高等数学 极限的运算法则与性质
- 格式:ppt
- 大小:430.00 KB
- 文档页数:22
高等数学极限求法总结高等数学极限求法总结极限的判断定义是:单调递增有上界则有极限,单调递减有下界则有极限。
下面是小编整理的高等数学极限求法总结,希望对你有帮助!函数极限可以分成而运用ε-δ定义更多的见诸于已知的极极限值的证明题中。
掌握这类证明对初学者深刻理解运用极限定义大有裨益。
限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x时的极限。
1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。
方能利用极限四则运算法则进行求之。
不满足条件者,不能直接利用极限四则运算法则求之。
但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。
而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。
例 1 求 lim( x 2 3x + 5).x→ 2解: lim( x 2 3x + 5) = lim x 2 lim 3x + lim 5= (lim x) 2 3 lim x + lim 5= 2 2 3 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
一般用在求导后为零比零或无穷比无穷的类型。
利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f(x)/F(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f(x)/F(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx) = 1 / (cosx)^2(x) = 1原式 = lim 1/(cosx)^2当 x --> 0 时,cosx ---> 1原式 = 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:① 分子、分母为无穷小,即极限为 0 ;② 分子上取正弦的角必须与分母一样。
一、 极限定义、运算法则和一些结果1. 定义: (各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。
说明: (1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明, 例如: ; ; ;等等(2)在后面求极限时, (1)中提到的简单极限作为已知结果直接运用, 而不需再用极限严格定义证明。
2. 极限运算法则定理1 已知 , 都存在, 极限值分别为A, B, 则下面极限都存在, 且有 (1)(2)B A x g x f ⋅=⋅)()(lim(3))0(,)()(lim 成立此时需≠=B BA x g x f 说明: 极限号下面的极限过程是一致的;同时注意法则成立的条件, 当条件不满足时, 不能用。
3. 两个重要极限(1) 1sin lim 0=→xx x (2) e x x x =+→1)1(lim ; e x x x =+∞→)11(lim 说明: ( 1 )不仅要能够运用这两个重要极限本身, 还应能够熟练运用它们的变形形式.(2)一定注意两个重要极限成立的条件。
一定注意两个重要极限 成立的条件。
例如: , , ;等等。
4. 洛比达法则定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。
定理3 当 时, 下列函数都是无穷小(即极限是0), 且相互等价, 即有:x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。
说明: 当上面每个函数中的自变量x 换成 时( ), 仍有上面的等价关系成立, 例如: 当 时, ~ ; ~ 。
定理4 如果函数 都是 时的无穷小, 且 ~ , ~ , 则当 存在时, 也存在且等于 , 即 = 。
5. 洛比达法则定理5 假设当自变量x 趋近于某一定值(或无穷大)时, 函数 和 满足: (1) 和 的极限都是0或都是无穷大;(2) 和 都可导, 且 的导数不为0;(3))()(lim x g x f ''存在(或是无穷大); 则极限 也一定存在, 且等于 , 即 = 。
高等数学极限的公式总结在高等数学中,极限的公式是非常重要的概念,这些公式能够帮助我们理解函数的极限,并进行极限的运算。
以下是一些常见的高等数学极限的公式总结:1. 极限的四则运算性质:lim(a+b) = lim a + lim blim(a-b) = lim a - lim blim(ab) = lim a lim b (假设lim a 和 lim b都存在)lim(a/b) = lim a / lim b (假设lim b 不等于0)2. 极限的常数性质:lim a = a (当a是一个常数)3. 极限的单调性:lim(f(x0+delta x) - f(x0)) / delta x = f'(x0) (当delta x -> 0)4. 连续函数的性质:如果f(x)在x0处连续,那么lim f(x) = f(x0) 当 x -> x05. 无穷小量与无穷大量:当x -> 0时,x是无穷小量,1/x是无穷大量。
6. 洛必达法则:如果lim (f'(x)/g'(x))存在,那么lim (f(x)/g(x)) = lim (f'(x)/g'(x)) (当x->a时)。
7. 泰勒公式:对于任何n阶可导函数f(x),存在一个多项式Pn(x),使得对于所有-∞ < x < ∞,有f(x) = Pn(x) + o(x^n),其中o(x^n)是高阶无穷小。
8. 夹逼准则:如果存在一个区间或闭区间[a, b],满足f(a) <= g(a), f(b) >= g(b),并且lim f(x) = lim g(x),则lim g(x)存在,并且lim g(x) = lim f(x)。
9. 无穷大与无穷小的关系:lim x -> ∞ f(x) = lim x -> ∞ f(x) (如果存在的话)lim x -> ∞ f(x) = 0 (如果lim x -> ∞ f(x)存在的话)10. 极限的唯一性:对于任意给定的正数ε,总存在一个正数δ,使得当x - x0 < δ时,有f(x) - A < ε。
《应用高等数学》极限的四则运算法则应用高等数学中的极限的四则运算法则是指在计算数列或函数极限时,可以利用四则运算的运算规则进行运算,以便更方便地求出极限值。
四则运算法则主要包括极限和、极限差、极限积和极限商四种情况。
1.极限和法则:若函数f(x)和g(x)在点x=a处极限存在,则它们的和函数[f(x)+g(x)]在点x=a处也存在极限,且极限等于两个函数在点x=a处极限的和,即:lim (x→a) [f(x) + g(x)] = lim (x→a) f(x) + lim (x→a) g(x) 2.极限差法则:若函数f(x)和g(x)在点x=a处极限存在,则它们的差函数[f(x)-g(x)]在点x=a处也存在极限,且极限等于两个函数在点x=a处极限的差,即:lim (x→a) [f(x) - g(x)] = lim (x→a) f(x) - lim (x→a) g(x) 3.极限积法则:若函数f(x)和g(x)在点x=a处极限存在,则它们的积函数[f(x)*g(x)]在点x=a处也存在极限,且极限等于两个函数在点x=a处极限的积,即:lim (x→a) [f(x) * g(x)] = (lim (x→a) f(x)) * (lim (x→a)g(x))4.极限商法则:若函数f(x)和g(x)在点x=a处极限存在,并且g(x)≠0,则它们的商函数[f(x)/g(x)]在点x=a处也存在极限,且极限等于两个函数在点x=a处极限的商,即:lim (x→a) [f(x) / g(x)] = (lim (x→a) f(x)) / (lim (x→a) g(x))需要注意的是,上述四则运算法则只适用于函数在点x=a处极限存在的情况,且在使用这些法则时应保持合理性,并且注意避免除以零等错误操作。
这些四则运算法则在高等数学中被广泛应用于求解各种极限问题,通过利用这些法则,可以更简洁、方便地求出函数的极限值,从而帮助我们更好地理解函数的性质和变化规律。