数电第1章 数制与编码
- 格式:ppt
- 大小:1.09 MB
- 文档页数:35
第一章数制与编码1.1数制1.1.1各进制中(1)十进制:采用0, 1, 2, 3, 4, 5, 6, 7, 8, 9十个数码,其进位的规则是“逢十进一”。
如:4587.29=4⨯103+5⨯102+8⨯101+7⨯100+2⨯10-1+9⨯10-2(2)二进制:只有0、1两个数码,进位规律是:“逢二进一”。
(3)十六进制:只有0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , A、B、C、D、E、F十六个数码,进位规律是“逢十六进一”。
各位的权均为16的幂。
如:(4)八进制:只有0, 1, 2, 3, 4, 5, 6, 7八个数码,进位规律是“逢八进一”。
各位的权都是8的幂。
1.1.2数制转换(1)十进制转换为二进制(BCD码):将十进制数连续不断地除以2 , 直至商为零,所得余数由低位到高位排列,即为所求二进制数。
【例题1-1】()。
(北京邮电大学2016&802电子电路)解析:答案:10100.001【习题1-2】2014年双11淘宝网上销售额达571亿元,这个数转换成二进制时位数有()位。
(杭州电子科技大学2015&849数字电路与信号系统)A、36B、37C、38D、39【习题1-3】将十进制数位有效数字。
(中国科技大学2012&809电子技术(模、数))(2)二—十六进制的转换:①二—十六:因为16进制的基数16=24 ,所以,可将四位二进制数表示一位16进制数,即0000~1111 表示0-F。
例(111100*********)B =(78AE)H②十六—二:将每位16进制数展开成四位二进制数,排列顺序不变即可。
例(BEEF)H =(1011 1110 1110 1111)B【例题1-4】十进制数等于十六进制数()。
(湖南大学2011年&822电子技术基础一)A、;B、;C、;D、。
解析:答案:C(3)二—八进制的转换:因为八进制的基数8=23,所以,可将三位二进制数表示一位八进制数,即000~111 表示0~7。
《数字电子技术》目录第1章数制与编码1.1 数字电路基础知识1.1.1 模拟信号与数字信号1.1.2 数字电路的特点1.2 数制1.2.1 十进制数1.2.2 二进制数1.2.3 八进制数1.2.4 十六进制数1.3 数制转换1.3.1 二进制数与八进制数的相互转换1.3.2 二进制数与十六进制数的相互转换1.3.3 十进制数与任意进制数的相互转换1.4 二进制编码1.4.1 加权二进制码1.4.2 不加权的二进制码1.4.3 字母数字码1.4.4 补码1.5带符号二进制数的加减运算1.5.1 加法运算1.5.2 减法运算第2章逻辑门2.1 基本逻辑门2.1.1 与门2.1.2 或门2.1.3 非门2.2 复合逻辑门2.2.1 与非门2.2.2 或非门2.2.3 异或门2.2.4 同或门2.3 其它逻辑门2.3.1 集电极开路逻辑门2.3.2 集电极开路逻辑门的应用2.3.3 三态逻辑门2.4 集成电路逻辑门2.4.1 概述2.4.2 TTL集成电路逻辑门2.4.3 CMOS集成电路逻辑门2.4.4 集成逻辑门的性能参数2.4.5 TTL与CMOS集成电路的接口*第3章逻辑代数基础3.1 概述3.1.1 逻辑函数的基本概念3.1.2 逻辑函数的表示方法3.2 逻辑代数的运算规则3.2.1 逻辑代数的基本定律3.2.2 逻辑代数的基本公式3.2.3 摩根定理3.2.4 逻辑代数的规则3.3 逻辑函数的代数化简法3.3.1 并项化简法3.3.2 吸收化简法3.3.3 配项化简法3.3.4 消去冗余项法3.4 逻辑函数的标准形式3.4.1 最小项与最大项3.4.2 标准与或表达式3.4.3 标准或与表达式3.4.4 两种标准形式的相互转换3.4.5 逻辑函数表达式与真值表的相互转换3.5 逻辑函数的卡诺图化简法3.5.1 卡诺图3.5.2 与或表达式的卡诺图表示3.5.3 与或表达式的卡诺图化简3.5.4 或与表达式的卡诺图化简3.5.5 含无关项逻辑函数的卡诺图化简3.5.6 多输出逻辑函数的化简*第4章组合逻辑电路4.1 组合逻辑电路的分析4.1.1 组合逻辑电路的定义4.1.2 组合逻辑电路的分析步骤4.1.3 组合逻辑电路的分析举例4.2 组合逻辑电路的设计4.2.1 组合逻辑电路的一般设计步骤4.2.2 组合逻辑电路的设计举例4.3 编码器4.3.1 编码器的概念4.3.2 二进制编码器4.3.3 二-十进制编码器4.3.4 编码器应用举例4.4 译码器4.4.1 译码器的概念4.4.2 二进制译码器4.4.3 二-十进制译码器4.4.4 用译码器实现逻辑函数4.4.5 显示译码器4.4.6 译码器应用举例4.5 数据选择器与数据分配器4.5.1 数据选择器4.5.2 用数据选择器实现逻辑函数4.5.3 数据分配器4.5.4 数据选择器应用举例4.6 加法器4.6.1 半加器4.6.2 全加器4.6.3 多位加法器4.6.4 加法器应用举例4.6.5 加法器构成减法运算电路*4.7 比较器4.7.1 1位数值比较器4.7.2 集成数值比较器4.7.3 集成数值比较器应用举例4.8 码组转换电路4.8.1 BCD码之间的相互转换4.8.2 BCD码与二进制码之间的相互转换4.8.3 格雷码与二进制码之间的相互转换4.9 组合逻辑电路的竞争与冒险4.9.1 冒险现象的识别4.9.2 消除冒险现象的方法第5章触发器5.1 RS触发器5.1.1 基本RS触发器5.1.2 钟控RS触发器5.1.3 RS触发器应用举例5.2 D触发器5.2.1 电平触发D触发器5.2.2 边沿D触发器5.3 JK触发器5.3.1 主从JK触发器5.3.2 边沿JK触发器5.4 不同类型触发器的相互转换5.4.1 概述5.4.2 D触发器转换为JK、T和T'触发器5.4.3 JK触发器转换为D触发器第6章寄存器与计数器6.1 寄存器与移位寄存器6.1.1 寄存器6.1.2 移位寄存器6.1.3移位寄存器应用举例6.2 异步N进制计数器6.2.1 异步n位二进制计数器6.2.2 异步非二进制计数器6.3 同步N进制计数器6.3.1 同步n位二进制计数器6.3.2 同步非二进制计数器6.4 集成计数器6.4.1 集成同步二进制计数器6.4.2 集成同步非二进制计数器6.4.3 集成异步二进制计数器6.4.4 集成异步非二进制计数器6.4.5 集成计数器的扩展6.4.6 集成计数器应用举例第7章时序逻辑电路的分析与设计7.1 概述7.1.1 时序逻辑电路的定义7.1.2 时序逻辑电路的结构7.1.3 时序逻辑电路的分类7.2 时序逻辑电路的分析7.2.1时序逻辑电路的分析步骤7.2.2 同步时序逻辑电路分析举例7.2.3 异步时序逻辑电路分析举例7.3 同步时序逻辑电路的设计7.3.1 同步时序逻辑电路的基本设计步骤7.3.2 同步时序逻辑电路设计举例第8章存储器与可编程器件8.1 存储器概述8.1.1 存储器的分类8.1.2 存储器的相关概念8.1.3 存储器的性能指标8.2 RAM8.2.1 RAM分类与结构8.2.2 SRAM8.2.3 DRAM8.3 ROM8.3.1 ROM分类与结构8.3.2 掩膜ROM8.3.3 可编程ROM8.3.4 可编程ROM的应用8.4 快闪存储器(Flash Memory)8.4.1 快闪存储器的电路结构8.4.2 闪存与其它存储器的比较8.5 存储器的扩展8.5.1 存储器的位扩展法8.5.2 存储器的字扩展法8.6 可编程阵列逻辑8.6.1 PAL的电路结构8.6.2 PAL器件举例8.6.3 PAL器件的应用8.7 通用阵列逻辑8.7.1 GAL的性能特点8.7.2 GAL的电路结构8.7.3 OLMC8.7.4 GAL器件的编程与开发8.8 CPLD、FPGA和在系统编程技术8.8.1 数字可编程器件的发展概况8.8.2数字可编程器件的编程语言8.8.3数字可编程器件的应用实例第9章D/A转换器和A/D转换器9.1 概述9.2 D/A转换器9.2.1 D/A转换器的电路结构9.2.2 二进制权电阻网络D/A转换器9.2.3 倒T型电阻网络D/A转换器9.2.4 D/A转换器的主要技术参数9.2.5 集成D/A转换器及应用举例9.3 A/D转换器9.3.1 A/D转换的一般步骤9.3.2 A/D转换器的种类9.3.3 A/D转换器的主要技术参数9.3.4 集成A/D转换器及应用举例第10章脉冲波形的产生与整形电路10.1 概述10.2 多谐振荡器10.2.1 门电路构成的多谐振荡器10.2.2 采用石英晶体的多谐振荡器10.3 单稳态触发器10.3.1 门电路构成的单稳态触发器10.3.2 集成单稳态触发器10.3.3 单稳态触发器的应用10.4 施密特触发器10.4.1 概述10.4.2 施密特触发器的应用10.5 555定时器及其应用10.5.1 电路组成及工作原理10.5.2 555定时器构成施密特触发器10.5.3 555定时器构成单稳态触发器10.5.4 555定时器构成多谐振荡器第11章数字集成电路简介11.1 TTL门电路11.1.1 TTL与非门电路11.1.2 TTL或非门电路11.1.3 TTL与或非门电路11.1.4 集电极开路门电路与三态门电路11.1.5 肖特基TTL与非门电路11.2 CMOS门电路11.2.1 概述11.2.2 CMOS非门电路11.2.3 CMOS与非门电路11.2.4 CMOS或非门电路11.2.5 CMOS门电路的构成规则11.3 数字集成电路的使用。
第1章数制与码制1.1 概述电子信号可用于表示任何信息,如符号、文字、语音、图像等,从表现形式上可归为两类:模拟信号和数字信号。
模拟信号的特点是时间和幅度上都连续变化(连续的含义是在某一取值范围内可以取无限多个数值)。
交流放大电路的电信号就是模拟信号,如图1-1所示。
我们把工作在模拟信号下的电子电路称为模拟电路。
数字信号是时间和幅度上都不连续变化的离散的脉冲信号,例如图1-2所示。
用数字信号对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。
由于它具有逻辑运算和逻辑处理功能,所以又称为数字逻辑电路。
图1-1 图1-2数字电路通常是根据脉冲信号的有无来进行工作的,而与脉冲幅度无关,所以抗干扰能力强、准确度高。
虽然数字信号的处理电路比较复杂,但因信号本身的波形十分简单,只有两种状态—有或无,在电路中具体表现为高电位和低电位(通常用1和0表示),所以用于数字电路的半导体管不是工作在放大状态而是工作在开关状态,要么饱和导通,要么截止,因此制作时工艺要求相对低,易于集成化。
随着数字集成电路制作技术的发展,数字电路在通信、计算机、自动控制、航天等各个领域获得了广泛的应用。
数字信号通常都是用数码表示的。
数码不仅可以用来表示数量的大小,还可以用来表示事物或事物的不同状态。
用数码表示数量大小时,需要用多位数码表示。
通常把多位数码中每一位的构成方法及从低位到高位的进位规则称为数制。
在用于表示不同事物时,这些数码已经不再具有表示数量大小的含义,它们只是不同事物的代号。
比如,我们每个人的身份证号码,这些号码仅仅表示不同对象,没有数量大小的含义。
为了便于记忆和查找,在编制代码时总要遵循一定的规则,这些规则就称为码制。
考虑到信息交换的需要,通常会制定一些大家共同使用的通用代码。
例如:目前国际上通用的美国信息交换标准代码(ASCII码,见本章第1.5节)就属于这一种。
数字电子技术1.2 几种常用的数制任何一个数都可以用不同的进位体制来表示,但不同进位计数体制的运算方法和难易程度各不相同,这对数字系统的性能有很大影响。
数电部分概念总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!数电部分概念总结数电部分概念总结第一章 1.数制的表示方法以及相互之间的转换:十进制数、二进制数、八进制数和十六进制数 2.码制(1)n 位有符号二进制数的编码——正数编码的符号位为0、负数编码的符号位为1、正数的原码、反码、补码相同。