胞(如人类细胞)中进行基因敲除和敲入操作。
CRISPR-Cas9技术的基本原理可以分为三个主要步骤:目标识别、DNA切割和修复。
一个由RNA和Cas9蛋白组成的复合物被设计用来识别特定的DNA序列。
这个RNA分子,通常被称为单链导向RNA(sgRNA),能够与Cas9蛋白结合,并指导Cas9蛋白在目标DNA序列上定位。
sgRNA的设计是关键,它必须能够准确地与目标DNA序列配对,以确保Cas9蛋白能够在正确的位置进行切割。
一旦Cas9蛋白在目标DNA序列上定位,它就会切割DNA双链,产生一个双链断裂(DSB)。
细胞对DSB的修复机制有两种主要方式:非同源末端连接(NHEJ)和同源重组(HR)。
NHEJ是一种错误易发的修复方式,它通常会导致DNA序列的插入、删除或替换,从而导致基因功能的丧失,这种机制常被用于基因敲除。
完全性基因敲除技术原理及应用完全性基因敲除技术原理:CRISPR/Cas9(Clustered Regularly Interspaced Short Palindromic Repeats)最新出现的一种由RNA指导Cas核酸酶对靶向基因进行特定DNA修饰的技术。
CRISPR是细菌和古细菌为应对病毒和质粒不断攻击而演化来的获得性免疫防御机制。
在这一系统中,crRNA(CRISPR-derived RNA)通过碱基配对与tracrRNA(trans-activating RNA)结合形成双链RNA,此tracrRNA/crRNA二元复合体指导Cas9蛋白在crRNA引导序列靶定位点剪切双链DNA达到对基因组DNA进行修饰的目的。
CRISPR/Cas9系统能够对小鼠和大鼠基因组特定基因位点进行精确编辑,目前已经成功应用于大、小鼠基因KO/KI的模型制备。
完全性基因敲除技术特点:(1)无物种限制(2)靶向精确性更高(3)可实现对靶基因多个位点同时敲除(4)基因调控方式多种多样(5)修饰效率高,实验周期短通过CRISPR /Cas9基因敲除技术,针对靶基因设计和构建gRNA 与Cas9表达质粒,造成目的基因的功能区域被敲除,获得全身所有的组织和细胞中都不表达该基因的小鼠模型。
移码突变鼠的建系原则与流程1、通过针对靶基因设计、构建相应的gRNA质粒,体外转录为RNA后,与Cas9 mRNA一起原核显微注射获得测序鉴定阳性的F0代杂合子鼠;2、F0代杂合子鼠与野生型鼠进行交配,获得PCR和测序鉴定阳性的F1代杂合子鼠;3、选择来自同一只F0代鼠,基因型一致的F1代鼠,达到性成熟后进行互配,可获得F2代鼠。
对获得的F2代鼠进行PCR及测序鉴定,理论上,F2代鼠中25%为纯合子,50%为杂合子,25%为野生鼠(赛业可构建完全性基因敲除鼠)。
片段基因敲除鼠的建系原则与流程1、通过针对靶基因不同位点设计、构建相应的一对gRNA质粒,体外转录为RNA后,与Cas9 mRNA一起原核显微注射获得测序鉴定阳性的F0代杂合子鼠;2、F0代杂合子鼠与野生型鼠进行交配,获得PCR鉴定阳性的F1代杂合子鼠;3、选择来自同一只F0代鼠,基因型一致的F1代鼠,达到性成熟后互配,可获得F2代鼠。
crispr cas9原理及应用CRISPR-Cas9 是一种革命性的基因编辑技术,其原理基于一种存在于细菌免疫系统中的天然机制。
该技术利用了一种称为Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)的 DNA 序列和 Cas9 蛋白质,能够准确地识别和编辑基因组中的特定目标序列。
CRISPR-Cas9 技术的基本原理是通过设计特定的引导 RNA 来指导 Cas9 蛋白质精确地结合到目标 DNA 序列上。
一旦 Cas9与目标 DNA 结合,它会切割 DNA 分子,从而可能引发自然修复过程或介导外源 DNA 片段嵌入到基因组中。
这种技术的目标序列可以根据需求进行设计,从而实现精确的基因组编辑。
CRISPR-Cas9 技术在基因组编辑领域有着广泛的应用。
首先,它可以用于研究基因功能和疾病模型的构建。
科学家可以利用CRISPR-Cas9 技术来人为地引发基因突变,以研究基因功能和疾病的发病机制。
此外,CRISPR-Cas9 技术还可以用于治疗基因相关疾病。
通过准确编辑患有遗传病的患者的基因组,科学家可以修复或纠正疾病相关基因的缺陷,以治疗或预防疾病的发生。
CRISPR-Cas9 技术还被用于生物学研究和农业领域。
从基因组编辑的角度看,这种技术可以用于培育产量更高、对病虫害抵抗力更强的农作物,以满足全球不断增长的粮食需求。
此外,CRISPR-Cas9 技术还可以用于改良微生物产生特定化合物,例如药物或化学制品。
总而言之,CRISPR-Cas9 是一种功能强大的基因编辑技术,它已经革新了生物学研究和医学领域。
它的应用不仅仅局限于基因功能研究,还包括基因治疗、农业改良等领域,为人类带来了希望和新的可能性。
CRISPR/Cas9基因敲除道理及其运用CRISPR(clustered,regularlyinterspaced,shortpalindromicrep eats)是一种来自细菌降解入侵的病毒DNA或其他外源DNA的免疫机制.在细菌及古细菌中,CRISPR系总共分成3类,个中Ⅰ类和Ⅲ类须要多种CRISPR相干蛋白(Cas蛋白)配合施展感化,而Ⅱ类体系只须要一种Cas蛋白即可,这为其可以或许普遍运用供给了便当前提[1].今朝,来自Streptococcuspyogenes的CRISPR-Cas9体系运用最为普遍.Cas9蛋白(含有两个核酸酶构造域,可以分离切割DNA两条单链.Cas9起首与crRNA及tracrRNA联合成复合物,然后经由过程PAM序列结归并侵入DNA,形成RNA-DNA复合构造,进而对目标DNA双链进行切割,使DNA双链断裂.因为PAM序列构造简略(5’-NGG-3’),几乎可以在所有的基因中找到大量靶点,是以得到普遍的运用.CRISPR-Cas9体系已经成功运用于植物.细菌.酵母.鱼类及哺乳动物细胞,是今朝最高效的基因组编辑体系[1].经由过程基因工程手腕对crRNA和tracrRNA进行改革,将其衔接在一路得到sgRNA(singleguideRNA).融会的RNA具有与野生型RNA相似的活气,但因为构造得到了简化更便利研讨者运用.经由过程将表达sgRNA的原件与表达Cas9的原件相衔接,得到可以同时表达两者的质粒,将其转染细胞,便可以或许对目标基因进行操纵[2,3].今朝经常运用的CAS9研讨办法是经由过程通俗质粒,质粒构建流程如下:Cas9质粒构建设计2条单链oligo序列;退火形成双链DNA将双链DNA衔接到载体中转化G10competentcell筛选阳性克隆;测序验证序列;质粒大提;电转染靶细胞在细胞内crRNA辨认靶位点,Cas9对靶位点进行随机剪切CruiserTM酶切细胞池,盘算突变率;CruiserTM酶切初筛阳性克隆;将阳性克隆测序验证;做敲除序列比对剖析.今朝罕有的CAS9通俗质粒有(汉恒生物供给cas9质粒试剂盒):固然通俗质粒许多时刻也能达到试验后果,但是质粒转染具有用力低,感化时光短暂性等缺陷.病毒的消失解决了质粒这些问题,经常运用的病毒重要有慢病毒和腺病毒,慢病毒经常运用质粒见addgene(lentiCRISPRv2,lentiGuide-Puro,lentiCas9-Blast),慢病毒可以整合入宿主基因组中,长期稳固的表达(汉恒生物供给CRISPR/cas9慢病毒包装),但是因为慢病毒克隆才能有限而CAS9本身分子量比较大(大于4kb),且长期拔出可能导致乱切,脱靶等,同时慢病毒包装最终获得的滴度不高级原因,腺病毒更有优势,腺病毒克隆才能强,获得的病毒滴度也高.同时相对于通俗质粒来说,感化是时光也比较长,可以达到更幻想的敲除后果.(汉恒生物供给CRISPR/cas9腺病毒包装)。
cas9基因敲除原理首先,我们需要了解CRISPR/Cas9技术的基本原理。
CRISPR是一种天然存在于细菌和古细菌中的一种免疫系统,能够识别和摧毁入侵的病毒基因组。
而Cas9则是CRISPR系统中的核心蛋白,具有切割DNA的能力。
科学家们发现,通过人为设计引导RNA序列,可以将Cas9蛋白精确地引导到基因组的特定位置,实现对基因组的编辑。
接下来,我们来详细了解cas9基因敲除的原理。
在基因敲除过程中,首先需要设计引导RNA序列,使其与目标基因的特定区域配对。
一旦引导RNA与目标基因结合,Cas9蛋白就会被引导到该位置,并切割DNA链。
在细胞修复DNA的过程中,通常会导致插入或缺失碱基,从而破坏目标基因的功能。
这样,就实现了对目标基因的敲除。
在实际的基因编辑中,科学家们可以利用cas9基因敲除原理对特定基因进行靶向编辑。
例如,通过设计特定的引导RNA序列,可以将Cas9蛋白引导到癌症相关基因上,并实现对这些基因的敲除。
这种精准的基因编辑技术为疾病治疗和生物学研究提供了强大的工具。
除了基因敲除,CRISPR/Cas9技术还可以实现基因插入和修饰等功能。
通过设计不同的引导RNA序列,可以将外源基因插入到特定位置,或者实现对基因组的精细修饰。
这些功能使得CRISPR/Cas9技术在基因编辑领域具有广泛的应用前景。
总之,cas9基因敲除原理是CRISPR/Cas9技术中的重要组成部分,它通过设计引导RNA序列,精确地将Cas9蛋白引导到基因组的特定位置,实现对基因的敲除。
这种技术为基因编辑领域带来了革命性的变革,为疾病治疗和生物学研究提供了强大的工具。
随着对CRISPR/Cas9技术的进一步研究和改进,相信它将在未来发挥更加重要的作用。
全身性敲除技术原理介绍
基因敲除是研究基因功能的重要方法。
传统ES打靶敲除方法,周期长,费用高。
CRISPR/Cas9在基因敲除方面的优势:效率高,时间短,24天直接获得基因敲除小鼠。
技术一般的流程
设计合成gRNA→ 显微注射→小鼠出生检测。
技术优势或适合应用的研究
-效率高,可达90%的敲除效率,并且有一定纯合敲除比例。
-方便检测,从PCR条带的大小,容易区分是否发生敲除。
-时间短,24天获得基因敲除小鼠。
-不受敲除片段大小限制,从几十bp到Mb长度的DNA,都能有效敲除。
成功案例
图1:两个Grna切割位点之间的~550bp基因序列被敲除,PCR 检测,相对于野生带773bp,发生敲除的鼠产生~220bp的条带(箭头指向的条带)。
cas9基因敲除原理
Cas9基因敲除是一种常用的基因编辑技术,基于CRISPR-Cas9系统。
在基因敲除过程中,Cas9蛋白质与特定的RNA分子(常为引导RNA)结合形成复合物,该RNA分子与目标基因的特定序列相互配对。
经过引导RNA和Cas9的识别和结合,Cas9蛋白质就能够放置于目标基因上,并切断其双链DNA。
Cas9依赖于其内源性双链RNA分子(sgRNA)来准确识别目标基因的DNA序列。
由于sgRNA可以经过定制设计来匹配目标基因,因此Cas9基因敲除技术具有较高的准确性和选择性。
在sgRNA的引导下,Cas9蛋白质引导至目标基因,通过其核酸酶活性,Cas9切割两侧的DNA链。
当切断发生时,细胞的自我修复机制会介入,尝试恢复切断的DNA链。
然而,自我修复过程中可能会产生插入缺失或置换等突变,导致基因功能的受损或基因完全失活。
基因敲除的效率取决于切割位点与目标基因的相对位置和其他因素。
在理想情况下,Cas9酶通过精确的切割,可以完全出现目标基因突变。
然而,有时候Cas9酶切割的位置会出现越位现象,导致非特异性的剪切。
因此,在使用Cas9进行基因敲除时,需要仔细设计及验证sgRNA序列,以确保高效且特异性的基因敲除。
综上所述,Cas9基因敲除是一种通过利用CRISPR-Cas9系统
对目标基因进行准确切割的方法。
通过引导RNA的识别和结合,Cas9能够定位并切割目标基因的DNA,进而引发自我修复过程,从而实现对基因的敲除。
crisprcas9技术的原理与运用CRISPR-Cas9技术是一种革命性的基因编辑工具,它允许科学家以前所未有的精确度对DNA进行修改。
这项技术的原理基于细菌的自然免疫系统,特别是一种称为Cas9的酶,它能够识别并切割特定的DNA序列。
CRISPR是“Clustered Regularly Interspaced Short Palindromic Repeats”的缩写,它是一种在细菌基因组中发现的重复序列。
这些序列是细菌用来识别并抵抗病毒入侵的机制。
当病毒攻击细菌时,细菌会将病毒的DNA片段整合到自己的基因组中,形成CRISPR序列。
这些序列旁边通常伴随着Cas基因,它们编码的酶能够识别并切割病毒DNA。
Cas9酶的工作原理是通过一个导向RNA(gRNA)来识别目标DNA序列。
gRNA与目标DNA序列互补,能够引导Cas9酶精确地定位到特定的基因位点。
一旦定位成功,Cas9酶就会切割DNA双链,产生一个双链断裂(DSB)。
细胞的DNA修复机制随后会被激活,以修复这个断裂。
CRISPR-Cas9技术的应用非常广泛。
在基础研究中,它可以用于研究基因功能,通过敲除或敲入特定的基因来观察其对细胞或生物体的影响。
在医学领域,CRISPR-Cas9技术有望用于治疗遗传性疾病,例如通过修复导致疾病的基因突变来治疗囊性纤维化或镰状细胞性贫血。
此外,CRISPR-Cas9技术在农业领域也有巨大潜力。
通过编辑作物的基因,可以提高作物的抗病性、耐逆性和营养价值,从而提高农业生产力。
例如,科学家已经成功地使用CRISPR-Cas9技术来提高水稻的抗虫性和小麦的抗旱性。
然而,CRISPR-Cas9技术也存在一些挑战和争议。
例如,基因编辑可能导致非目标效应,即在非目标基因位点产生意外的DNA突变。
此外,基因编辑技术在伦理和法律方面也存在争议,尤其是在人类生殖细胞的编辑方面。
总的来说,CRISPR-Cas9技术是一种强大的基因编辑工具,它在基础研究、医学和农业等领域具有广泛的应用前景。
基因敲除cas9摘要:1.基因敲除技术的背景和意义2.CRISPR-Cas9 系统的工作原理3.CRISPR-Cas9 在基因敲除中的应用4.CRISPR-Cas9 技术的优点与局限5.我国在基因敲除领域的研究进展6.基因敲除技术在医学和农业等领域的应用前景正文:基因敲除技术是一种通过删除或改变特定基因来研究其功能的方法,对于研究基因在生物体中的作用机制具有重要意义。
近年来,CRISPR-Cas9 系统作为一种新型基因编辑技术,由于其高效、简便的特性,在基因敲除领域引起了广泛关注。
CRISPR-Cas9 系统是一种细菌免疫系统,通过识别并切割目标DNA 序列来实现基因编辑。
它包括两个主要组件:CRISPRRNA 和Cas9 蛋白。
CRISPRRNA 可以识别并结合目标DNA 序列,引导Cas9 蛋白进行精确的切割。
通过这种方式,CRISPR-Cas9 系统可以实现对特定基因的敲除。
CRISPR-Cas9 技术在基因敲除中的应用已经取得了显著成果。
例如,研究人员利用CRISPR-Cas9 技术成功敲除了导致囊性纤维化和肌肉营养不良等疾病的基因。
此外,该技术还被用于研究基因在癌症、神经退行性疾病等方面的作用。
然而,CRISPR-Cas9 技术也存在一定的局限性。
首先,由于CRISPR-Cas9 系统对目标DNA 序列的识别依赖于RNA 引导,可能会导致非特异性效应。
此外,目前尚不清楚CRISPR-Cas9 技术可能带来的长期影响,如潜在的遗传变异和基因敲除的副作用。
我国在基因敲除领域的研究取得了举世瞩目的进展。
我国科学家成功研发出了世界上首款基于CRISPR-Cas9 的基因敲除技术产品,并已经在医学和农业等领域取得了一定的应用成果。
这些成果为我国基因编辑技术的发展奠定了基础。
总之,基因敲除技术在生物医学研究和应用中具有广泛的前景。
CRISPR-Cas9 系统的出现为基因敲除领域带来了革命性的变化,但仍然需要不断优化和完善。
条件性基因敲除在动物生物学研究中的应用在生物学的领域中,条件性基因敲除技术是一种重要的工具。
它可以用来研究动物行为、生理功能以及疾病的发生机制。
条件性基因敲除技术是怎样应用在动物生物学的研究中的?一、什么是条件性基因敲除(CRISPR-Cas9)CRISPR-Cas9是指利用CRISPR-Cas系统对基因组进行编辑和修饰。
CRISPR-Cas系统是一种天然的细菌免疫系统,可以在基因组里找到并清除入侵细菌的DNA分子。
CRISPR-Cas9技术是通过利用Cas9末端的核酸酶活性切断特定的DNA序列,从而实现基因编辑的目的。
二、什么是条件性基因敲除条件性基因敲除指的是通过多个基因区域、序列和转录调控元件的组合,创造一种基因敲除的情况。
它可以实现对特定的基因的敲除,同时保留动物生命的其他方面不受影响。
这种技术可以提供关于至关重要基因的信息,同时排除可能由于堵塞这些基因而导致的不必要的副作用。
三、条件性基因敲除在动物行为学研究中的应用条件性基因敲除技术在动物行为学研究中具有重要的应用价值,它可以提供有关特定基因指导的行为和大脑发育的知识。
在近年来进行的研究中,CRISPR-Cas9技术先后被用于敲除一些参与果蝇睡眠模式的基因,如酰基转移酶Arts (Aas)和Freud-1 等。
在另外的研究中,科学家逐渐发现了与认知能力有关的一些基因。
例如,动手能力对孩子的身体发育非常重要,脑部正常发育同样发挥着重要的角色。
在这样的研究中,利用条件性基因敲除技术可以研究特定基因参与大脑发育的情况。
这样可以全面了解基因对认知和行为的影响。
四、条件性基因敲除在疾病研究中的应用除了在行为学领域,条件性基因敲除技术也被广泛用于疾病研究。
通过下调或阻断特定的基因,可以模拟课程和生理表现,从而更好地研究疾病的障碍、发展和潜在治疗方法。
例如,近年来,科学家在过敏体系中利用CRISPR-Cas9技术开发出了一种治疗萨德胶原蛋白中毒症。
ptpn22敲基因小鼠的原理英文回答。
CRISPR-Cas9 is a powerful gene-editing technology that allows scientists to make precise changes to the DNA of living organisms. This technology has been used to create a variety of animal models, including PTPN22 knockout mice.PTPN22 is a gene that encodes a protein called the lymphoid tyrosine phosphatase (LYP). LYP is a negative regulator of T cell activation, and its deficiency has been linked to the development of autoimmune diseases such as lupus and rheumatoid arthritis.To create PTPN22 knockout mice, scientists used CRISPR-Cas9 to delete the PTPN22 gene from mouse embryos. The resulting mice were born without a functional PTPN22 gene, and they developed severe autoimmune disease. These mice have been used to study the role of PTPN22 in the development and progression of autoimmune disease.中文回答。
CRISPR-Cas9文库技术原理及应用CRISPR-Cas9技术原理CRISPR-Cas9技术凭借着成本低廉,操作方便,效率高等优点,CRISPR-Cas9技术迅速风靡全球的实验室,成为了生物科研的有力帮手,是继“锌指核酸内切酶(ZFN)”、“类转录激活因子效应物核酸酶(TALEN)”之后出现的第三代“基因组定点编辑技术”。
CRISPR-Cas9系统最初在大肠杆菌基因组中被发现,是细菌中抵抗外源病毒的免疫系统。
CRISPR-Cas9系统由两部分组成,一部分是用来识别靶基因组的,长度为20bp左右的sgRNA 序列,另外一部分是存在于CRISPR位点附近的双链DNA核酸酶——Cas9,能在sgRNA的引导下对靶位点进行切割,最终通过细胞内的非同源性末端连接机制(NHEJ)和同源重组修复机制(HDR)对形成断裂的DNA进行修复,从而形成基因的敲除和插入,最终实现基因的(定向)编辑。
与前两代技术相比,CRISPR-Cas9技术最大的突破是不仅可以对单个基因进行编辑,更重要的是可以同时对多个基因进行编辑,这也为全基因组筛选提供了有效的方法。
目前比较常见的文库类型包括:●CRISPR-Cas9 knock out文库●CRISPR panal文库●CRISPRa/i文库●psgRNA文库CRISPR-Cas9文库建库流程●靶位点确认及sgRNA文库设计●sgRNA文库芯片合成●sgRNA文库构建●QC验证文库质量●sgRNA文库慢病毒包装●感染稳定细胞株●药物筛选实验●细胞表型筛选●NGS测序验证功能基因CRISPR-Cas9文库应用方向1、药物靶点确定与验证CRISPR-Cas9筛选技术可以应用于药物靶点筛选中,通过大规模筛选技术,可以系统的分析、验证一些与抗药性相关的基因,从而为疾病治疗提供相关数据。
SCIENCE发表文章[1],研究人员利用CRISPR-Cas9文库筛选人类黑色素瘤A375细胞中的18,080个基因进行筛选,最终发现NF2、CUL3等4个基因参与了黑色素瘤A375细胞中的耐药调节过程。
CRISPRCas9基因敲除技术是什么?
CRISPR/Cas9系统由核酸酶Cas9和单链向导RNA (single guide RNA, sgRNA)组成。
Cas9蛋白具有两个核酸酶结构域——RuvC样结构域和HNH结构域(RuvC结构域负责切割靶向链,而HNH负责切割与sgRNA互补配对的非靶向链),它可以在DNA的特定位置引入DSBs。
sgRNA来源于反式激活CRISPR RNA(tracrRNA)和CRISPR RNA(crRNA)。
每个crRNA包含一个保守的与tracrRNA互补的重复序列和一个与外源DNA互补的20 nt的转录间隔区。
tracrRNA与crRNA互补后结合Cas9蛋白,形成CRISPR/Cas9-sgRNA复合物,在基因组的目标位点产生双链断裂。
图1. CRISPR/Cas9系统的结构成分
(Sun J et al. Brief Funct Genomics. 2020;
Liu C et al. J Control Release. 2017)
TracrRNA/crRNA通常被设计成单链小片段的向导RNA—sgRNA。
sgRNA主要包含两个关键片段:3'端的双股RNA结构与Cas9蛋白结合,5'端的引导序列与目标DNA序列结合。
与TALENs相比,CRISPR/Cas9具有成本低、效率高和简单易用等优势,因而被人们广泛应用。
下表所列为TALENs和CRISPR/Cas9两种技术的比较:。
条件性敲除小鼠的原理
目前的条件性敲除小鼠主要是基于Cre-LoxP系统的。
Cre-LoxP系统是源于P1噬菌体的一个DNA重组体系,由Cre酶和相应的LoxP位点组成,它能导致重组发生在特定的DNA序列处(LoxP位点),该系统可以将外源基因定点整合到染色体上或将特定DNA片段删除。
传统的条件性敲除
基于Cre-LoxP的基因打靶要分两步来进行。
传统方法,首先要在胚胎干细胞的基因组中引入LoxP序列,这一步可以通过打靶载体的设计和对同源重组子的筛选来实现。
第二步,通过Cre介导的重组来实现靶基因的遗传修饰或改变。
在细胞水平上,可以用Cre重组酶表达质粒转染中靶细胞,通过识别 LoxP位点将抗性标记基因切除;在个体水平上将重组杂合子小鼠与Cre转基因小鼠杂交,筛选子代小鼠就可得到删除外源标记基因的条件性敲除小鼠。
将Cre基因置于可诱导的启动子控制下,通过诱导表达Cre重组酶而将LoxP位点之间的基因切除(诱导性基因敲除),实现特定基因在特定时间或者组织中的失活。
一般需要一年以上的时间,价格在15-20万不等。
华夏凯奇基于Cas9系统的条件性敲除
原理上和传统的条件性敲除类似,差别在于华夏凯奇利用Optimized Cas9/CRISPR System(OCAS)技术在基因组上加入loxp序列,可以快速获得Loxp 位点插入的小鼠。
目前我们一般只需要4-5个月。
价格也比传统方法大大降低。