图论最小生成树
- 格式:pptx
- 大小:400.73 KB
- 文档页数:35
最小生成树实验报告最小生成树实验报告一、引言最小生成树是图论中的一个重要概念,它在实际问题中有着广泛的应用。
本次实验旨在通过编程实现最小生成树算法,并通过实验数据对算法进行分析和评估。
二、算法介绍最小生成树算法的目标是在给定的带权无向图中找到一棵生成树,使得树上所有边的权重之和最小。
本次实验我们选择了两种经典的最小生成树算法:Prim 算法和Kruskal算法。
1. Prim算法Prim算法是一种贪心算法,它从一个顶点开始,逐步扩展生成树的规模,直到包含所有顶点为止。
算法的具体步骤如下:(1)选择一个起始顶点,将其加入生成树中。
(2)从与生成树相邻的顶点中选择一个权重最小的边,将其加入生成树中。
(3)重复上述步骤,直到生成树包含所有顶点。
2. Kruskal算法Kruskal算法是一种基于并查集的贪心算法,它首先将图中的边按权重从小到大进行排序,然后逐个加入生成树中,直到生成树包含所有顶点为止。
算法的具体步骤如下:(1)将图中的边按权重从小到大进行排序。
(2)逐个加入边,如果该边的两个顶点不在同一个连通分量中,则将其加入生成树中。
(3)重复上述步骤,直到生成树包含所有顶点。
三、实验过程本次实验我们使用C++语言实现了Prim算法和Kruskal算法,并通过随机生成的图数据进行了测试。
1. Prim算法的实现我们首先使用邻接矩阵表示图的结构,然后利用优先队列来选择权重最小的边。
具体实现过程如下:(1)创建一个优先队列,用于存储生成树的候选边。
(2)选择一个起始顶点,将其加入生成树中。
(3)将与生成树相邻的顶点及其边加入优先队列。
(4)从优先队列中选择权重最小的边,将其加入生成树中,并更新优先队列。
(5)重复上述步骤,直到生成树包含所有顶点。
2. Kruskal算法的实现我们使用并查集来维护顶点之间的连通关系,通过排序后的边序列来逐个加入生成树中。
具体实现过程如下:(1)将图中的边按权重从小到大进行排序。
一、概述在图论中,最小生成树是指在一个连通图中生成一棵包含图中所有顶点且边权值之和最小的树。
prim算法是一种常用的求取最小生成树的算法之一,其基本思想是从一个起始顶点开始,逐步选择与当前树相邻的并且权值最小的边,直到包含了图中所有的顶点为止。
本文将介绍prim算法的原理以及给出相应的C代码实现。
二、prim算法原理1. 初始化选择任意一个顶点作为起始顶点,并将其标记为已访问。
设置一个集合V来存放已经访问的顶点,初始化为空集合。
2. 重复以下步骤直到V包含了所有顶点:(1)遍历集合V中的所有顶点,找到与之相邻且未被访问过的顶点中边权值最小的顶点,将其加入集合V中。
(2)将找到的顶点与其相邻的边加入最小生成树中。
3. 输出最小生成树当集合V包含了所有顶点之后,即可输出最小生成树。
三、prim算法C代码实现以下是prim算法的C代码实现:#include <stdio.h>#include <limits.h>#define V 5 // 顶点个数int minKey(int key[], bool mstSet[]) {int min = INT_MAX, min_index;for (int v = 0; v < V; v++) {if (!mstSet[v] key[v] < min) {min = key[v], min_index = v;}}return min_index;}void printMST(int parent[], int graph[V][V]) {printf("Edge \tWeight\n");for (int i = 1; i < V; i++) {printf("d - d \td \n", parent[i], i, graph[i][parent[i]]);}void primMST(int graph[V][V]) {int parent[V]; // 存放最小生成树的结点int key[V]; // 存放与最小生成树相邻的边的权值bool mstSet[V]; // 存放已访问的顶点for (int i = 0; i < V; i++) {key[i] = INT_MAX, mstSet[i] = false;}key[0] = 0;parent[0] = -1;for (int count = 0; count < V - 1; count++) {int u = minKey(key, mstSet);mstSet[u] = true;for (int v = 0; v < V; v++) {if (graph[u][v] !mstSet[v] graph[u][v] < key[v]) { parent[v] = u, key[v] = graph[u][v];}}}printMST(parent, graph); }int m本人n() {int graph[V][V] = {{0, 2, 0, 6, 0},{2, 0, 3, 8, 5},{0, 3, 0, 0, 7},{6, 8, 0, 0, 9},{0, 5, 7, 9, 0}};primMST(graph);return 0;}```四、代码说明1. minKey函数该函数用于在尚未加入最小生成树的结点中找到与最小生成树相邻的边中权值最小的结点。
phyloviz最小生成树解读(原创实用版)目录1.最小生成树的概念及作用2.PhyloViz 的背景和应用领域3.PhyloViz 最小生成树的算法实现4.最小生成树在 PhyloViz 中的应用案例5.总结正文最小生成树是一种图论中的算法,用于在一个加权连通图中找到一棵包含所有顶点且边权值之和最小的生成树。
在生物学领域,最小生成树被广泛应用于构建物种的进化树,以揭示物种之间的亲缘关系。
PhyloViz 是一款基于 Web 的生物信息学工具,用于绘制和分析生物序列数据,如 DNA 序列、蛋白质序列等。
在最近的研究中,PhyloViz 开始采用最小生成树算法,以提高其对生物序列数据的分析能力。
PhyloViz 的背景和应用领域是生物信息学,它主要用于分析和可视化生物序列数据。
利用最小生成树算法,PhyloViz 能够更好地揭示生物序列数据之间的亲缘关系和进化规律。
此外,PhyloViz 还支持多种数据格式,如 FASTA、GenBank 和 embl 等,方便用户导入和分析生物序列数据。
PhyloViz 最小生成树的算法实现主要基于 Prim 算法和 Kruskal 算法。
Prim 算法是一种贪心算法,从任意一个顶点开始,不断地寻找与当前生成树距离最近的顶点,将其加入生成树中,直到所有顶点都加入生成树为止。
Kruskal 算法也是一种贪心算法,但它是从边的角度出发,每次选择边权最小的边,将其加入生成树中,直到所有顶点都加入生成树为止。
这两种算法在 PhyloViz 中的实现,有助于更准确地构建生物序列数据的进化树。
最小生成树在 PhyloViz 中的应用案例主要是构建生物序列数据的进化树。
利用最小生成树算法,PhyloViz 可以快速地揭示生物序列数据之间的亲缘关系和进化规律。
例如,在研究鸟类物种的进化关系时,科学家可以通过 PhyloViz 构建鸟类物种的进化树,以了解不同鸟类物种之间的亲缘关系和进化历史。
最小生成树——Prim算法1、算法问题的提出首先介绍生成树的概念连通图G=(V,E)是无向带权图,若一个子图G’是一棵包含G的所有顶点的树,则该子图G’称为G的生成树。
生成树是连通图的极小连通子图。
所谓极小是指:若在树中任意增加一条边,则将出现一个回路;若去掉一条边,将会使之变成非连通图。
生成树各边的权值总和称为生成树的权。
本次设计是求在图G中所有生成树中权值总和(费用/代价)最小的生成树,即最小生成树。
用两个例子进行实例演示。
2、Prim算法思想用哲学的观点来说,每个事物都有自己特有的性质,那么图的最小生成树也是不例外的。
按照生成树的定义,n 个顶点的连通网络的生成树有n 个顶点、n-1 条边。
(1)从树中某一个顶点V0开始,将V0到其他顶点的所有边当作候选边。
(2)重复以下步骤n-1次,使得其他n-1个顶点被并入到生成树中。
○1从候选边挑出权值最小的边输出,并将与该边另一端的相接的顶点V并入生成树中。
○2考察所有剩余顶点V i,如果(V,V i)的权值比lowcost[V i]小,则用(V,V i)的权值更新lowcost[V i]。
其中的vset[i]的值记录顶点V[i]顶点是否被选入最小生成树中,V[i]=0,表示为被选入,V[i]=1,表示已被选入。
用到辅助数组pre[],记录当前所选入顶点的前驱结点,当并入前一个顶点时,剩下顶点到生成树的权值发生了改变时,就需要及时修改剩下顶点V[i]的前驱结点。
3、程序设计(1)所用数据结构,图的存储结构模块(nodetype.h)#define MAXSIZE 7#define INF 100typedef struct{int no;}VertexType; //顶点类型定义typedef struct{int edges[MAXSIZE][MAXSIZE]; //存入边的权值int n; //顶点数int e; //总的边数VertexType vex[MAXSIZE];}MGraph; //图的存储结构MGraph g;(2)主模块(main.cpp)#include#include"nodetype.h"#include"initiate.h"#include"prim.h"void prim(MGraph g,int v0,int &sum);int main(){int sum=0;int v0;initiate(g); //图的初始化printf("请输入起点编号:\n");scanf("%d",&v0);//输入起始节点prim(g,v0,sum); //调用prim算法,构成最小生成树printf("最小生成树的总代价为%d\n",sum);return 0;}(3)读取数据模块,图的初始化(initiate.h)void initiate(MGraph &g){int i,j,v0=0;printf("Please input the Sumnum of MGraph:\n");scanf("%d",&g.n);printf("依次输入各边权值(不相临接的边权值为100)!\n\n"); for(i=1;i<=g.n;i++){g.vex[i].no=i; //节点编号for(j=1;j<=g.n;j++){printf("边[%d][%d]的权值为:",i,j);//各边的权值scanf("%d",&g.edges[i][j]);printf("\n");}}}(4)运用贪心策略——Prim算法构造最小生成树(prim.h)void prim(MGraph g,int v0,int &sum){int lowcost[MAXSIZE],vset[MAXSIZE];int v,pre[MAXSIZE]; //pre[]存入前驱结点数组int i,j,k,min;v=v0; //初始起点for(i=1;i<=g.n;i++){lowcost[i]=g.edges[v0][i]; //lowcost[]的数组pre[i]=v0;vset[i]=0;}vset[v0]=1;sum=0;for(i=1;imin=INF;for(j=1;j<=g.n;j++){if(vset[j]==0&&lowcost[j]min=lowcost[j];k=j;}}vset[k]=1; //将此结点并入到所够造的生成树中v=k;if(min!=INF){printf("边的起点为:%d 终点为:%d 权值为%d\n",pre[v],v,min);sum+=min;}else{break;}for(j=1;j<=g.n;j++){//并入新结点后修改剩下的结点到生成树的权值if(vset[j]==0&&g.edges[v][j]lowcost[j]=g.edges[v][j];pre[j]=v; //并记其下全趋结点}}}}4、算法分析Prim算法的时间复杂度主要是在双重循环构造最小生成树的过程中,设图的顶点数为n,则双重循环的时间复杂度为O(n2),在生成最小生成树的过程中,增加了两个数组,vset[]和lowcost[]数组,同时增加了一个前驱数组prey[],用来记录所选顶点的全趋结点,故空间复杂度为O(3n)。
一点到n点距离之和最小值
一点到n点距离之和最小值的问题属于图论中的最小生成树问题。
最小生成树是指通过连接图中的所有节点,并且边的权重之和最小的树。
解决这个问题的常用算法有Prim算法和Kruskal算法:
1. Prim算法:
- 从任意一个节点开始,将该节点加入到生成树中。
- 选择与生成树中节点相邻的边中权重最小的边,并将连接
的节点加入到生成树中。
- 重复第2步,直到生成树包含了所有的节点为止。
2. Kruskal算法:
- 将图中所有边按照权重从小到大排列。
- 依次选择权重最小的边,若该边的两个节点不在同一个连
通分量中,则将该边加入生成树,并将这两个节点所在的连通分量合并。
- 重复第2步,直到生成树中含有n-1条边为止。
以上两种算法最终得到的生成树即为所求解的最小生成树,一点到n点距离之和即为最小生成树的权重之和。
需要注意的是,最小生成树问题要求图是连通的,即任意两个节点之间都存在路径。
如果图不连通,则无法求解最小生成树。
最小生成树唯一的充要条件最小生成树是一种在图论中常见的概念,它是一个连通无向图中的一棵生成树,其所有边的权值之和最小。
在实际应用中,最小生成树有着广泛的应用,比如在通信网络、电力网络和交通运输等领域。
要确定一个图的最小生成树是否唯一,需要满足以下充要条件:图中的每条边的权值互不相同。
这个条件是非常重要的,因为只有当图中的每条边的权值都不相同时,才能确保最小生成树的唯一性。
如果图中存在两条或多条边的权值相同,那么可能会有多个最小生成树。
为了更好地理解最小生成树唯一的充要条件,我们可以通过一个简单的例子来说明。
假设有一个无向图,其中包含4个顶点A、B、C、D,以及4条边AB、AC、BC、BD。
如果这些边的权值分别为1、2、3、4,那么根据最小生成树的算法,我们可以得到唯一的最小生成树,即连接顶点A、B、C的边AB、AC。
因为在这种情况下,每条边的权值都不相同,所以最小生成树是唯一的。
相反,如果图中存在两条或多条边的权值相同,那么就会出现多个最小生成树的情况。
比如,如果在上面的例子中,边AC的权值改为1,那么就会有两个最小生成树,一个是连接顶点A、B、C的边AB、AC,另一个是连接顶点A、C、D的边AC、CD。
这是因为存在两条权值相同的边AB和AC,所以会有多个最小生成树。
因此,最小生成树的唯一性与图中每条边的权值是否相同密切相关。
只有当图中的每条边的权值都不相同时,最小生成树才是唯一的。
这个充要条件在实际应用中非常重要,因为只有满足这个条件,我们才能准确地求解出最小生成树,从而优化网络结构,提高效率。
最小生成树唯一的充要条件是图中的每条边的权值互不相同。
只有当图中的每条边的权值都不相同时,最小生成树才是唯一的。
这个条件在实际应用中非常重要,因为只有满足这个条件,我们才能准确地求解出最小生成树,从而优化网络结构,提高效率。
希望通过本文的介绍,读者能够更好地理解最小生成树的唯一性条件,为实际应用提供参考。
mst聚类算法
MST(最小生成树)聚类算法是一种基于图论的聚类算法,它通过最小化生成树的成本来对数据进行聚类。
生成树是一个连接所有节点的无环图,其边权值之和等于原图中最小生成树的权值之和。
MST聚类算法的基本步骤如下:
1. 初始化:将每个数据点视为一个单独的簇,并构建一个包含所有点的空生成树。
2. 迭代:在每次迭代中,从当前生成树中选取两个最近的簇,并将它们合并为一个新的簇。
为了保持生成树的连通性,需要添加一条边来连接这两个簇。
这个过程一直持续到生成树中只剩下一个簇为止。
3. 优化:在每次迭代中,通过优化边的权重来最小化生成树的成本。
这通常涉及到遍历所有可能的边,并计算它们对生成树成本的影响。
4. 输出:最终的生成树表示了数据的聚类结果。
MST聚类算法有许多变体,其中最著名的可能是K-MST算法。
K-MST算
法类似于传统的MST算法,但它使用了K-means聚类的思想来初始化簇
的集合,并使用簇之间的距离作为边的权重。
此外,K-MST算法还可以通
过迭代来不断优化聚类结果,直到达到满意的聚类结果为止。
探索最小生成树的割定理最小生成树(Minimum Spanning Tree,简称MST)是图论中的一个重要概念,它是指一个无向连通图中,边的权值之和最小的树。
最小生成树的算法有很多,其中一种经典的算法是普里姆算法(Prim's algorithm),另一种则是克鲁斯卡尔算法(Kruskal's algorithm)。
本文将探索最小生成树的割定理,即最小生成树的性质和定理。
一、最小生成树的割定理概述最小生成树的割定理是指:若一个边集合是图G的最小生成树的边集合,那么该边集合对应的割是图G的割集中权值最小的割。
割(Cut)是图论中一个重要概念,指的是将图中的顶点划分为两个不相交的非空集合,再在这两个集合之间的边中选择一个边集合。
割的权值是指选择的这个边集合的边权值之和。
割定理是指最小生成树的边集合对应的割是图中的割集中权值最小的割。
这个定理十分重要,对最小生成树的理解和应用有很大的帮助。
二、割定理的证明1. 证明最小生成树的边集合对应的割是图G的割集中的割。
假设最小生成树的边集合为T,割的权值最小的割为(M, V-M),其中M为边集合,V为顶点集合。
设最小生成树的边集合T对应的割为(A, B),其中A为边集合,B 为顶点集合。
如果(A, B)不是图G的割集中的割,那么一定存在(A', B')是图G的割集中的最小割,并且权值小于(A, B)。
根据割的定义,割的权值是指选取的边集合的边权值之和。
所以,权值小于(A, B)的割(A', B'),也就代表着边集合A'的权值小于边集合A的权值。
但是,假设A'是边集合T的真子集。
根据最小生成树的定义,最小生成树的边集合是能够连接图G的所有顶点,并且没有形成回路的边集合。
这就导致了边集合T中的一些边被割A'中的边替代,从而形成一个回路。
这与最小生成树的定义相悖。
所以,假设不成立,(A, B)是图G的割集中的割。