图论——树
- 格式:ppt
- 大小:2.17 MB
- 文档页数:46
离散数学图论(图、树)常考考点知识点总结图的定义和表示1.图:一个图是一个序偶<V , E >,记为G =< V ,E >,其中:① V ={V1,V2,V3,…, Vn}是有限非空集合,Vi 称为结点,V 称为节点集② E 是有限集合,称为边集,E中的每个元素都有V中的结点对与之对应,称之为边③与边对应的结点对既可以是无序的,也可以是有序的表示方法集合表示法,邻接矩阵法2.邻接矩阵:零图的邻接矩阵全零图中不与任何结点相邻接的结点称为孤立结点,两个端点相同的边称为环或者自回路3.零图:仅有孤立节点组成的图4.平凡图:仅含一个节点的零图无向图和有向图5.无向图:每条边都是无向边的图有向图:每条边都是有向边的图6.多重图:含有平行边的图(无向图中,两结点之间包括结点自身之间的几条边;有向图中同方向的边)7.线图:非多重图8.重数:平行边的条数9..简单图:无环的线图10.子图,真子图,导出子图,生成子图,补图子图:边和结点都是原图的子集,则称该图为原图的子图真子图(该图为原图的子图,但是不跟原图相等)11.生成子图:顶点集跟原图相等,边集是原图的子集12.导出子图:顶点集是原图的子集,边集是由顶点集在原图中构成的所有边构成的图完全图(任何两个节点之间都有边)13.完全图:完全图的邻接矩阵主对角线的元素全为0,其余元素都是114.补图:完全图简单图15.自补图:G与G的补图同构,则称自补图16.正则图:无向图G=<V,E>,如果每个顶点的度数都是k,则图G称作k-正则图17.结点的度数利用邻接矩阵求度数:18.握手定理:图中结点度数的总和等于边数的两倍推论:度数为奇数的结点个数为偶数有向图中,所有结点的入度=出度=边数19.图的度数序列:出度序列+入度序列20.图的同构:通俗来说就是两个图的顶点和边之间有双射关系,并且每条边对应的重数相同(也就是可任意挪动结点的位置,其他皆不变)21.图的连通性及判定条件可达性:对节点vi 和vj 之间存在通路,则称vi 和vj 之间是可达的22.无向图的连通性:图中每两个顶点之间都是互相可达的23..强连通图:有向图G 的任意两个顶点之间是相互可达的判定条件:G 中存在一条经过所有节点至少一次的回路24.单向连通图:有向图G 中任意两个顶点之间至少有一个节点到另一个节点之间是可达的判定条件:有向图G 中存在一条路经过所有节点25.弱连通图:有向图除去方向后的无向图是连通的判定条件:有向图邻接矩阵与转置矩阵的并是全一的矩阵26.点割:设无向图G=<V,E>为联通图,对任意的顶点w  V,若删除w及与w相关联的所有边后,无向图不再联通,则w称为割点;27.点割集:设无向图G=<V,E>为连通图,若存在点集 ,当删除 中所有顶点及与V1顶点相关联的所有边后,图G不再是联通的;而删除了V1的任何真子集 及与V2中顶点先关的所有边后,所得的子图仍是连通图,则称V1是G的一个点割集设无向图G=<V,E>为连通图,任意边e  E,若删除e后无向图不再联通,则称e 为割边,也成为桥28.边割集:欧拉图,哈密顿图,偶图(二分图),平面图29.欧拉通路(回路):图G 是连通图,并且存在一条经过所有边一次且仅一次的通路(回路)称为拉通路(回路)30.欧拉图:存在欧拉通路和回路的图31.半欧拉图:有通路但没有欧拉回路32.欧拉通路判定:图G 是连通的,并且有且仅有零个或者两个奇度数的节点欧拉回路判定:图G 是连通的,并且所有节点的度数均为偶数有向欧拉图判定:图G 是连通的,并且所有节点的出度等于入度33.哈顿密图:图G 中存在一条回路,经过所有点一次且仅一次34..偶图:图G 中的顶点集被分成两部分子集V1,V2,其中V1nV2= o ,V1UV2= V ,并且图G 中任意一条边的两个端点都是一个在V1中,一个在V2中35.平面图:如果把无向图G 中的点和边画在平面上,不存在任何两条边有不在端点处的交叉点,则称图G 是平面图,否则是非平面图36.图的分类树无向树和有向树无向树:连通而不含回路的无向图称为无向树生成树:图G 的某个生成子图是树有向树:一个有向图,略去所有有向边的方向所得到的无向图是一棵树最小生成树最小生成树:设G -< V . E 是连通赋权图,T 是G 的一个生成树,T 的每个树枝所赋权值之和称为T 的权,记为W ( T . G 中具有最小权的生成树称为G 的最小生成树最优树(哈夫曼树)设有一棵二元树,若对所有的树叶赋以权值w1,w2… wn ,则称之为赋权二元树,若权为wi 的叶的层数为L ( wi ),则称W ( T )= EWixL ( wi )为该赋权二元树的权,W )最小的二元树称为最优树。
图论中的树与树的性质图论是研究图及其性质的数学分支。
在图论中,树是一种特殊的无环连通图,它具有许多重要的性质和应用。
本文将介绍图论中树以及树的性质的相关内容。
一、树的定义与基本性质树是一个连通且无环的无向图。
具体定义如下:1. 一个只有一个顶点的图是一个树。
2. 一个连通的图,如果删除任意一条边,则图不再连通,那么该图就是一个树。
树具有以下基本性质:1. 一棵树有且只有一个连通分量。
2. 在一棵树中,任意两个顶点之间存在唯一路径。
3. 一棵树的边数比顶点数少1。
树的性质使得其在各个领域有着广泛的应用。
下面将介绍树的一些重要性质。
二、树的性质1. 最小生成树最小生成树是指在一个带权图中,找到一个树,使得该树的边的权值之和最小。
常用的最小生成树算法有Prim算法和Kruskal算法。
最小生成树在网络设计、电力传输等领域有着重要的应用。
2. 无向树与有向树的转化无向树可以通过给每条边赋予方向而转化为有向树,同样,有向树也可以通过移除边的方向而转化为无向树。
3. 树的直径树的直径是指树中任意两个顶点之间的最长路径。
求树的直径的算法可以通过两次BFS或DFS来实现。
树的直径问题在网络拓扑、动态规划等领域有重要应用。
4. 中心与半径树的中心定义为树中顶点到其他所有顶点的距离之和最小的顶点。
树的半径定义为树中顶点到离其最远的顶点的距离。
中心和半径是树中的重要概念,它们在设计网络、发现故障等方面有着重要应用。
5. 树的遍历树的遍历是指按照一定规则来访问树的所有顶点。
常用的树的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
树的遍历在路径搜索、关系分析等方面有广泛应用。
6. 散射树散射树是一种特殊的树结构,它是由无向图中一棵以散射点为根的最小生成树与散射关键路径组成。
散射树在光纤传输等领域有着广泛的应用。
以上是图论中树的一些性质的简要介绍,树作为图论中的重要概念,具有许多重要的性质和应用。
从最小生成树到树的遍历,树的性质在各个领域都有着广泛的应用。
图论中的树与森林
在图论中,树和森林是两个重要的概念,它们是有机连通且无圈的图。
接下来将分别介绍树和森林的定义与性质。
1. 树
树是一种无圈的连通图,且任意两个顶点之间只有一条简单路径。
换句话说,树是一个极小连通图。
树有以下性质:
- 任意一棵树有n个顶点和n-1条边。
- 任意一棵树的任意两个顶点之间有唯一路径。
- 任意一棵树都是连通的,去掉任意一条边就不再连通。
- 任意一棵树没有回路。
- 任意一棵树中加入一条边都会形成回路。
- 一棵含有n个顶点的图是树当且仅当它有n-1条边且连通。
树是一种重要的数据结构,常用于解决树/图相关的问题,比如最小生成树、拓扑排序等算法。
2. 森林
森林是由若干棵不相交的树构成的连通图。
换句话说,森林是多个树的集合。
森林有以下性质:
- 森林中每个连通分支都是一棵树。
- 森林中各棵树之间没有边相连。
在实际问题中,森林通常用于表示一组有关系但不完全联通的数据
集合,比如多个家族的家谱关系等。
在计算机科学领域,树和森林被广泛运用于算法设计和数据结构中。
它们是图论中的重要概念,深入了解树和森林的性质有助于理解和解
决相关问题。
图论中的树与森林是一门深奥的数学学科,通过不断学
习和实践,我们可以更好地运用它们来解决实际问题。
图论中的树与树的性质图论是数学中的一个分支,研究各种图形的结构和性质。
其中,树是图论中非常重要的一个概念。
本文将介绍树的定义和性质,并探讨它在图论中的应用。
一、树的定义在图论中,树是一种特殊的无向图,它是一个连通的无环图。
这意味着树中的任意两个顶点之间都存在唯一的路径,并且不存在回路。
在树中,有一个特殊的顶点被称为“根”,其他顶点都与根有一条直接的路径相连。
根据根与其他顶点之间的距离可以将树分为不同的层次。
二、树的性质1. 顶点数与边数关系在一个树中,边的数量等于顶点数减1。
这可以通过归纳证明来证明。
2. 树的层次关系在树中,从根开始,每一层的顶点都与上一层的顶点相连。
树的层次关系可以用来刻画树中的信息流动或者依赖关系。
3. 叶子节点在树中,没有子节点的顶点被称为叶子节点。
树的叶子节点是最末端的节点,它们没有子节点与之相连。
4. 子树在一个树中,任意一个顶点都可以看作是一个树的根。
以某个顶点为根的子树包含了该顶点以及与之直接相连的所有顶点。
5. 树的深度树的深度是指树中从根到最深的叶子节点的层数。
树的深度也可以看作是树的高度,表示树的层数。
三、图论中树的应用图论中的树在很多问题中起到了重要的作用,下面列举几个常见的应用。
1. 最小生成树最小生成树是指在一个连通的带权无向图中选择一棵边的子集,使得这棵子树包含了图中的所有顶点,并且权重之和最小。
最小生成树常被用于网络设计、电路布局等问题中。
2. 网络路由在一个网络中,通过树的结构可以确定数据的传输路径,有效地避免了数据的冗余和混乱。
树结构的拓扑设计对于确定最短路径、避免环路等问题非常有帮助。
3. 数据压缩树结构可以用于数据的压缩和解压缩。
通过构建哈夫曼树,可以实现对数据的高效压缩,去除冗余信息,提高存储和传输效率。
4. 优先级队列优先级队列常通过堆这种数据结构来实现,而堆可以看作是一种特殊的树。
通过构建堆结构,可以高效地实现插入和删除操作,常被用于任务调度、最短路径算法等场景。
图论中的树与树的性质图论是数学中的一个重要分支,研究的对象是图,即由若干个顶点和边连接的结构。
在图论中,树是一种特殊的图,它具有许多独特的性质和特点。
一、树的定义及性质在图论中,树被定义为一个无环连通图,也就是说,树是一个连通的无向图,并且不存在环。
树有许多重要的性质,包括:1. 任意两个顶点之间有唯一的简单路径。
2. 一个有n个顶点的树有n-1条边。
3. 一个图是树的充分必要条件是该图连通且有n-1条边。
二、树的类型在图论中,树可以分为多种类型,常见的包括:1. 二叉树:每个节点最多有两个子节点的树。
2. 森林:由若干棵不相交的树组成的集合。
3. 二叉查找树:一种特殊的二叉树,具有快速查找和插入性能。
4. 最小生成树:一个无向图的最小生成树是一棵包含图中所有顶点的树,且边的权值之和最小。
三、树的应用树在计算机科学和信息技术领域有着广泛的应用,其中最常见的包括:1. 数据结构:树是计算机中常用的数据结构之一,例如二叉搜索树、堆、红黑树等。
2. 网络拓扑:树结构常被用于描述网络拓扑结构,如局域网、广域网等。
3. 编程算法:许多算法问题可以通过树的结构来描述和解决,例如深度优先搜索、广度优先搜索等。
四、树的特殊性质除了上述基本性质外,树还有许多特殊性质,如:1. 叶子节点:树的叶子节点是指度为1的节点,即没有子节点的节点。
2. 高度:树的高度是指从根节点到最深叶子节点的最长简单路径的长度。
3. 平衡树:一种特殊的树结构,具有良好的平衡性能和查找效率。
总之,树是图论中的重要概念,具有许多独特的性质和应用。
通过深入研究树的结构和特点,可以更好地理解和应用图论的知识,为解决实际问题提供有力的工具和方法。